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Abstract

We present a new methodology for sufficient dimension reduction
(SDR). Our methodology derives directly from a formulation of SDR
in terms of the conditional independence of the covariate X from the
response Y , given the projection of X on the central subspace (cf. Li,
1991; Cook, 1998). We show that this conditional independence asser-
tion can be characterized in terms of conditional covariance operators
on reproducing kernel Hilbert spaces and we show how this characteri-
zation leads to an M-estimator for the central subspace. The resulting
estimator is shown to be consistent under weak conditions; in particu-
lar, we do not have to impose linearity or ellipticity conditions of the
kinds that are generally invoked for SDR methods. We also present
empirical results showing that the new methodology is competitive in
practice.
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1 Introduction

The problem of sufficient dimension reduction (SDR) for regression is that
of finding a subspace S such that the projection of the covariate vector X
onto S captures the statistical dependency of the response Y on X. More
formally, let us characterize a dimension-reduction subspace S in terms of
the following conditional independence assertion:

Y⊥⊥X | ΠSX, (1)

where ΠSX denotes the orthogonal projection of X onto S. It is possible
to show that under weak conditions the intersection of dimension reduction
subspaces is itself a dimension reduction subspace, in which case the inter-
section is referred to as a central subspace (Cook, 1998; Chiaromonte and
Cook, 2002). As suggested in a seminal paper by Li (1991), it is of great
interest to develop procedures for estimating this subspace, quite apart from
any interest in the conditional distribution P (Y | X) or the conditional mean
E(Y | X). Once the central subspace is identified, subsequent analysis can
attempt to infer a conditional distribution or a regression function using the
(low-dimensional) coordinates ΠSX.

The line of research on SDR initiated by Li is to be distinguished from
the large and heterogeneous collection of methods for dimension reduction in
regression in which specific modeling assumptions are imposed on the con-
ditional distribution P (Y | X) or the regression E(Y | X). These methods
include ordinary least squares, partial least squares, canonical correlation
analysis, ACE, projection pursuit regression and neural networks. These
methods can be effective if the modeling assumptions that they embody are
met, but if these assumptions do not hold there is no guarantee of finding
the central subspace.

Li’s paper not only provided a formulation of SDR as a semiparamet-
ric inference problem—with subsequent contributions by Cook and others
bringing it to its elegant expression in terms of conditional independence—
but also suggested a specific inferential methodology that has had significant
influence on the ensuing literature. Specifically, Li suggested approaching
the SDR problem as an inverse regression problem. Roughly speaking, the
idea is that if the conditional distribution P (Y | X) concentrates on a sub-
space of the covariate space, then the inverse regression E(X | Y ) should
lie in that same subspace. Moreover, it should be easier to regress X on
Y than vice versa, given that Y is generally low-dimensional (indeed, one-
dimensional in the majority of applications) while X is high-dimensional.
Li (1991) proposed a particularly simple instantiation of this idea—known
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as sliced inverse regression (SIR)—in which E(X | Y ) is estimated as a
constant vector within each slice of the response variable Y , and principal
component analysis is used to aggregate these constant vectors into an esti-
mate of the central subspace. The past decade has seen a number of further
developments in this vein, including principal Hessian directions (pHd, Li,
1992), sliced average variance estimation (SAVE, Cook and Weisberg, 1991;
Cook and Yin, 2001) and contour regression (Li et al., 2005). A particular
focus of these more recent developments has been the exploitation of second
moments within an inverse regression framework.

While the inverse regression perspective has been quite useful, it is not
without its drawbacks. In particular, performing a regression of X on Y
generally requires making assumptions with respect to the probability dis-
tribution of X, assumptions that can be difficult to justify. In particular,
most of the inverse regression methods make the assumption of linearity of
the conditional mean of the covariate along the central subspace (or make
a related assumption for the conditional covariance). These assumptions
hold in particular if the distribution of X is elliptic. In practice, however,
we do not necessarily expect that the covariate vector will follow an el-
liptic distribution, nor is it easy to assess departures from ellipticity in a
high-dimensional setting. In general it seems unfortunate to have to impose
probabilistic assumptions on X in the setting of a regression methodology.

Inverse regression methods can also exhibit some additional limitations
depending on the specific nature of the response variable Y . In particu-
lar, pHd and contour regression are applicable only to a one-dimensional
response. Also, if the response variable takes its values in a finite set of p
elements, SIR yields a subspace of dimension at most p − 1; thus, for the
important problem of binary classification SIR yields only a one-dimensional
subspace. Finally, in the binary classification setting, if the covariance ma-
trices of the two classes are the same, SAVE and pHd also provide only
a one-dimensional subspace (Cook and Lee, 1999). The general problem
in these cases is that the estimated subspace is smaller than the central
subspace.

In this paper we present a new methodology for SDR that is rather dif-
ferent from the approaches considered thus far in the literature. Rather than
focusing on first and second moments, and thereby engaging the machinery
of classical regression, we focus instead on the criterion of conditional in-
dependence in terms of which the SDR problem is defined. We develop a
contrast function for evaluating subspaces that is minimized precisely when
the conditional independence assertion in Eq. (1) is realized. As befits a cri-
terion that measures departure from conditional independence, our contrast

3



function is not based solely on first and second moments.
Our approach involves the use of conditional covariance operators on

reproducing kernel Hilbert spaces (RKHS’s). Our use of RKHS’s is related
to their use in nonparametric regression and classification; in particular,
the RKHS’s given by some positive definite kernels are Hilbert spaces of
smooth functions that are “small” enough to yield computationally-tractable
procedures, but are rich enough to capture nonparametric phenomena of
interest (Wahba, 1990), and this computational focus is an important aspect
of our work. On the other hand, whereas in nonparametric regression and
classification the role of RKHS’s is to provide basis expansions of regression
functions and discriminant functions, in our case the RKHS plays a different
role. Our interest is not in the functions in the RKHS per se, but rather in
conditional covariance operators defined on the RKHS. We show that these
operators can be used to measure departures from conditional independence.
We also show that these operators can be estimated from data and that these
estimates are functions of Gram matrices. Thus our approach—which we
refer to as kernel dimension reduction (KDR)—involves computing Gram
matrices from data and optimizing a particular functional of these Gram
matrices to yield an estimate of the central subspace.

This approach makes no strong assumptions on either the conditional
distribution pY |ΠSX(y | ΠSx) or the marginal distribution pX(x). As we
show, KDR is consistent as an estimator of the central subspace under weak
conditions.

There are alternatives to the inverse regression approach in the literature
that have some similarities to KDR. In particular, minimum average variance
estimation (MAVE, Xia et al., 2002) is based on nonparametric estimation
of the conditional covariance of Y given X, an idea related to KDR. This
method explicitly estimates the regressor, however, assuming an additive
noise model Y = f(X) + Z, where Z is independent of X. KDR does not
make such an assumption, and does not estimate the regressor explicitly.
Other related approaches include methods that estimate the derivative of
the regression function; these are based on the fact that the derivative of
the conditional expectation g(x) = E[y | BTx] with respect to x belongs
to a dimension reduction subspace (Samarov, 1993; Hristache et al., 2001).
These methods again assume an additive noise model, however, and impose
the condition E[g′(BTX)] 6= 0; a condition that is violated if g and the
distribution of X exhibit certain symmetries. In general, we are aware of no
method that attacks SDR directly by assessing departures from conditional
independence.

We presented an earlier kernel dimension reduction method in Fukumizu
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et al. (2004). The contrast function presented in that paper, however, was
not derived as an estimator of a conditional covariance operator, and it was
not possible to establish a consistency result for that approach. The con-
trast function that we present here is derived directly from the conditional
covariance perspective; moreover, it is simpler than the earlier estimator and
it is possible to establish consistency for the new formulation. We should
note, however, that the empirical performance of the earlier KDR method
was shown by Fukumizu et al. (2004) to yield a significant improvement on
SIR and pHd in the case of non-elliptic data, and these empirical results
motivated us to pursue the general approach further.

While KDR has advantages over other SDR methods because of its gen-
erality and its directness in capturing the semiparametric nature of the SDR
problem, it also reposes on a more complex mathematical framework that
presents new theoretical challenges. Thus, while consistency for SIR and
related methods follows from a straightforward appeal to the central limit
theorem (under ellipticity assumptions), more effort is required to study
the statistical behavior of KDR theoretically. This effort is of some general
value, however; in particular, to establish the consistency of KDR we prove
the uniform O(n−1/2) convergence of an empirical process that takes values
in a reproducing kernel Hilbert space. This result, which accords with the
order of uniform convergence of an ordinary real-valued empirical process,
may be of independent theoretical interest.

It should be noted at the outset that we do not attempt to provide
distribution theory for KDR in this paper, and in particular we do not
address the problem of inferring the dimensionality of the central subspace.

The paper is organized as follows. In Section 2 we show how condi-
tional independence can be characterized by cross-covariance operators on
an RKHS and use this characterization to derive the KDR method. Section
3 presents numerical examples of the KDR method. We present a consis-
tency theorem and its proof in Section 4. Section 5 provides concluding
remarks. Some of the details of the proof of consistency are provided in the
Appendix.

2 Kernel Dimension Reduction for Regression

The method of kernel dimension reduction is based on a characterization
of conditional independence using operators on RKHS’s. We present this
characterization in Section 2.1 and show how it yields a population criterion
for SDR in Section 2.2. This population criterion is then turned into a
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finite-sample estimation procedure in Section 2.3.
In this paper, a Hilbert space means a separable Hilbert space, and an

operator always means a linear operator. The operator norm of a bounded
operator T is denoted by ‖T‖. The null space and the range of an operator
T are denoted by N (T ) and R(T ), respectively.

