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Problem Setup

Setting is learning from experts:

» N experts, T rounds

»Fort=1,..., T:
» Learner chooses distribution w; € A, over the experts
» Nature reveals losses z; € [—1, 1]” of the experts
» Learner suffers loss w,' z;

» Goal: minimize

r r
Regret ) " w'z — ) z;. (1)
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where /* is the best fixed expert.

» Typical algorithm: multiplicative weights (aka
exponentiated gradient):

Wii1,j OC Wy i €XP(—nZt ). (2)

Two Different Updates

Two similar but different updates (Kivinen &
Warmuth, 1997; Cesa-Bianchi et al., 2007):

Wii1j X Wy i €XP(—nZt ) (MW1T)
Wipq1i o< Wi i(1 — 0z ) (MW2)

Regret bounds:

log(
Regret < g nz | z:]12.
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It best expert /* has Ioss close to zero, then
second bound better than first.

Gap can be ©(+/T) (in actual performance, not
just upper bounds).

(Regret:MW1)

Regret < (Regret:MW?2)

A Conundrum

» Mirror descent is the current gold standard of
online learning algorithms.

» (MW1) Is mirror descent with regularizer
V(w) =314 wilog(w;),
» (MW2) is NOT mirror descent for any

regularizer, but has better performance!

» Unsettling: should we abandon our gold
standard?
» Fortunately, no: can cast (MW2) as adaptive mirror
descent (Orabona et al., 2013).
» We will show how to approximately recover (MW2); can
recover exactly with more complex regularizer.
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Contributions

» Understanding different variants of
multiplicative weights updates as
adaptive mirror descent

» Combining adaptive mirror descent
(Orabona et al., 2013) and optimistic
updates (Rakhlin & Sridharan, 2012) to
obtain an adaptive exponentiated
gradient algorithm achieving best
known bounds

Review of Mirror Descent

Recall that mirror descent is the

(meta-)algorithm
t—argmlnw +ZW Zs. (3)

Think of as regularized (by ) emplrlcal risk

minimizer. Well-understood regret bounds for
arbitrary convex ¢ (Shalev-Shwartz, 2011).

For ¢(w) =
(MW1).

%27:1 w;log(w;), we recover

But: (MW2) is not mirror descent for any
choice of regularizer.

Adaptive Mirror Descent to the
Rescue

Adaptive mirror descent is the (meta-)algorithm

t—1
W)+ w'zs (4)
—1

Difference from mirror descent: regularizer );
can Nnow be adaptive. For

(W) = Z/ wilog(wy) + 1> 74 Yo 1WI su
we apprOX|mater recover (MW2):
Wii1,i X Wt,ieXp(—UZt,i—Uzzz?,i) ~ W i(1-nzti) (9)

» Achieves the improved bound (Regret:MW?2).

» Intuition: we penalize experts with high
guadratic variation, which makes it easier to
find the best expert when it has low variation.

W; = alg min ?Pt(

An Improved Algorithm and Bound

«—— Optimism

D ’ Vf>o " Sac Name Auxiliary Updates Prediction (w;) Source
Chiang et al., 2012 Kivinen & Warmuth, 1997 o
. " EG (MW1)  Biq = 6t — nz; exp(5t) Kivinen and Warmuth [1997]
| MW2 Bir1.i = Bri+log(1 — nz ) exp(5t) Cesa-Bianchi et al. [2007]
> i = Bri—nZej— 4n°(2e;i — My j)°
o Variation-MW Prai = Bri =2t 2 i) exp(5:) Hazan and Kale [2008]
max; D » max; V; > max; S; & mi =130z
[ H & Kale, 2008 | < . .
azdn ,\a © = Optimistic MW i1 = Bii — 1zt exp(B: — nzi_1) Chiang et al. [2012]
l AEG-Path  Bi,1 = Bri—nzri — n?(z1i — Z-1.)? exp(Bt — nZt—1) this work
AMEG-Path Bi.1 = B; — nZl‘ n (Zt Zi_ 1)2 eXp(Bt — 7721*_1) this work
this work Cesa-Bianchi et al., 2007
A — B means that A is strictly better than B. In the above we let Final bound:

df df
D.. = Zt Nzt —zeq||%, Vo = Zt Nz — Z||%.

def

- Zt i 1z¢l15
def df df

D; = Zt:1(zt,/ _ Zt—1,/)2> Vi = Zt:1(zt,/ o Z,) ) S = Zt:1 Zt,i

.
log(
Regret < g nz Lt jx — Lt— 1,*
t—1

With our new perspective, we get the result simply by “turning the crank on modern online learning

machinery!

Proof Technique: Optimistic Updates

We achieve our bound using optimistic
updates (Rakhlin & Sridharan, 2012).

Optimistic mirror descent incorporates a
hint m;:

w; = argminy(w)+w' mt+§_:zs (6)

w

Compare to normal mirror descent (é).

Adds a guess (my) of the next term (z;) In
the empirical loss. Pay regret in terms of
Z; — my rather than z;.

1 f—1

»Usually: my =z q,0ormy= <) o 4 2Zs

Extensions

Matrices

Extension to matrix setting is important for certain
combinatorial approximation algorithms (Tsuda et
al. 2005; Arora & Kale, 2007).

Now nature plays matrices 41, ..., Z7, — 1 < Z; < I.
Similarly, learner chooses matrices Wj, ..., Wr,
W; = 0, tr(W;) = 1. If W;, Z; are diagonal, recover
vector setting.

If we replace ¥(w) = "7, w;log(w;) with the
von-Neumann entropy (W) = tr(W log(W)), then
same ideas from before still work.

Geometric illustration:

— 77W1T(Zt — my)

Explanation: bounds for mirror descent are obtained by a potential
function argument on the m|n|mum regularized empirical risk,
denoted v *(6;) where 6; =
Bregman divergence (dotted line) of Y* between 0; and 6; — nz;.
Moving in the direction of m; can decrease this divergence.

—7 Z . Zs. Regret is bounded by

Convex Losses and Unconstrained
Optimization

All the algorithms extend to general convex loss
functions fy, ..., fr by setting z; = 0fy(w;) and
applying the same updates as before.

We can extend the algorithms to the non-negative
orthant by simply not renormalizing to the simplex
(still need to initialize weights to 1).

We can go from the non-negative orthant to R” by
keeping track of two weight vectors w,_ and w_,
with loss (w, — w_)'Zz.




