Adaptivity and Optimism: An Improved Exponentiated Gradient Algorithm Jacob Steinhardt, Percy Liang Stanford University

- descent (Orabona et al., 2013). We will show how to approximately recover (MW2); can recover exactly with more complex regularizer.

Contributions

Understanding different variants of multiplicative weights updates as adaptive mirror descent

Combining adaptive mirror descent (Orabona et al., 2013) and optimistic updates (Rakhlin & Sridharan, 2012) to obtain an **adaptive exponentiated** gradient algorithm achieving best known bounds

Review of Mirror Descent

Recall that mirror descent is the (meta-)algorithm

$$w_t = \operatorname*{arg\,min}_w \psi(w) + \sum_{s=1}^{t-1} w^{ op} z_s.$$
 (3)

Think of as regularized (by ψ) empirical risk minimizer. Well-understood regret bounds for arbitrary convex ψ (Shalev-Shwartz, 2011).

For $\psi(w) = \frac{1}{\eta} \sum_{i=1}^{n} w_i \log(w_i)$, we recover (MW1).

But: (MW2) is not mirror descent for any choice of regularizer.

Adaptive Mirror Descent to the Rescue

Adaptive mirror descent is the (meta-)algorithm

$$w_t = \underset{w}{\operatorname{arg\,min}} \psi_t(w) + \sum_{s=1}^{t-1} w^{\top} z_s. \tag{4}$$

Difference from mirror descent: regularizer ψ_t can now be *adaptive*. For

 $\psi_t(w) = \frac{1}{n} \sum_{i=1}^{n} w_i \log(w_i) + \eta \sum_{i=1}^{n} \sum_{s=1}^{t-1} w_i Z_{s,i}^2,$ we approximately recover (MW2):

$$W_{t+1,i} \propto W_{t,i} \exp(-\eta z_{t,i} - \eta^2 z_{t,i}^2) \approx W_{t,i} (1 - \eta z_{t,i})$$
 (5)

Achieves the improved bound (Regret:MW2). Intuition: we penalize experts with high quadratic variation, which makes it easier to find the best expert when it has low variation.

An Improved Algorithm and Bound

Cesa-Bianchi et al., 2007 this work $A \rightarrow B$ means that A is strictly better than B. In the above we let $D_{\infty} \stackrel{\text{def}}{=} \sum_{t=1}^{T} \|z_t - z_{t-1}\|_{\infty}^2, \ V_{\infty} \stackrel{\text{def}}{=} \sum_{t=1}^{T} \|z_t - \bar{z}\|_{\infty}^2, \ S_{\infty} \stackrel{\text{def}}{=} \sum_{t=1}^{T} \|z_t\|_{\infty}^2$ $D_i \stackrel{\text{def}}{=} \sum_{t=1}^{T} (z_{t,i} - z_{t-1,i})^2, \quad V_i \stackrel{\text{def}}{=} \sum_{t=1}^{T} (z_{t,i} - \bar{z}_i)^2, \quad S_i \stackrel{\text{def}}{=} \sum_{t=1}^{T} z_{t,i}^2$

machinery!

We achieve our bound using optimistic updates (Rakhlin & Sridharan, 2012).

Optimistic mirror descent incorporates a hint m_t :

 $W_t = a$

Compare to normal mirror descent (3).

Adds a guess (m_t) of the next term (z_t) in the empirical loss. Pay regret in terms of $z_t - m_t$ rather than z_t . • Usually: $m_t = z_{t-1}$, or $m_t = \frac{1}{t} \sum_{s=1}^{t-1} z_s$

Extensions

Matrices

Extension to matrix setting is important for certain combinatorial approximation algorithms (Tsuda et al. 2005; Arora & Kale, 2007).

Name	Auxiliary Updates	Prediction (<i>w</i> _t)	Source
EG (MW1)	$\beta_{t+1} = \beta_t - \eta \mathbf{Z}_t$	$\exp(\beta_t)$	Kivinen and Warmuth [1997]
MW2	$\beta_{t+1,i} = \beta_{t,i} + \log(1 - \eta z_{t,i})$	$\exp(\beta_t)$	Cesa-Bianchi et al. [2007]
Variation-MW	$\beta_{t+1,i} = \beta_{t,i} - \eta z_{t,i} - 4\eta^2 (z_{t,i} - m_{t,i})^2$ $m_t = \frac{1}{t} \sum_{s=1}^{t-1} z_s$	$\exp(\beta_t)$	Hazan and Kale [2008]
Optimistic MW	$\beta_{t+1,i} = \beta_{t,i} - \eta \mathbf{Z}_{t,i}$	$\exp(\beta_t - \eta z_{t-1})$	Chiang et al. [2012]
AEG-Path	$\beta_{t+1,i} = \beta_{t,i} - \eta Z_{t,i} - \eta^2 (Z_{t,i} - Z_{t-1,i})^2$	$\exp(\beta_t - \eta z_{t-1})$	this work
AMEG-Path	$B_{t+1} = B_t - \eta Z_t - \eta^2 (Z_t - Z_{t-1})^2$	$\exp(B_t - \eta Z_{t-1})$	this work

With our new perspective, we get the result simply by "turning the crank" on modern online learning

Proof Technique: Optimistic Updates

$$\underset{w}{\operatorname{arg\,min}\,\psi(w)} + w^{\top} \left[m_t + \sum_{s=1}^{t-1} z_s \right] \quad (6)$$

Now nature plays *matrices* $Z_1, \ldots, Z_T, -I \leq Z_t \leq I$. Similarly, learner chooses matrices W_1, \ldots, W_T , $W_t \succeq 0$, tr(W_t) = 1. If W_t , Z_t are diagonal, recover vector setting.

If we replace $\psi(w) = \sum_{i=1}^{n} w_i \log(w_i)$ with the *von-Neumann entropy* $\psi(W) = tr(W \log(W))$, then same ideas from before still work.

Geometric illustration:

Explanation: bounds for mirror descent are obtained by a potential function argument on the minimum regularized empirical risk, denoted $\psi^*(\theta_t)$ where $\theta_t = -\eta \sum_{s=1}^{t-1} z_s$. Regret is bounded by Bregman divergence (dotted line) of ψ^* between θ_t and $\theta_t - \eta z_t$. Moving in the direction of m_t can decrease this divergence.

Convex Losses and Unconstrained Optimization

All the algorithms extend to general convex loss functions f_1, \ldots, f_T by setting $z_t = \partial f_t(w_t)$ and applying the same updates as before.

We can extend the algorithms to the non-negative orthant by simply not renormalizing to the simplex (still need to initialize weights to $\frac{1}{n}$).

We can go from the non-negative orthant to \mathbb{R}^n by keeping track of *two* weight vectors w_+ and w_- , with loss $(W_+ - W_-)^\top Z$.

Final bound:
Regret
$$\leq \frac{\log(n)}{\eta} + \eta \sum_{t=1}^{T} (z_{t,i^*} - z_{t-1,i^*})^2$$

 $\psi^*(\theta_t - \eta z_t)$ $\psi^*(\theta_t - \eta \mathbf{Z}_t)$