2.1 Characterization of conditional independence

Let (X ,BX ) and (Y,BY) denote measurable spaces. When the base space is
a topological space, the Borel σ-field is always assumed. Let (HX , kX ) and
(HY , kY) be RKHS’s of functions on X and Y, respectively, with measurable
positive definite kernels kX and kY (Aronszajn, 1950). We consider a random
vector (X,Y ) : Ω → X × Y with the law PXY . The marginal distribution
of X and Y are denoted by PX and PY , respectively. It is always assumed
that the positive definite kernels satisfy

EX [kX (X,X)] <∞ and EY [kY(Y, Y )] <∞. (2)

Under this assumption, HX and HY are included in L2(PX) and L2(PY ),
respectively, where L2(µ) denotes the Hilbert space of square integrable
functions with respect to the measure µ, and the inclusions JX : HX →
L2(PX) and JY : HY → L2(PY ) are continuous, because EX [f(X)2] =
EX [〈f, kX ( · , X)〉2HX

] ≤ ‖f‖2
HX

EX [kX (X,X)] for f ∈ HX .
The cross-covariance operator of (X,Y ) is an operator from HX to HY

so that

〈g,ΣY Xf〉HY
= EXY

[
(f(X) − EX [f(X)])(g(Y ) − EY [g(Y )])

]
(3)

holds for all f ∈ HX and g ∈ HY (Baker, 1973; Fukumizu et al., 2004).
Obviously, ΣY X = Σ∗

XY , where T ∗ denotes the adjoint of an operator T .
If Y is equal to X, the positive self-adjoint operator ΣXX is called the
covariance operator.

For a random variable X : Ω → X , the mean element mX ∈ HX is
defined by the element that satisfies

〈f,mX〉HX
= EX [f(X)] (4)

for all f ∈ HX ; that is, mX = J∗
X1, where 1 is the constant function. Using

the mean elements, Eq. (3), which characterizes ΣY X , can be written as

〈g,ΣY Xf〉HY
= EXY [〈f, kX (·, X) −mX〉HX

〈kY(·, Y ) −mY , g〉HY
].
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Let QX and QY be the orthogonal projections which map HX onto
R(ΣXX) and HY onto R(ΣY Y ), respectively. It is known (Baker, 1973,
Theorem 1) that ΣY X has a representation of the form

ΣY X = Σ
1/2
Y Y VY XΣ

1/2
XX , (5)

where VY X : HX → HY is a unique bounded operator such that ‖VY X‖ ≤ 1
and VY X = QY VY XQX .

A cross-covariance operator on an RKHS can be represented explicitly
as an integral operator. For arbitrary ϕ ∈ L2(PX) and y ∈ Y, the integral

Gϕ(y) =

∫

X×Y
kY(y, ỹ)(ϕ(x̃) − EX [ϕ(X)])dPXY (x̃, ỹ) (6)

always exists and Gϕ is an element of L2(PY ). It is not difficult to see that

SY X : L2(PX) → L2(PY ), ϕ 7→ Gϕ

is a bounded linear operator with ‖SY X‖ ≤ EY [kY(Y, Y )]. If f is a function
in HX , we have for any y ∈ Y

Gf (y) = 〈kY( · , y),ΣY Xf〉HY
=

(
ΣY Xf

)
(y),

which implies the following proposition:

Proposition 1. The covariance operator ΣY X : HX → HY is the restriction
of the integral operator SY X to HX . More precisely,

JYΣY X = SY XJX .

Conditional variance can be also represented by covariance operators.
Define the conditional covariance operator ΣY Y |X by

ΣY Y |X = ΣY Y − Σ
1/2
Y Y VY XVXY Σ

1/2
Y Y ,

where VY X is the bounded operator in Eq. (5). For convenience we some-
times write ΣY Y |X as

ΣY Y |X = ΣY Y − ΣY XΣ−1
XXΣXY ,

which is an abuse of notation, because Σ−1
XX may not exist.

The following two propositions provide insights into the meaning of a
conditional covariance operator. The former proposition relates the operator
to the residual error of regression, and the latter proposition expresses the
residual error in terms of the conditional variance.
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Proposition 2. For any g ∈ HY ,

〈g,ΣY Y |Xg〉HY
= inf

f∈HX

EXY

∣∣(g(Y ) − EY [g(Y )]) − (f(X) − EX [f(X)])
∣∣2.

Proof. Let ΣY X = Σ
1/2
Y Y VY XΣ

1/2
XX be the decomposition in Eq. (5), and define

Eg(f) = EY X

∣∣(g(Y )−EY [g(Y )])− (f(X)−EX [f(X)])
∣∣2. From the equality

Eg(f) = ‖Σ1/2
XXf‖2

HX
− 2〈VXY Σ

1/2
Y Y g,Σ

1/2
XXf〉HX

+ ‖Σ1/2
Y Y g‖2

HY
,

replacing Σ
1/2
XXf with an arbitrary φ ∈ HX yields

inf
f∈HX

Eg(f) ≥ inf
φ∈HX

{
‖φ‖2

HX
− 2〈VXY Σ

1/2
Y Y g, φ〉HX

+ ‖Σ1/2
Y Y g‖2

HY

}

= inf
φ∈HX

‖φ− VXY Σ
1/2
Y Y g‖2

HX
+ 〈g,ΣY Y |Xg〉HY

= 〈g,ΣY Y |Xg〉HY
.

For the opposite inequality, take an arbitrary ε > 0. From the fact

that VXY Σ
1/2
Y Y g ∈ R(ΣXX) = R(Σ

1/2
XX), there exists f∗ ∈ HX such that

‖Σ1/2
XXf∗ − VXY Σ

1/2
Y Y g‖HX

≤ ε. For such f∗,

Eg(f∗) = ‖Σ1/2
XXf∗‖2

HX
− 2〈VXY Σ

1/2
Y Y g,Σ

1/2
XXf∗〉HX

+ ‖Σ1/2
Y Y g‖2

HY

= ‖Σ1/2
XXf∗ − VY XΣ

1/2
Y Y g‖2

HX
+ ‖Σ1/2

Y Y g‖HY
− ‖VXY Σ

1/2
Y Y g‖2

HX

≤ 〈g,ΣY Y |Xg〉HY
+ ε2.

Because ε is arbitrary, we have inff∈HX
Eg(f) ≤ 〈g,ΣY Y |Xg〉HY

.

Proposition 2 is an analog for operators of a well-known result on co-
variance matrices and linear regression: the conditional covariance matrix
CY Y |X = CY Y − CY XC

−1
XXCXY expresses the residual error of the least

square regression problem as bTCY Y |Xb = minaE‖bTY − aTX‖2.
To relate the residual error in Proposition 2 to the conditional variance

of g(Y ) given X, we make the following mild assumption:

(AS) HX + R is dense in L2(PX), where HX + R denotes the direct sum

of the RKHS HX and the RKHS R (Aronszajn, 1950).
A positive definite kernel on a compact set is called universal if the

corresponding RKHS is dense in the Banach space of continuous functions
with sup norm (Steinwart, 2001). The assumption (AS) is satisfied if X
is compact and kX is universal. One example of a universal kernel is the
Gaussian radial basis function (RBF) kernel k(x, y) = exp

(
−σ2‖x− y‖2

)
on

a compact subset of R
m.
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Proposition 3. Under the assumption (AS),

〈g,ΣY Y |Xg〉HY
= EX

[
VarY |X [g(Y )|X]

]
(7)

for all g ∈ HY .

Proof. From Proposition 2, we have

〈g,ΣY Y |Xg〉HY
= inf

f∈HX

Var[g(Y ) − f(X)]

= inf
f∈HX

{
VarX

[
EY |X [g(Y ) − f(X)|X]

]
+ EX

[
VarY |X [g(Y ) − f(X)|X]

]}

= inf
f∈HX

VarX

[
EY |X [g(Y )|X] − f(X)

]
+ EX

[
VarY |X [g(Y )|X]

]
.

Let ϕ(x) = EY |X [g(Y )|X = x]. Since ϕ ∈ L2(PX) from Var[ϕ(X)] ≤
Var[g(Y )] < ∞, the assumption (AS) implies that for an arbitrary ε > 0
there exists f ∈ HX and c ∈ R such that h = f+c satisfies ‖ϕ−h‖L2(PX) < ε.
Because Var[ϕ(X)−f(X)] ≤ ‖ϕ−h‖2

L2(PX) ≤ ε2 and ε is arbitrary, we have

inff∈HX
VarX

[
EY |X [g(Y )|X] − f(X)

]
= 0, which completes the proof.

Proposition 3 improves a result due to Fukumizu et al. (2004, Proposition
5), where the much stronger assumption E[g(Y )|X = · ] ∈ HX was imposed.

Propositions 2 and 3 imply that the operator ΣY Y |X can be interpreted
as capturing the predictive ability for Y of the explanatory variable X.

2.2 Criterion of kernel dimension reduction

Let M(m × n; R) be the set of real-valued m × n matrices. For a natural
number d ≤ m, the Stiefel manifold S

m
d (R) is defined by

S
m
d (R) = {B ∈M(m× d; R) | BTB = Id},

which consists of d orthonormal vectors in R
m.1 It is well known that S

m
d (R)

is a compact smooth manifold. For B ∈ S
m
d (R), the matrix BBT defines an

orthogonal projection of R
m onto the d-dimensional subspace spanned by

the column vectors of B.
Hereafter, X is assumed to be a Borel measurable subset of the m-

dimensional Euclidean space such that BBTX ⊂ X for all B ∈ S
m
d (R).

