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Problem Setup

Setting is learning from experts:
I n experts, T rounds
I For t = 1, . . . ,T :

I Learner chooses distribution wt ∈ ∆n over the experts
I Nature reveals losses zt ∈ [−1,1]n of the experts
I Learner suffers loss w>t zt

I Goal: minimize

Regret def
=

T∑
t=1

w>t zt −
T∑

t=1

zt ,i∗, (1)

where i∗ is the best fixed expert.
I Typical algorithm: multiplicative weights (aka

exponentiated gradient):
wt+1,i ∝ wt ,i exp(−ηzt ,i). (2)

Contributions

I Understanding different variants of
multiplicative weights updates as
adaptive mirror descent

I Combining adaptive mirror descent
(Orabona et al., 2013) and optimistic
updates (Rakhlin & Sridharan, 2012) to
obtain an adaptive exponentiated
gradient algorithm achieving best
known bounds

Two Different Updates

Two similar but different updates (Kivinen &
Warmuth, 1997; Cesa-Bianchi et al., 2007):

wt+1,i ∝ wt ,i exp(−ηzt ,i) (MW1)
wt+1,i ∝ wt ,i(1− ηzt ,i) (MW2)

Regret bounds:

Regret ≤ log(n)

η
+ η

T∑
t=1

‖zt‖2
∞ (Regret:MW1)

Regret ≤ log(n)

η
+ η

T∑
t=1

z2
t ,i∗ (Regret:MW2)

If best expert i∗ has loss close to zero, then
second bound better than first.
Gap can be Θ(

√
T) (in actual performance, not

just upper bounds).

Review of Mirror Descent

Recall that mirror descent is the
(meta-)algorithm

wt = arg min
w

ψ(w) +
t−1∑
s=1

w>zs. (3)

Think of as regularized (by ψ) empirical risk
minimizer. Well-understood regret bounds for
arbitrary convex ψ (Shalev-Shwartz, 2011).

For ψ(w) = 1
η

∑n
i=1 wi log(wi), we recover

(MW1).

But: (MW2) is not mirror descent for any
choice of regularizer.

A Conundrum

I Mirror descent is the current gold standard of
online learning algorithms.

I (MW1) is mirror descent with regularizer
ψ(w) =

∑n
i=1 wi log(wi).

I (MW2) is NOT mirror descent for any
regularizer, but has better performance!

I Unsettling: should we abandon our gold
standard?
I Fortunately, no: can cast (MW2) as adaptive mirror

descent (Orabona et al., 2013).
I We will show how to approximately recover (MW2); can

recover exactly with more complex regularizer.

Adaptive Mirror Descent to the
Rescue

Adaptive mirror descent is the (meta-)algorithm

wt = arg min
w

ψt(w) +
t−1∑
s=1

w>zs. (4)

Difference from mirror descent: regularizer ψt
can now be adaptive. For
ψt(w) = 1

η

∑n
i=1 wi log(wi) + η

∑n
i=1

∑t−1
s=1 wiz2

s,i,
we approximately recover (MW2):
wt+1,i ∝ wt ,i exp(−ηzt ,i−η2z2

t ,i) ≈ wt ,i(1−ηzt ,i) (5)

I Achieves the improved bound (Regret:MW2).
I Intuition: we penalize experts with high

quadratic variation, which makes it easier to
find the best expert when it has low variation.
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An Improved Algorithm and Bound

Optimism

A
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Di∗

maxi Di
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Vi∗
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Hazan & Kale, 2008

Cesa-Bianchi et al., 2007
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Name Auxiliary Updates Prediction (wt) Source

EG (MW1) βt+1 = βt − ηzt exp(βt) Kivinen and Warmuth [1997]

MW2 βt+1,i = βt ,i + log(1− ηzt ,i) exp(βt) Cesa-Bianchi et al. [2007]

Variation-MW
βt+1,i = βt ,i − ηzt ,i − 4η2(zt ,i −mt ,i)

2

exp(βt) Hazan and Kale [2008]
mt = 1

t

∑t−1
s=1 zs

Optimistic MW βt+1,i = βt ,i − ηzt ,i exp(βt − ηzt−1) Chiang et al. [2012]

AEG-Path βt+1,i = βt ,i − ηzt ,i − η2(zt ,i − zt−1,i)
2 exp(βt − ηzt−1) this work

AMEG-Path Bt+1 = Bt − ηZt − η2(Zt − Zt−1)2 exp(Bt − ηZt−1) this work

A→ B means that A is strictly better than B. In the above we let

D∞
def
=

∑T
t=1 ‖zt − zt−1‖2

∞, V∞
def
=

∑T
t=1 ‖zt − z̄‖2

∞, S∞
def
=

∑T
t=1 ‖zt‖2

∞

Di
def
=

∑T
t=1(zt ,i − zt−1,i)

2, Vi
def
=

∑T
t=1(zt ,i − z̄i)

2, Si
def
=

∑T
t=1 z2

t ,i

Final bound:

Regret ≤ log(n)

η
+ η

T∑
t=1

(zt ,i∗ − zt−1,i∗)
2

With our new perspective, we get the result simply by “turning the crank” on modern online learning
machinery!

Proof Technique: Optimistic Updates

We achieve our bound using optimistic
updates (Rakhlin & Sridharan, 2012).

Optimistic mirror descent incorporates a
hint mt:

wt = arg min
w

ψ(w)+w>

mt +
t−1∑
s=1

zs

 (6)

Compare to normal mirror descent (3).

Adds a guess (mt) of the next term (zt) in
the empirical loss. Pay regret in terms of
zt −mt rather than zt.
I Usually: mt = zt−1, or mt = 1

t

∑t−1
s=1 zs

Geometric illustration:

ψ∗(θt)

ψ∗(θt − ηzt)

ψ∗(θt)− ηw>t zt
ψ∗(θt)

ψ∗(θt − ηzt)

ψ∗(θt − ηmt)− ηw>t (zt −mt)

ψ∗(θt − ηmt)

Explanation: bounds for mirror descent are obtained by a potential
function argument on the minimum regularized empirical risk,
denoted ψ∗(θt) where θt = −η

∑t−1
s=1 zs. Regret is bounded by

Bregman divergence (dotted line) of ψ∗ between θt and θt − ηzt.
Moving in the direction of mt can decrease this divergence.

Extensions

Matrices

Extension to matrix setting is important for certain
combinatorial approximation algorithms (Tsuda et
al. 2005; Arora & Kale, 2007).

Now nature plays matrices Z1, . . . ,ZT , −I � Zt � I.
Similarly, learner chooses matrices W1, . . . ,WT ,
Wt � 0, tr(Wt) = 1. If Wt, Zt are diagonal, recover
vector setting.

If we replace ψ(w) =
∑n

i=1 wi log(wi) with the
von-Neumann entropy ψ(W ) = tr(W log(W )), then
same ideas from before still work.

Convex Losses and Unconstrained
Optimization

All the algorithms extend to general convex loss
functions f1, . . . , fT by setting zt = ∂ft(wt) and
applying the same updates as before.

We can extend the algorithms to the non-negative
orthant by simply not renormalizing to the simplex
(still need to initialize weights to 1

n).

We can go from the non-negative orthant to Rn by
keeping track of two weight vectors w+ and w−,
with loss (w+ − w−)>z.
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