Certified Defenses for Data Poisoning Attacks

Jacob Steinhardt*

Data Poisoning

EEE
"~
&S

System collects data from users, but some users (red) supply fake data to
manipulate system.

e Goal 1: Generate strong attacks in order to stress-test systems.
e Goal 2: Upper-bound the damage from the worst-case attack.

————

v,

Our Contribution

e We show how to approximate the worst-case attack by a convex saddle-
point problem, and design a scalable primal-dual algorithm to solve it.

e We provide a certificate of robustness bounding the worst-case attack
under appropriate assumptions.

Formal Setting
Loss on single point: {(0; z, y); overall loss: L(6; D) =}, yep (0: 2, y).

Clean
training data
D

Poisoned gg{’a
def

éj‘){_l = argming L(0;(D.UD,)NF) < training data

\ v

T e,
i B

I | Outlier removal

M d / Defender discards outliers
./ outside some feasible set F

-

Model

Game between adversary and learner:

e Start with clean data D. = {(x1,v1), ..., (xn, yn)}

e Adversary generates en points of poisoned data D,
e Learner observes clean + poisoned data: D. U D,
Learner goal: output parameters # with small test loss.
Adversary goal: make test loss as high as possible.

Neural Information Processing Systems (NIPS), Los Angeles 2017

Pang Wel Koh*

{jsteinhardt, pangwei,pliang}@cs.stanford.edu

Defenses: lllustration

® Clean, y = +1

X Poisoned, y = +1
® Clean,y =-1

X Poisoned, y = -1

Our Attack Algorithm

Input: clean data D, of size n, feasible set F, poisoned fraction e.
Initialize 0 < 0, U* < .
fort=1.....en

Compute attack point (z\¥, y'!) = argmax £(0; z, y).

Compute loss ¢ = 11(6; D) + eZ((Hx;@Zi y).

Compute gradient ¢ = LV L(0; D) + € VL(0; 21, y1).

Update: 0 « 6 — ng'", U* « min(U*, £Y).

Output: attack D, = {(z!, y'V)}s",, upper bound U*.

Algorithm: Intuition
Perform stochastic gradient descent, but at each iteration simulate adding
in the “worst fit point” (¥, y*)) that can evade outlier removal.

Attack intuition: collection of all of the worst-fit points.

Upper bound intuition: if we can fit all possible points that evade outlier
removal, no attack can perturb us by much.

Algorithm: Theory

Duality. As n — oo, the training loss on D, U D, converges to U™.

Certificate. As long as F is not too small (e.g. outlier removal is not
too aggressive) and the test loss is uniformly close to the clean train
loss, U™ Is an approximate upper bound on the worst-case attack.

Percy Liang

Results: Continuous Data

upper bounds vs. attack baseline comparison

0.07 0.07
- 0.06
o
S [
5 0.05 * 0.05 =
E: -= Upper bound U A
E‘ — Atk: train loss L(6; D-u D) | 0.04 ,‘r Our atk: test 1oss

— Atk: train loss L(6; D.) “” _.— Gradient atk: test loss
0.03 — Atk: test loss L(8) 0.05 ----=-- Label flip: test loss
0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3

£ (fraction of poisoned data added)

Results: Discrete Data (High Dimensions)

Enron: upper bounds vs. attack IMDB: upper bounds vs. attack IMDB: test 0-1 loss on attacks

o3[- 1.0 L 0.26
0.3 0.24
0.8 0.22
7]] u
0.2 ! S~
S ! ; 2 0.20
@ ! / 2
202 0.6 7 0.18
T o4 0.16
0.4
. 0.14 —— Qur attack: test error
0.1 -~ Upper bound U " — Atk: trainloss L(6; D) | | S e Label flip: test error
— Atk: train loss L(6; D. U Dp) — Atk: test loss L(6) 0.12 | e,

0.2
0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05

€ (fraction of poisoned data added)

0.00 0.01 0.02 0.03 0.04 0.05

Results: Breaking the Outlier Detector

MNIST-1-7: attack on data-dep defense MNIST-1-7: effect of shifting centroids

U” (oracle)

#
'
¥

1.0|---- U" (data-dependent)
—— Atk: train loss L(6; D U Dp)

0.8 | — Atk: train loss L[E'ﬂ; D¢) ,
" — Atk: test loss L(0) ’
I
o
o 0.6
=)
k= |
a . f

S
NN

—
b

Distance along orthonormal vector

0.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30
€ (fraction of poisoned data added)

Distance along vector between true centroids

Take-Aways

e Defense is easy for medium-dimensional data that is well-separated.
e Defense is hard for high-dimensional data with many irrelevant features.

¢ Building an outlier detector from poisoned data creates exploitable vul-
nerabllities.

e Optimization is a useful framework for thinking about poisoning attacks!

Reproducible experiments on CodalLab: worksheets.codalab.org

JS was supported by a Fannie & John Hertz Foundation Fellowship and an NSF Graduate Research Fellowship.
This work was also partially supported by a Future of Life Institute grant and a grant from the Open Philanthropy Project.