1Although the Grassmann manifold is often used in the study of sets of subspaces in

R
m, we find the Stiefel manifold more convenient as it allows us to use matrix notation

explicitly.
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Let B
m
d ⊆ S

m
d (R) denote the subset of matrices whose columns span a

dimension reduction subspace; for each B0 ∈ B
m
d , we have

pY |X(y|x) = pY |BT
0

X(y|BT
0 x), (8)

where pY |X(y|x) and pY |BT X(y|u) are the conditional probability densities of

Y given X, and Y given BTX, respectively. The existence and positivity of
these conditional probability densities are always assumed hereafter. As we
have discussed in Introduction, under conditions given by Cook (1998, Sec-
tion 6.4) this subset represents the central subspace (under the assumption
that d is the minimum dimensionality of the dimension reduction subspaces).

We now turn to the key problem of characterizing the subset B
m
d using

conditional covariance operators on reproducing kernel Hilbert spaces. In
the following, we assume that kd(z, z̃) is a positive definite kernel on Z =
∪B∈Sm

d
(R)B

TX such that EX [kd(B
TX,BTX)] < ∞ for all B ∈ S

m
d (R), and

we let kB
X denote a positive definite kernel on X given by

kB
X (x, x̃) = kd(B

Tx,BT x̃), (9)

for each B ∈ S
m
d (R). The RKHS associated with kB

X is denoted by HB
X .

As seen later in Theorem 4, if X and Y are subsets of Euclidean spaces
and Gaussian RBF kernels are used for kX and kY , under some conditions
the subset B

m
d is characterized by the set of solutions of an optimization

problem:
B

m
d = arg min

B∈Sm
d

(R)
ΣB

Y Y |X , (10)

where ΣB
Y X and ΣB

XX denote the (cross-) covariance operators with respect
to the kernel kB, and

ΣB
Y Y |X = ΣY Y − ΣB

Y XΣB
XX

−1
ΣB

XY .

The minimization in Eq. (10) refers to the least operator in the partial order
of the self-adjoint operators.

We use the trace to evaluate the partial order of the self-adjoint opera-
tors. While other possibilities exist (e.g., the determinant), the trace has the
advantage of yielding a relatively simple theoretical analysis. The operator
ΣB

Y Y |X is trace class for all B ∈ S
m
d (R) by ΣB

Y Y |X ≤ ΣY Y . Henceforth the

minimization in Eq.(10) should thus be understood as that of minimizing
Tr[ΣB

Y Y |X ].

From Propositions 2 and 3, minimization of Tr[ΣB
Y Y |X ] is equivalent to

the minimization of the sum of the residual errors for the optimal predic-
tion of functions of Y using BTX, where the sum is taken over a complete
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orthonormal system of HY . This is intuitively reasonable as a criterion of
choosing B, and we will see that this is equivalent to finding the central
subspace under some conditions.

Let (Ω,B) be a measurable space, let (H, k) be a RKHS over Ω with the
kernel k measurable and bounded, and let S be the set of all probability
measures on (Ω,B). The RKHS H is called probability-determining if the
map

S 3 P 7→ (f 7→ EX∼P [f(X)]) ∈ H∗ (11)

is one-to-one, where H∗ is the dual space of H. It is easy to see that H is
probability-determining if and only if the map S 3 P 7→ EX∼P [k(·, X)] ∈ H
is one-to-one.

Suppose Ω is a topological space equipped with the Borel σ-field. It is
known that a finite Borel measure is necessarily a Radon measure for many
“nice” spaces such as Polish spaces. From the Riesz representation theorem
for Radon measures (see, for example, Berg et al., 1984, Chapter 2), on
a locally compact space the linear functional f 7→ EP [f(X)] on the space
of functions of compact support uniquely determines a Radon probability
measure P . Thus, if Ω is a compact Polish space, a universal kernel on Ω
is probability-determining. In particular, any universal kernel on a compact
subset of Euclidean space is probability-determining. It is also known that
Gaussian RBF kernels on all of R

m are probability-determining (Fukumizu
et al., 2004, Theorem 6). Note also that if X is a finite set of ` elements,
any positive definite kernel that gives an `-dimensional RKHS is probability-
determining.

The following theorem improves Theorem 7 in Fukumizu et al. (2004),
and is the theoretical basis of kernel dimension reduction. In the following,
let PB denote the probability on X induced from PX by the projection
BBT : X → X .

Theorem 4. Suppose that the closure of the HB
X in L2(PX) is included in

the closure of HX in L2(PX) for any B ∈ S
m
d (R). Then,

ΣB
Y Y |X ≥ ΣY Y |X , (12)

where the inequality refers to the order of self-adjoint operators. If fur-
ther (HX , PX) and (HB

X , PB) for every B ∈ S
m
d (R) satisfy (AS) and HY is

probability-determining, the following equivalence holds

ΣY Y |X = ΣB
Y Y |X ⇐⇒ Y⊥⊥X | BTX. (13)
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Proof. The first assertion is obvious from Proposition 2. For the second
assertion, let C be an m×(m−d) matrix whose columns span the orthogonal
complement to the subspace spanned by the columns of B, and let (U, V ) =
(BTX,CTX) for notational simplicity. By taking the expectation of the
well-known relation

VarY |U [g(Y )|U ] = EV |U
[
VarY |U,V [g(Y )|U, V ]

]
+ VarV |U

[
EY |U,V [g(Y )|U, V ]

]

with respect to V , we have

EU

[
VarY |U [g(Y )|U ]

]
= EX [VarY |X [g(Y )|X]

]
+EU

[
VarV |U

[
EY |U,V [g(Y )|U, V ]

]]
,

from which Proposition 3 yields

〈g, (ΣB
Y Y |X − ΣY Y |X)g〉HY

= EU

[
VarV |U

[
EY |U,V [g(Y )|U, V ]

]]
.

It follows that the right hand side of the equivalence in Eq. (13) holds if
and only if EY |U,V [g(Y )|U, V ] does not depend on V almost surely. This is
equivalent to

EY |X [g(Y )|X] = EY |U [g(Y )|U ]

almost surely. Since HY is probability-determining, this means that the
conditional probability of Y given X is reduced to that of Y given U .

The assumptions implying Eq. (12) are satisfied if X is compact and kX
is universal. Thus, if X and Y are compact subsets of Euclidean spaces,
universal kernels such as Gaussian RBF kernels are sufficient to guarantee
the equivalence given by Eq. (13).

2.3 Kernel dimension reduction procedure

We now use the characterization given in Theorem 4 to develop an optimiza-
tion procedure for estimating the central subspace from an empirical sample
(X1, Y1), . . . , (Xn, Yn). We assume that (X1, Y1), . . . , (Xn, Yn) is sampled
i.i.d. from PXY and we assume that there exists B0 ∈ S

m
d (R) such that

pY |X(y|x) = pY |BT
0

X(y|BT
0 x).

We define the empirical cross-covariance operator Σ̂
(n)
Y X by evaluating

the cross-covariance operator at the empirical distribution 1
n

∑n
i=1 δXi

δYi
.

When acting on functions f ∈ HX and g ∈ HY , the operator Σ̂
(n)
Y X gives the

empirical covariance:

〈g, Σ̂(n)
Y Xf〉HY

=
1

n

n∑

i=1

g(Yi)f(Xi) −
(

1

n

n∑

i=1

g(Yi)

)(
1

n

n∑

i=1

f(Xi)

)
.

12



Also, for B ∈ S
m
d (R), let Σ̂

B(n)
Y Y |X denote the empirical conditional covariance

operator :

Σ̂
B(n)
Y Y |X = Σ̂

(n)
Y Y − Σ̂

B(n)
Y X

(
Σ̂

B(n)
XX + εnI

)−1
Σ̂

B(n)
XY . (14)

The regularization term εnI (εn > 0) is required to enable operator inversion
and is thus analogous to Tikhonov regularization (Groetsch, 1984). We will
see that the regularization term is also needed for consistency.

We now define the KDR estimator B̂(n) as any minimizer of Tr[Σ̂
B(n)
Y Y |X ]

on the manifold S
m
d (R); that is, any matrix in S

m
d (R) that minimizes

Tr
[
Σ̂

B(n)
Y X

(
Σ̂

B(n)
XX + εnI

)−1
Σ̂

B(n)
XY

]
. (15)

The KDR objective function in Eq. (15) can also be expressed in terms
of Gram matrices (given a kernel k, the Gram matrix is the n × n matrix
whose entries are the evaluations of the kernel on all pairs of n data points).
Let φB

i ∈ HX and ψi ∈ HY (1 ≤ i ≤ n) be functions defined by

φB
i = kB(·, Xi) −

1

n

n∑

j=1

kB(·, Xj), ψi = kY(·, Yi) −
1

n

n∑

j=1

kY(·, Yj).

Because R(Σ̂
B(n)
XX ) = N (Σ̂

B(n)
XX )⊥ and R(Σ̂

(n)
Y Y ) = N (Σ̂

(n)
Y Y )⊥ are spanned

by (φB
i )n

i=1 and (ψi)
n
i=1, respectively, the trace of Σ̂

B(n)
Y Y |X is equal to that

of the matrix representation of Σ̂
B(n)
Y Y |X on the linear hull of (ψi)

n
i=1. Note

that although the vectors (ψi)
n
i=1 are over-complete, the trace of the matrix

representation with respect to these vectors is equal to the trace of the
operator.

