Certified Defenses for Data Poisoning Attacks
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System collects data from users, but some users (red) supply fake data to
manipulate system.

e Goal 1: Generate strong attacks in order to stress-test systems.
e Goal 2: Upper-bound the damage from the worst-case attack.
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Our Contribution

e We show how to approximate the worst-case attack by a convex saddle-
point problem, and design a scalable primal-dual algorithm to solve it.

e We provide a certificate of robustness bounding the worst-case attack
under appropriate assumptions.

Formal Setting
Loss on single point: {(0; z, y); overall loss: L(6; D) =}, yep (0: 2, y).
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Model

Game between adversary and learner:

e Start with clean data D. = {(x1,v1), ..., (xn, yn)}

e Adversary generates en points of poisoned data D,
e Learner observes clean + poisoned data: D. U D,
Learner goal: output parameters # with small test loss.
Adversary goal: make test loss as high as possible.
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Defenses: lllustration

® Clean, y = +1

X Poisoned, y = +1
® Clean,y =-1

X Poisoned, y = -1

Our Attack Algorithm

Input: clean data D, of size n, feasible set F, poisoned fraction e.
Initialize 0 < 0, U* < .
fort=1.....en

Compute attack point (z\¥, y'!) = argmax £(0; z, y).

Compute loss ¢ = 11(6; D) + eZ((Hx;@Zi y).

Compute gradient ¢ = LV L(0; D) + € VL(0; 21, y1).

Update: 0 « 6 — ng'", U* « min(U*, £Y).

Output: attack D, = {(z!, y'V)}s",, upper bound U*.

Algorithm: Intuition
Perform stochastic gradient descent, but at each iteration simulate adding
in the “worst fit point” (¥, y*)) that can evade outlier removal.

Attack intuition: collection of all of the worst-fit points.

Upper bound intuition: if we can fit all possible points that evade outlier
removal, no attack can perturb us by much.

Algorithm: Theory

Duality. As n — oo, the training loss on D, U D, converges to U™.

Certificate. As long as F is not too small (e.g. outlier removal is not
too aggressive) and the test loss is uniformly close to the clean train
loss, U™ Is an approximate upper bound on the worst-case attack.
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Results: Continuous Data

upper bounds vs. attack baseline comparison
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Results: Discrete Data (High Dimensions)

Enron: upper bounds vs. attack IMDB: upper bounds vs. attack IMDB: test 0-1 loss on attacks
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Results: Breaking the Outlier Detector

MNIST-1-7: attack on data-dep defense MNIST-1-7: effect of shifting centroids
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Take-Aways

e Defense is easy for medium-dimensional data that is well-separated.
e Defense is hard for high-dimensional data with many irrelevant features.

¢ Building an outlier detector from poisoned data creates exploitable vul-
nerabllities.

e Optimization is a useful framework for thinking about poisoning attacks!

Reproducible experiments on CodalLab: worksheets.codalab.org
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