For B ∈ S
m
d (R), the centered Gram matrix GB

X with respect to the kernel
kB is defined by

(GB
X)ij = 〈φB

i , φ
B
j 〉HB

X
= kB

X (Xi, Xj)−
1

n

n∑

b=1

kB
X (Xi, Xb)−

1

n

n∑

a=1

kB
X (Xa, Xj)

+
1

n2

n∑

a=1

n∑

b=1

kB
X (Xa, Xb),

and GY is defined similarly. By direct calculation, it is easy to obtain

Σ̂
B(n)
Y Y |Xψi =

1

n

n∑

j=1

ψj

(
GY

)
ji
− 1

n

n∑

j=1

ψj

(
GB

X(GB
X + nεnIn)−1GY

)
ji
.

13



It follows that the matrix representation of Σ̂
B(n)
Y Y |X with respect to (ψi)

n
i=1

is 1
n{GY −GB

X(GB
X + nεnIn)−1GY } and its trace is

Tr
[
Σ̂

B(n)
Y Y |X

]
=

1

n
Tr

[
GY −GB

X(GB
X + nεnIn)−1GY

]

= εnTr
[
GY (GB

X + nεnIn)−1
]
.

Omitting the constant factor, the KDR objective function in Eq. (15) thus
reduces to

Tr
[
GY (GB

X + nεnIn)−1
]
. (16)

The KDR method is defined as the optimization of this function over the
manifold S

m
d (R).

Theorem 4 is the population justification of the KDR method. Note
that this derivation imposes no strong assumptions either on the conditional
probability of Y given X, or on the marginal distributions of X and Y . In
particular, it does not require ellipticity of the marginal distribution of X,
nor does it require an additive noise model. The response variable Y may
be either continuous or discrete. We confirm this general applicability of the
KDR method by the numerical results presented in the next section.

Because the objective function Eq. (16) is nonconvex, the minimization
requires a nonlinear optimization technique; in our experiments we use the
steepest descent method with line search. To alleviate potential problems
with local optima, we use a continuation method in which the scale pa-
rameter in Gaussian RBF kernel is gradually decreased during the iterative
optimization process.

3 Numerical Results

3.1 Simulation studies

In this section we compare the performance of the KDR method with that of
several well-known dimension reduction methods. Specifically, we compare
to SIR, pHd, and SAVE on synthetic data sets generated by the regressions
in Examples 6.2, 6.3, and 6.4 of Li et al. (2005). The results are evaluated
by computing the Frobenius distance between the projection matrix of the
estimated subspace and that of the true subspace; this evaluation measure
is invariant under change of basis and is equal to

‖B0B
T
0 − B̂B̂T ‖F ,

14



where B0 and B̂ are the matrices in the Stiefel manifold S
m
d (R) representing

the true subspace and the estimated subspace, respectively. For the KDR
method, a Gaussian RBF kernel exp(−‖z1 − z2‖2/c) was used, with c =
2.0 for regression (A) and regression (C) and c = 0.5 for regression (B).
The parameter estimate B̂ was updated 100 times by the steepest descent
method. The regularization parameter was fixed at ε = 0.1. For SIR and
SAVE, we optimized the number of slices for each simulation so as to obtain
the best average norm.

Regression (A) is given by

(A) Y =
X1

0.5 + (X2 + 1.5)2
+ (1 +X2)

2 + σE,

where X ∼ N(0, I4) is a four-dimensional explanatory variable, and E ∼
N(0, 1) is independent of X. Thus, the central subspace is spanned by the
vectors (1, 0, 0, 0) and (0, 1, 0, 0). For the noise level σ, three different values
were used: σ = 0.1, 0.4 and 0.8. We used 100 random replications with
100 samples each. Note that the distribution of the explanatory variable X
satisfies the ellipticity assumption, as required by the SIR, SAVE, and pHd
methods.

Table 1 shows the mean and the standard deviation of the Frobenius
norm over 100 samples. We see that the KDR method outperforms the
other three methods in terms of estimation accuracy. It is also worth noting
that in the results presented by Li et al. (2005) for their GCR method, the
average norm was 0.28, 0.33, 0.45 for σ = 0.1, 0.4, 0.8, respectively; again,
this is worse than the performance of KDR.

The second regression is given by

(B) Y = sin2(πX2 + 1) + σE,

where X ∈ R
4 is distributed uniformly on the set

[0, 1]4\{x ∈ R
4 | xi ≤ 0.7 (i = 1, 2, 3, 4)},

and E ∼ N(0, 1) is independent noise. The standard deviation σ is fixed at
σ = 0.1, 0.2 and 0.3. Note that in this example the distribution of X does
not satisfy the ellipticity assumption.

Table 2 shows the results of the simulation experiments for this regres-
sion. We see that KDR again outperforms the other methods.

The third regression is given by

(C) Y =
1

2
(X1 − a)2E,

15



KDR SIR SAVE pHd
σ NORM SD NORM SD NORM SD NORM SD

0.1 0.11 0.07 0.55 0.28 0.77 0.35 1.04 0.34
0.4 0.17 0.09 0.60 0.27 0.82 0.34 1.03 0.33
0.8 0.34 0.22 0.69 0.25 0.94 0.35 1.06 0.33

Table 1: Comparison of KDR and other methods for regression (A).

KDR SIR SAVE pHd
σ NORM SD NORM SD NORM SD NORM SD

0.1 0.05 0.02 0.24 0.10 0.23 0.13 0.43 0.19
0.2 0.11 0.06 0.32 0.15 0.29 0.16 0.51 0.23
0.3 0.13 0.07 0.41 0.19 0.41 0.21 0.63 0.29

Table 2: Comparison of KDR and other methods for regression (B).

where X ∼ N(0, I10) is a ten-dimensional variable and E ∼ N(0, 1) is inde-
pendent noise. The parameter a is fixed at a = 0, 0.5 and 1. Note that in
this example the conditional probability p(y|x) does not obey an additive
noise assumption. The mean of Y is zero and the variance is a quadratic
function of X1. We generated 100 samples of 500 data.

The results for KDR and the other methods are shown by Table 3, in
which we again confirm that the KDR method yields significantly better
performance than the other methods. In this case, pHd fails to find the
true subspace; this is due to the fact that pHd is incapable of estimating a
direction that only appears in the variance (Cook and Li, 2002). We note
also that the results in Li et al. (2005) show that the contour regression
methods SCR and GCR yield average norms larger than 1.3.

Although the estimation of variance structure is generally more difficult
than that of estimating mean structure, the KDR method nonetheless is
effective at finding the central subspace in this case.

KDR SIR SAVE pHd
a NORM SD NORM SD NORM SD NORM SD

0.0 0.17 0.05 1.83 0.22 0.30 0.07 1.48 0.27
0.5 0.17 0.04 0.58 0.19 0.35 0.08 1.52 0.28
1.0 0.18 0.05 0.30 0.08 0.57 0.20 1.58 0.28

Table 3: Comparison of KDR and other methods for regression (C).
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3.2 Applications

We apply the KDR method to two data sets; one is binary classification and
the other is regression with a continuous response variable. These data sets
have been used previously in studies of dimension reduction methods.

The first data set that we studied is Swiss bank notes which has been pre-
viously studied in the dimension reduction context by Cook and Lee (1999),
with the data taken from Flury and Riedwyl (1988). The problem is that of
classifying counterfeit and genuine Swiss bank notes. The data is a sample
of 100 counterfeit and 100 genuine notes. There are 6 continuous explana-
tory variables that represent aspects of the size of a note: length, height on
the left, height on the right, distance of inner frame to the lower border,
distance of inner frame to the upper border, and length of the diagonal. We
standardize each of explanatory variables so that their standard deviation
is 5.0.

As we have discussed in the Introduction, many dimension reduction
methods (including SIR) are not generally suitable for binary classification
problems. Because among inverse regression methods the estimated sub-
space given by SAVE is necessarily larger than that given by pHd and SIR
(Cook and Lee, 1999), we compared the KDR method only with SAVE for
this data set.

Figure 1 shows two-dimensional plots of the data projected onto the
subspaces estimated by the KDR method and by SAVE. The figure shows
that the results for KDR appear to be robust with respect to the values of
the scale parameter a in the Gaussian RBF kernel. (Note that if a goes
to infinity, the result approaches that obtained by a linear kernel, since the
linear term in the Taylor expansion of the exponential function is dominant.)
In the KDR case, using a Gaussian RBF with scale parameter a = 10 and
100 we obtain clear separation of genuine and counterfeit notes. Slightly less
separation is obtained for the Gaussian RBF kernel with a = 10, 000, for
the linear kernel, and for SAVE; in these cases there is an isolated genuine
data point that lies close to the class boundary, which is similar to the
results using linear discriminant analysis and specification analysis (Flury
and Riedwyl, 1988). We see that KDR finds a more effective subspace to
separate the two classes than SAVE and the existing analysis. Finally, note
that there are two clusters of counterfeit notes in the result of SAVE, while
KDR does not show multiple clusters in either class. Although clusters have
also been reported in other analyses (Flury and Riedwyl, 1988, Section 12),
the KDR results suggest that the cluster structure may not be relevant to
the classification.
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Figure 1: Two dimensional plots of Swiss bank notes. The crosses and circles
show genuine and counterfeit notes, respectively. For the KDR methods, the
Gaussian RBF kernel exp(−‖z1−z2‖2/a) is used with a = 10, 100 and 10000.
For comparison, the plots given by KDR with a linear kernel and SAVE are
shown.
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We also analyzed the Evaporation data set, available in the Arc package
(http://www.stat.umn.edu/arc/software.html). The data set is concerned
with the effect on soil evaporation of various air and soil conditions. The
number of explanatory variables is ten: maximum daily soil temperature
(Maxst), minimum daily soil temperature (Minst), area under the daily soil
temperature curve (Avst), maximum daily air temperature (Maxat), mini-
mum daily air temperature (Minat), average daily air temperature (Avat),
maximum daily humidity (Maxh), minimum daily humidity (Minh), area
under the daily humidity curve (Avh), and total wind speed in miles/hour
(Wind). The response variable is daily soil evaporation (Evap). The data
were collected daily during 46 days; thus the number of data points is 46.
This data set was studied in the context of contour regression methods for
dimension reduction in Li et al. (2005). We standardize each variable so
that the sample variance is equal to 5.0, and use the Gaussian RBF kernel
exp

(
−‖z1 − z2‖2/10

)
.

Our analysis yielded an estimated two-dimensional subspace which is
spanned by the vectors:

KDR1 : −0.25MAXST + 0.32MINST + 0.00AV ST + (−0.28)MAXAT

+ (−0.23)MINAT + (−0.44)AV AT + 0.39MAXH + 0.25MINH

+ (−0.07)AVH + (−0.54)WIND.

KDR2 : 0.09MAXST + (−0.02)MINST + 0.00AV ST + 0.10MAXAT

+ (−0.45)MINAT + 0.23AV AT + 0.21MAXH + (−0.41)MINH

+ (−0.71)AVH + (−0.05)WIND.

In the first direction, Wind and Avat have a large factor with the same sign,
while both have weak contributions on the second direction. In the second
direction, Avh is dominant.

Figure 2 presents the scatter plots representing the response Y plotted
with respect to each of the first two directions given by the KDR method.
Both of these directions show a clear relation with Y . Figure 3 presents
the scatter plot of Y versus the two-dimensional subspace found by KDR.
The obtained two dimensional subspace is different from the one given by
the existing analysis in Li et al. (2005); the contour regression method gives
a subspace of which the first direction shows a clear monotonic trend, but
the second direction suggests a U -shaped pattern. In the result of KDR, we
do not see a clear folded pattern. Although without further analysis it is
difficult to say which result expresses more clearly the statistical dependence,
the plots suggest that the KDR method successfully captured the effective
directions for regression.
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Figure 2: Two dimensional representation of Evaporation data for each of
the first two directions

4 Consistency of kernel dimension reduction

In this section we prove that the KDR estimator is consistent. Our proof of
consistency requires tools from empirical process theory, suitably elaborated
to handle the RKHS setting. We establish convergence of the empirical
objective function to the population objective function under a condition on
the regularization coefficient εn, and from this result infer the consistency
of B̂(n).

4.1 Main result

We assume hereafter that Y is a topological space. The Stiefel manifold
S

m
d (R) is assumed to be equipped with a distanceD which is compatible with

the topology of S
m
d (R). It is known that geodesics define such a distance (see,

for example, Kobayashi and Nomizu, 1963, Chapter IV).
The following technical assumptions are needed to guarantee the consis-

tency of kernel dimension reduction:

(A-1) For any bounded continuous function g on Y, the function

B 7→ EX

[
EY |BT X [g(Y )|BTX]2

]

is continuous on S
m
d (R).
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Figure 3: Three dimensional representation of Evaporation data.

(A-2) For B ∈ S
m
d (R), let PB be the probability distribution of the random

variable BBTX on X . The Hilbert space HB
X + R is dense in L2(PB) for

any B ∈ S
m
d (R).

(A-3) There exists a measurable function φ : X → R such that E|φ(X)|2 <
∞ and the Lipschitz condition

‖kd(B
Tx, ·) − kd(B̃

Tx, ·)‖Hd
≤ φ(x)D(B, B̃)

holds for all B, B̃ ∈ S
m
d (R) and x ∈ X .

Theorem 5. Suppose kd in Eq. (9) is continuous and bounded, and suppose
the regularization parameter εn in Eq. (14) satisfies

εn → 0, n1/2εn → ∞ (n→ ∞). (17)

Define the set of the optimum parameters B
m
d by

B
m
d = arg min

B∈Sm
d

(R)
ΣB

Y Y |X .

Under the assumptions (A-1), (A-2), and (A-3), the set B
m
d is nonempty,

and for an arbitrary open set U in S
m
d (R) with B

m
d ⊂ U we have

lim
n→∞

Pr
(
B̂(n) ∈ U

)
= 1.
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The assumptions (A-1) and (A-2) are used to establish the continuity of
Tr[ΣB

Y Y |X ] in Lemma 12, and (A-3) is needed to derive the order of uniform

convergence of Σ̂
B(n)
Y Y |X in Lemma 8.

The assumption (A-1) is satisfied in various cases. Let f(x) = EY |X [g(Y )|X =
x], and assume f(x) is continuous. This assumption holds, for example, if
the conditional probability density pY |X(y|x) is bounded and continuous on
x. Let C be an element of S

m
m−d(R) such that the subspaces spanned by the

column vectors of B and C are orthogonal; that is, the m×m matrix (B,C)
is an orthogonal matrix. Define random variables U and V by U = BTX
and V = CTX. If X has the probability density function pX(x), the prob-
ability density function of (U, V ) is given by pU,V (u, v) = pX(Bu + Cv).
Consider the situation in which u is given by u = BT x̃ for B ∈ S

m
d (R) and

x̃ ∈ X , and let VB,x̃ = {v ∈ R
m−d | BBT x̃+ Cv ∈ X}. We have

E[g(Y )|BTX = BT x̃] =

∫
VB,x̃

f(BBT x̃+ Cv)pX(BBT x̃+ Cv)dv
∫
VB,x̃

pX(BBT x̃+ Cv)dv
.

If there exists an integrable function r(v) such that χVB,x̃
(v)pX(BBT x̃ +

Cv) ≤ r(v) for all B ∈ S
m
d (R) and x̃ ∈ X , the dominated convergence

theorem ensures (A-1). Thus, it is easy to see that a sufficient condition for
(A-1) is that X is bounded, pX(x) is bounded, and pY |X(y|x) is bounded
and continuous on x, which is satisfied by a wide class of distributions.

The assumption (A-2) holds if X is compact and kd + 1 is a universal
kernel on Z. The assumption (A-3) is satisfied by many useful kernels; for
example, kernels with the property

∣∣∣ ∂2

∂za∂zb
kd(z1, z2)

∣∣∣ ≤ L‖z1 − z2‖ (a, b = 1, 2),

for some L > 0. In particular Gaussian RBF kernels satisfy this property.

4.2 Proof of the consistency theorem

If the following proposition is shown, Theorem 5 follows straightforwardly
by standard arguments establishing the consistency of M-estimators (see,
for example, van der Vaart, 1998, Section 5.2).

Proposition 6. Under the same assumptions as Theorem 5, the functions

Tr
[
Σ̂

B(n)
Y Y |X

]
and Tr

[
ΣB

Y Y |X
]

are continuous on S
m
d (R), and

sup
B∈Sm

d
(R)

∣∣Tr
[
Σ̂

B(n)
Y Y |X

]
− Tr

[
ΣB

Y Y |X
]∣∣ → 0 (n→ ∞)
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in probability.

The proof of Proposition 6 is divided into several lemmas. We de-

compose supB

∣∣Tr[ΣB
Y Y |X ] − Tr[Σ̂

B(n)
Y Y |X ]

∣∣ into two parts: supB

∣∣Tr[ΣB
Y Y |X ] −

Tr[ΣB
Y X(ΣB

XX+εnI)
−1ΣB

XY ]
∣∣ and supB

∣∣Tr[ΣB
Y X(ΣB

XX+εnI)
−1ΣB

XY ]−Tr[Σ̂
B(n)
Y Y |X ]

∣∣.
Lemmas 7, 8, and 9 establish the convergence of the first part. The conver-
gence of the second part is shown by Lemmas 10–13; in particular, Lemmas
11 and 12 establish the key result that the trace of the population conditional
covariance operator is a continuous function of B.

The following lemmas make use of the trace norm and the Hilbert-
Schmidt norm of operators. Recall that the trace of a positive operator
A on a Hilbert space H is defined by

Tr[A] =
∞∑

i=1

〈ϕi, Aϕi〉H,

where {ϕi}∞i=1 is a complete orthonormal system (CONS) of H. A bounded
operator T on a Hilbert space H is called trace class if Tr[(T ∗T )1/2] is finite.
The set of all trace class operators on a Hilbert space is a Banach space with
the trace norm ‖T‖tr = Tr[(T ∗T )1/2]. A bounded operator T : H1 → H2,
where H1 and H2 are Hilbert spaces, is called Hilbert-Schmidt if Tr[T ∗T ] <
∞, or equivalently,

∑∞
i=1 ‖Tϕi‖2

H2
< ∞ for a CONS {ϕi}∞i=1 of H1. The

set of all Hilbert-Schmidt operators from H1 to H2 is a Hilbert space with
Hilbert-Schmidt inner product

〈T1, T2〉HS =
∞∑

i=1

〈T1ϕi, T2ϕi〉H2
,

where {ϕi}∞i=1 is a CONS of H1. Thus, the Hilbert-Schmidt norm ‖T‖HS

satisfies ‖T‖2
HS =

∑∞
i=1 ‖Tϕi‖2

H2
.

Obviously, ‖T‖ ≤ ‖T‖HS ≤ ‖T‖tr holds, if T is trace class or Hilbert-
Schmidt. Recall also ‖AB‖tr ≤ ‖A‖ ‖B‖tr (‖AB‖HS ≤ ‖A‖ ‖B‖HS) for a
bounded operator A and a trace class (Hilbert-Schmidt, resp.) operator B.
If A : H1 → H2 and B : H2 → H1 are Hilbert-Schmidt, the product AB is
trace-class with ‖AB‖tr ≤ ‖A‖HS‖B‖HS .

It is known that cross-covariance operators and covariance operators are
Hilbert-Schmidt and trace class, respectively, under the assumption Eq. (2)
(Gretton et al., 2005; Fukumizu et al., 2005). The Hilbert-Schmidt norm of
ΣY X is given by

‖ΣY X‖2
HS =

∥∥EY X [(kX (·, X) −mX)(kY(·, Y ) −mY )]
∥∥2

HX⊗HY
, (18)
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where HX ⊗ HY is the direct product of HX and HY , and the trace norm
of ΣXX is

Tr[ΣXX ] = EX

[
‖kX ( · , X) −mX‖2

HX

]
. (19)

Lemma 7.∣∣∣Tr
[
Σ̂

(n)
Y Y |X

]
− Tr

[
ΣY Y − ΣY X

(
ΣXX + εnI

)−1
ΣXY

]∣∣∣

≤ 1

εn

{(∥∥Σ̂
(n)
Y X

∥∥
HS

+
∥∥ΣY X

∥∥
HS

)∥∥Σ̂
(n)
Y X − ΣY X

∥∥
HS

+
∥∥ΣY Y

∥∥
tr

∥∥Σ̂
(n)
XX − ΣXX

∥∥
}

+
∣∣Tr

[
Σ̂

(n)
Y Y − ΣY Y

]∣∣.
Proof. Noting that the self-adjoint operator ΣY X(ΣXX+εnI)

−1ΣXY is trace
class from ΣY X(ΣXX+εnI)

−1ΣXY ≤ ΣY Y , the left hand side of the assertion
is bounded from above by
∣∣Tr

[
Σ̂

(n)
Y Y −ΣY Y

]∣∣+
∣∣Tr

[
Σ̂

(n)
Y X

(
Σ̂

(n)
XX+εnI

)−1
Σ̂

(n)
XY −ΣY X

(
ΣXX+εnI

)−1
ΣXY

]∣∣.
The second term is upper-bounded by

∣∣Tr
[(

Σ̂
(n)
Y X − ΣY X

)(
Σ̂

(n)
XX + εnI

)−1
Σ̂

(n)
XY

]∣∣

+
∣∣Tr

[
ΣY X

(
Σ̂

(n)
XX + εnI

)−1(
Σ̂

(n)
XY − ΣXY

)]∣∣

+
∣∣Tr

[
ΣY X

{(
Σ̂

(n)
XX + εnI

)−1 −
(
ΣXX + εnI

)−1}
ΣXY

]∣∣

≤
∥∥(

Σ̂
(n)
Y X − ΣY X

)(
Σ̂

(n)
XX + εnI

)−1
Σ̂

(n)
XY

∥∥
tr

+
∥∥ΣY X

(
Σ̂

(n)
XX + εnI

)−1(
Σ̂

(n)
XY − ΣXY

)∥∥
tr

+
∣∣∣Tr

[{(
ΣXX + εnI

)1/2(
Σ̂

(n)
XX + εnI

)−1(
ΣXX + εnI

)1/2 − I
}

×
(
ΣXX + εnI

)−1/2
ΣXY ΣY X

(
ΣXX + εnI

)−1/2]∣∣∣

≤ 1

εn

∥∥Σ̂
(n)
Y X − ΣY X‖HS

∥∥Σ̂
(n)
XY

∥∥
HS

+
1

εn

∥∥ΣY X

∥∥
HS

∥∥Σ̂
(n)
XY − ΣXY

∥∥
HS

+
∥∥(

ΣXX + εnI
)1/2(

Σ̂
(n)
XX + εnI

)−1(
ΣXX + εnI

)1/2 − I
∥∥

×
∥∥(

ΣXX + εnI
)−1/2

ΣXY ΣY X

(
ΣXX + εnI

)−1/2∥∥
tr
.

Since the spectrum of A∗A and AA∗ are identical, we have
∥∥(

ΣXX + εnI
)1/2(

Σ̂
(n)
XX + εnI

)−1(
ΣXX + εnI

)1/2 − I
∥∥

=
∥∥(

Σ̂
(n)
XX + εnI

)−1/2(
ΣXX + εnI

)(
Σ̂

(n)
XX + εnI

)−1/2 − I
∥∥

≤
∥∥(

Σ̂
(n)
XX + εnI

)−1/2(
ΣXX − Σ̂

(n)
XX

)(
Σ̂

(n)
XX + εnI

)−1/2∥∥

≤ 1

εn

∥∥Σ̂
(n)
XX − ΣXX

∥∥.
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The bound ‖(ΣXX + εnI)
−1/2Σ

1/2
XXVXY ‖ ≤ 1 yields

∥∥(
ΣXX + εnI

)−1/2
ΣXY ΣY X

(
ΣXX + εnI

)−1/2∥∥
tr
≤

∥∥ΣY Y

∥∥
tr
,

which concludes the proof.

Lemma 8. Under the assumption (A-3),

sup
B∈Sm

d
(R)

∥∥Σ̂
B(n)
XX − ΣB

XX

∥∥
HS
, sup

B∈Sm
d

(R)

∥∥Σ̂
B(n)
XY − ΣB

XY

∥∥
HS
,

and sup
B∈Sm

d
(R)

∣∣Tr
[
Σ̂

B(n)
Y Y − ΣB

Y Y

]∣∣

are of order Op(1/
√
n) as n→ ∞.

The proof of Lemma 8 is deferred to the Appendix. From Lemmas 7 and
8, the following lemma is obvious.

Lemma 9. If the regularization parameter (εn)∞n=1 satisfies Eq. (17), under
the assumption (A-3) we have

sup
B∈Sm

d
(R)

∣∣∣Tr
[
Σ̂

B(n)
Y Y |X

]
−Tr

[
ΣY Y −ΣB

Y X

(
ΣB

XX +εnI
)−1

ΣB
XY

]∣∣∣ = Op

(
ε−1
n n−1/2

)
,

as n→ ∞.

In the next four lemmas, we establish the uniform convergence of Lε to
L0 (ε ↓ 0), where Lε(B) is a function on S

m
d (R) defined by

Lε(B) = Tr
[
ΣB

Y X

(
ΣB

XX + εI
)−1

ΣB
XY

]
,

for ε > 0 and L0(B) = Tr[Σ
1/2
Y Y V

B
Y XV

B
XY Σ

1/2
Y Y ]. We begin by establishing

pointwise convergence.

Lemma 10. For arbitrary kernels with Eq. (2),

Tr
[
ΣY X

(
ΣXX + εI

)−1
ΣXY

]
→ Tr

[
Σ

1/2
Y Y VY XVXY Σ

1/2
Y Y

]
(ε ↓ 0).

Proof. With a CONS {ψi}∞i=1 for HY , the left hand side can be written as

∞∑

i=1

〈ψi,Σ
1/2
Y Y VY X

{
I − Σ

1/2
XX(ΣXX + εI)−1Σ

1/2
XX

}
VXY Σ

1/2
Y Y ψi〉HY

.

25



Since each summand is positive and upper bounded by 〈ψi,Σ
1/2
Y Y VY XVXY Σ

1/2
Y Y ψi〉HY

,
and the sum over i is finite, by the dominated convergence theorem it suffices
to show

lim
ε↓0

〈ψ,Σ1/2
Y Y VY X

{
I − Σ

1/2
XX(ΣXX + εI)−1Σ

1/2
XX

}
VXY Σ

1/2
Y Y ψ〉HY

= 0,

for each ψ ∈ HY .
Fix arbitrary ψ ∈ HY and δ > 0. From the fact R(VXY ) ⊂ R(ΣXX),

there exists h ∈ HX such that ‖VXY Σ
1/2
Y Y ψ−ΣXXh‖HX

< δ. Using the fact

I − Σ
1/2
XX(ΣXX + εnI)

−1Σ
1/2
XX = εn(ΣXX + εnI)

−1, we have
∥∥{
I − Σ

1/2
XX(ΣXX + εI)−1Σ

1/2
XX

}
VXY Σ

1/2
Y Y ψ

∥∥
HX

=
∥∥ε

(
ΣXX + εI

)−1
ΣXXh

∥∥
HX

+
∥∥ε

(
ΣXX + εI

)−1(
VXY Σ

1/2
Y Y ψ − ΣXXh

)∥∥
HX

≤ ε‖h‖HX
+ δ,

which is arbitrary small if ε is sufficiently small. This completes the proof.

Lemma 11. Suppose kd is continuous and bounded. Then, for any ε > 0,
the function Lε(B) is continuous on S

m
d (R).

Proof. By an argument similar to that in the proof of Lemma 10, it suffices
to show the continuity of B 7→ 〈ψ,ΣB

Y X(ΣB
XX + εI)−1ΣB

XY ψ〉HY
for each

ψ ∈ HY .
Let JB

X : HB
X → L2(PX) and JY : HY → L2(PY ) be the inclusions.

As seen in Proposition 1, the operators ΣB
Y X and ΣB

XX can be extended
to the integral operators SB

Y X and SB
XX on L2(PX), respectively, so that

JY ΣB
Y X = SB

Y XJ
B
X and JB

XΣB
XX = SB

XXJ
B
X . It is not difficult to see also

JB
X (ΣB

XX + εI)−1 = (SB
XX + εI)−1JB

X for ε > 0. These relations yield

〈ψ,ΣB
Y X

(
ΣB

XX + εI
)−1

ΣB
XY ψ〉HY

= EXY

[
ψ(Y )

((
SB

XX + εI
)−1

SB
XY ψ

)
(X)

]

− EY [ψ(Y )]EX

[((
SB

XX + εI
)−1

SB
XY ψ

)
(X)

]
,

where JY ψ is identified with ψ. The assertion is obtained if we prove that
the operators SB

XY and (SB
XX +εI)−1 are continuous with respect to B in op-

erator norm. To see this, let X̃ be identically and independently distributed
with X. We have

∥∥(
SB

XY − SB0

XY

)
ψ

∥∥2

L2(PX)
= EX̃

[
CovY X

[
kB
X (X, X̃) − kB0

X (X, X̃), ψ(Y )
]2

]

≤ EX̃

[
VarX

[
kd(B

TX,BT X̃) − kd(B
T
0 X,B

T
0 X̃)

]
VarY [ψ(Y )]

]

≤ EX̃EX

[(
kd(B

TX,BT X̃) − kd(B
T
0 X,B

T
0 X̃)

)2]‖ψ‖2
L2(PY ),
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from which the continuity of B 7→ SB
XY is obtained by the continuity and

boundedness of kd. The continuity of (SB
XX + εI)−1 is shown by ‖(SB

XX +
εI)−1 − (SB0

XX + εI)−1‖ = ‖(SB
XX + εI)−1(SB0

XX − SB
XX)(SB0

XX + εI)−1‖ ≤
1
ε2 ‖SB0

XX − SB
XX‖.

To establish the continuity of L0(B) = Tr
[
ΣB

Y XΣB
XX

−1
ΣB

XY

]
, the argu-

ment in the proof of Lemma 11 cannot be applied, because ΣB
XX

−1
is not

bounded in general. The assumptions (A-1) and (A-2) are used for the proof.

Lemma 12. Suppose kd is continuous and bounded. Under the assumptions
(A-1) and (A-2), the function L0(B) is continuous on S

m
d (R).

Proof. By the same argument as in the proof of Lemma 10, it suffices to
establish the continuity of B 7→ 〈ψ,ΣB

Y Y |Xψ〉 for ψ ∈ HY . From Proposition
2, the proof is completed if the continuity of the map

B 7→ inf
f∈HB

X

VarXY [g(Y ) − f(X)]

is proved for any continuous and bounded function g.
Since f(x) depends only on BTx for any f ∈ HB

X , under the assumption
(A-2), we use the same argument as in the proof of Proposition 3 to obtain

inf
f∈HB

X

VarXY [g(Y ) − f(X)]

= inf
f∈HB

X

VarX

[
EY |BBT X [g(Y )|BBTX] − f(X)

]
+ EX

[
VarY |BBT X [g(Y )|BBTX]

]

= EY [g(Y )2] − EX

[
EY |BT X [g(Y )|BTX]2

]
,

which is a continuous function of B ∈ S
m
d (R) from Assumption (A-1).

Lemma 13. Suppose that kd is continuous and bounded, and that εn con-
verges to zero as n goes to infinity. Under the assumptions (A-1) and (A-2),
we have

sup
B∈Sm

d
(R)

Tr
[
ΣB

Y Y |X −
{
ΣY Y −ΣB

Y X(ΣB
XX + εnI)

−1ΣB
XY

}]
→ 0 (n→ ∞).

Proof. From Lemmas 10, 11 and 12, the continuous function Tr[ΣY Y −
ΣY X

(
ΣB

XX + εnI
)−1

ΣB
XY ] converges to the continuous function Tr[ΣB

Y Y |X ]

for every B ∈ S
m
d (R). Because this convergence is monotone and S

m
d (R) is

compact, it is necessarily uniform.
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The proof of Proposition 6 is now easily obtained.

Proof of Proposition 6. Lemmas 11 and 12 show the continuity of Tr
[
Σ̂

B(n)
Y Y |X

]

and Tr
[
ΣB

Y Y |X
]
. Lemmas 9 and 13 prove the uniform convergence.

5 Conclusions

This paper has presented KDR, a new method for sufficient dimension re-
duction in regression. The method is based on a characterization of con-
ditional independence using covariance operators on reproducing Hilbert
spaces. This characterization is not restricted to first- or second-order con-
ditional moments, but exploits high-order moments in the estimation of the
central subspace. The KDR method is widely applicable; in distinction to
most of the existing literature on SDR it does not impose strong assump-
tions on the probability distribution of the covariate vector X. It is also
applicable to problems in which the response Y is discrete.

We have developed some asymptotic theory for the estimator, resulting
in a proof of consistency of the estimator under weak conditions. The proof
of consistency reposes on a result establishing the uniform convergence of the
empirical process on a Hilbert space. In particular, we have established the
rate Op(n

−1/2) for uniform convergence, paralleling the results for ordinary
real-valued empirical processes.

We have not yet developed distribution theory for the KDR method, and
have left open the important problem of inferring the dimensionality of the
central subspace. Our proof techniques do not straightforwardly extend to
yield the asymptotic distribution of the KDR estimator, and new techniques
may be required.

It should be noted, however, that inference of the dimensionality of the
central subspace is not necessary for many of the applications of SDR. In
particular, SDR is often used in the context of graphical exploration of data,
where a data analyst may wish to explore views of varying dimensionality.
Also, in high-dimensional prediction problems of the kind studied in statisti-
cal machine learning, dimension reduction may be carried out in the context
of predictive modeling, in which case cross-validation and related techniques
may be used to choose the dimensionality.

Finally, while we have focused our discussion on the central subspace as
the object of inference, it is also worth noting that KDR applies even to
situations in which a central subspace does not exist. As we have shown,
the KDR estimate converges to the subset of projection matrices that sat-
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isfy Eq. (1); this result holds regardless of the existence of a central sub-
space. That is, if the intersection of dimension-reduction subspaces is not a
dimension-reduction subspace, but if the dimensionality chosen for KDR is
chosen to be large enough such that subspaces satisfying Eq. (1) exist, then
KDR will converge to one of those subspaces.
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A Uniform convergence of cross-covariance oper-

ators

In this appendix we present a proof of Lemma 8. The proof involves the
use of random elements in a Hilbert space (Vakhania et al., 1987; Baker,
1973). Let H be a Hilbert space equipped with a Borel σ-field. A random
element in the Hilbert space H is a measurable map F : Ω → H from a
measurable space (Ω,S). If H is an RKHS on a measurable set X with a
measurable positive definite kernel k, a random variable X in X defines a
random element in H by k(·, X).

A random element F in a Hilbert space H is said to have strong order
p (0 < p < ∞) if E‖F‖p is finite. For a random element F of strong order
one, the expectation of F , which is defined as the element mF ∈ H such
that 〈mF , g〉H = E[〈F, g〉H] for all g ∈ H, is denoted by E[F ]. With this
notation, the the interchange of the expectation and the the inner product is
justified: 〈E[F ], g〉H = E[〈F, g〉H]. Note also that for independent random
elements F and G of strong order two, the relation

E[〈F,G〉H] = 〈E[F ], E[G]〉H

holds.
Let (X,Y ) be a random vector on X × Y with law PXY , and let HX

and HY be the RKHS with positive definite kernels kX and kY , respectively,
which satisfy Eq. (2). The random element kX (·, X) has strong order two,
and E[k(·, X)] equals mX , where mX is given by Eq. (4). The random
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element kX (·, X)kY(·, Y ) in the direct product HX ⊗ HY has strong order
one. Define the zero mean random elements F = kX (·, X)−E[kX (·, X)] and
G = kY(·, Y ) − E[kY(·, Y )].

For an i.i.d. sample (X1, Y1), . . . , (Xn, Yn) on X × Y with law PXY , de-
fine random elements Fi = kX (·, Xi) − E[kX (·, X)] and Gi = kY(·, Yi) −
E[kY(·, Y )]. Then, F, F1, . . . , Fn and G,G1, . . . , Gn are zero mean i.i.d. ran-
dom elements in HX and HY , respectively. In the following, the notation
F = HX ⊗HY is used for simplicity.

As shown in the proof of Lemma 4 in Fukumizu et al. (2005), we have

∥∥Σ̂
(n)
Y X − ΣY X

∥∥
HS

=
∥∥∥ 1

n

n∑

i=1

(
Fi −

1

n

n∑

j=1

Fj

)(
Gi −

1

n

n∑

j=1

Gj

)
− E[FG]

∥∥∥
F
,

which provides a bound

sup
B∈Sm

d
(R)

∥∥Σ̂
B(n)
Y X − ΣB

Y X

∥∥
HS

≤ sup
B∈Sm

d
(R)

∥∥∥ 1

n

n∑

i=1

(
FB

i Gi − E[FG]
)∥∥∥

FB

+ sup
B∈Sm

d
(R)

∥∥∥ 1

n

n∑

j=1

FB
j

∥∥∥
HB

X

∥∥∥ 1

n

n∑

j=1

Gj

∥∥∥
HY

, (20)

where FB
i are defined with the kernel kB, and FB = HB

X ⊗ HY . Also,
Eq. (19) implies

Tr
[
Σ̂

(n)
XX − ΣXX

]
=

1

n

n∑

i=1

∥∥∥Fi −
1

n

n∑

j=1

Fj

∥∥∥
2

HX

− E‖F‖2
HX

=
1

n

n∑

i=1

‖Fi‖2
HX

− E‖F‖2
HX

−
∥∥∥ 1

n

n∑

i=1

Fi

∥∥∥
2

HX

,

from which we have

sup
B∈Sm

d
(R)

∣∣Tr
[
Σ̂

B(n)
XX − ΣB

XX

]∣∣ ≤ sup
B∈Sm

d
(R)

∣∣∣ 1
n

n∑

i=1

‖FB
i ‖2

HB
X

− E‖FB‖2
HB

X

∣∣∣

+ sup
B∈Sm

d
(R)

∥∥∥ 1

n

n∑

i=1

FB
i

∥∥∥
2

HB
X

. (21)

It follows that Lemma 8 is proved if all the four terms on the right hand
side of Eqs. (20) and (21) are of order Op(1/

√
n).

Hereafter, the kernel kd is assumed to be bounded. We begin by consid-
ering the first term on the right hand side of Eq. (21). This is the supremum
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of a process which consists of real-valued random variables ‖FB
i ‖2

HB
X

. Let

UB be a random element in Hd defined by

UB = kd(·, BTX) − E[kd(·, BTX)],

and let C > 0 be a constant such that |kd(z, z)| ≤ C2 for all z ∈ Z. From
‖UB‖Hd

≤ 2C, we have for B, B̃ ∈ S
m
d (R)

∣∣‖FB‖2
HB

X

− ‖F B̃‖2

HB̃
X

∣∣ =
∣∣〈UB − U B̃, UB + U B̃〉Hd

∣∣

≤ ‖UB − U B̃‖Hd
‖UB + U B̃‖Hd

≤ 4C‖UB − U B̃‖Hd
.

The above inequality, combined with the bound

‖UB − U B̃‖Hd
≤ 2φ(x)D(B, B̃) (22)

obtained from Assumption (A-3), provides a Lipschitz condition
∣∣‖FB‖2

HB
X

−
‖F B̃‖2

HB̃
X

∣∣ ≤ 8Cφ(x)D(B, B̃), which works as a sufficient condition for the

uniform central limit theorem (van der Vaart, 1998, Example 19.7). This
yields

sup
B∈Sm

d
(R)

∣∣∣ 1
n

n∑

i=1

‖FB
i ‖2

HB
X

− E‖FB‖2
HB

X

∣∣∣ = Op(1/
√
n).

Our approach to the other three terms is based on a treatment of empir-
ical processes in a Hilbert space. For B ∈ S

m
d (R), let UB

i = kd(·, BTXi) −
E[kd(·, BTX)] be a random element in Hd. Then the relation 〈kB(·, x), kB(·, x̃)〉HB

X
=

kd(B
Tx,BT x̃) = 〈kd(·, BTx), kd(·, BT x̃)〉Hd

implies

∥∥∥ 1

n

n∑

j=1

FB
j

∥∥∥
HB

X

=
∥∥∥ 1

n

n∑

j=1

UB
j

∥∥∥
Hd

, (23)

∥∥∥ 1

n

n∑

j=1

FB
j G− E[FG]

∥∥∥
HB

X
⊗HY

=
∥∥∥ 1

n

n∑

j=1

UB
j G− E[UBG]

∥∥∥
Hd⊗HY

. (24)

Note also that the assumption (A-3) gives

‖UBG− U B̃G‖Hd⊗HY
≤ 2

√
kY(y, y)φ(x)D(B, B̃). (25)

From Eqs. (22), (23), (24), and (25), the proof of Lemma 8 is completed
from the following proposition:
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Proposition 14. Let (X ,BX ) be a measurable space, let Θ be a compact
metric space with distance D, and let H be a Hilbert space. Suppose that
X,X1, . . . , Xn are i.i.d. random variables on X , and suppose F : X×Θ → H
is a Borel measurable map. If supθ∈Θ ‖F (x; θ)‖H < ∞ for all x ∈ X and
there exists a measurable function φ : X → R such that E[φ(X)2] <∞ and

‖F (x; θ1) − F (x; θ2)‖H ≤ φ(x)D(θ1, θ2) (∀ θ1, θ2 ∈ Θ), (26)

then we have

sup
θ∈Θ

∥∥∥ 1√
n

n∑

i=1

(
F (Xi; θ) − E[F (X; θ)]

)∥∥∥
H

= Op(1) (n→ ∞).

The proof of Proposition 14 is similar to that for a real-valued random
process, and is divided into several lemmas.

I.i.d. random variables σ1, . . . , σn taking values in {+1,−1} with equal
probability are called Rademacher variables. The following concentration
inequality is known for a Rademacher average in a Banach space:

Proposition 15. Let a1, . . . , an be elements in a Banach space, and let
σ1, . . . , σn be Rademacher variables. Then, for every t > 0

Pr
(∥∥∑n

i=1σiai

∥∥ > t
)
≤ 2 exp

(
− t2

32
∑n

i=1 ‖ai‖2

)
.

Proof. See Ledoux and Talagrand (1991, Theorem 4.7 and the remark there-
after).

With Proposition 15, the following exponential inequality is obtained
with a slight modification of the standard symmetrization argument for em-
pirical processes.

Lemma 16. Let X,X1, . . . , Xn and H be as in Proposition 14, and denote
(X1, . . . , Xn) by Xn. Let F : X → H be a Borel measurable map with
E‖F (X)‖2

H < ∞. For a positive number M such that E‖F (X)‖2
H < M ,

define an event An by 1
n

∑n
i=1 ‖F (Xi)‖2 ≤ M . Then, for every t > 0 and

sufficiently large n,

Pr
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Xn

∣∣∣
∥∥∥ 1

n

n∑

i=1

(
F (Xi) − E[F (X)]

)∥∥∥
H
> t

}
∩An

)
≤ 8 exp

(
− nt2

1024M

)
.
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Proof. First, note that for any sufficiently large n we have Pr(An) ≥ 3
4

and Pr
(

1
n

∑n
i=1(F (Xi) − E[F (X)]) ≤ t

2

)
≥ 3

4 . We consider only such n

in the following. Let X̃n be an independent copy of Xn, and let Ãn ={
X̃n

∣∣ 1
n

∑n
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}
. The obvious inequality
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)

and the fact that Bn :=
{
(Xn, X̃n)

∣∣ 1
2n

∑n
i=1

(
‖F (Xi)‖2 + ‖F (X̃i)‖2

)
≤M

}

includes An ∩ Ãn gives a symmetrized bound
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.

With Rademacher variables σ1, . . . , σn, the right hand side is equal to

2 Pr
({

(Xn, X̃n, {σi})
∣∣∣
∥∥∥ 1

n

n∑

i=1

σi(F (Xi) − F (X̃i))
∥∥∥
H
>
t

2

}
∩Bn

)
,

which is upper-bounded by

4 Pr
(∥∥∥ 1

n

n∑

i=1

σiF (Xi)
∥∥∥
H
>
t

4
and

1

2n

n∑

i=1

‖F (Xi)‖2
H ≤M

)

= 4EXn

[
Pr

(∥∥∥ 1

n

n∑

i=1

σiF (Xi)
∥∥∥
H
>
t

4

∣∣∣ Xn

)
1{Xn∈Cn}

]
,

where Cn =
{
Xn

∣∣ 1
n

∑n
i=1 ‖F (Xi)‖2

H ≤ 2M
}
. From Proposition 15, the last

line is upper-bounded by 4 exp
(
− (nt/4)2

32
Pn

i=1
‖F (Xi)‖2

)
≤ 4 exp

(
− nt2

1024M

)
.

Let Θ be a set with semimetric d. For any δ > 0, the covering number
N(δ, d,Θ) is the smallest m ∈ N for which there exist m points θ1, . . . , θm
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in Θ such that min1≤i≤m d(θ, θi) ≤ δ holds for any θ ∈ Θ. We write N(δ)
for N(δ, d,Θ) if there is no confusion. For δ > 0, the covering integral J(δ)
for Θ is defined by

J(δ) =

∫ δ

0

(
8 log(N(u)2/u

)1/2
du.

The chaining lemma (Pollard, 1984), which plays a crucial role in the
uniform central limit theorem, is readily extendable to a random process in
a Banach space.

Lemma 17 (Chaining Lemma). Let Θ be a set with semimetric d, and let
{Z(θ) | θ ∈ Θ} be a family of random elements in a Banach space. Suppose
Θ has a finite covering integral J(δ) for 0 < δ < 1 and suppose there exists
a positive constant R > 0 such that for all θ, η ∈ Θ and t > 0 the inequality

Pr
(
‖Z(θ) − Z(η)‖ > td(θ, η)

)
≤ 8 exp

(
− 1

2R t
2
)

holds. Then, there exists a countable subset Θ∗ of Θ such that for any
0 < ε < 1

Pr
(

sup
θ,η∈Θ∗,d(θ,η)≤ε

‖Z(θ) − Z(η)‖ > 26RJ(d(θ, η))
)
≤ 2ε

holds. If Z(θ) has continuous sample paths, then Θ∗ can be replaced by Θ.

Proof. By noting that the proof of the chaining lemma for a real-valued
random process does not use any special properties of real numbers but the
property of the norm (absolute value) for Z(θ), the proof applies directly to
a process in a Banach space. See Pollard (1984, Section VII.2).

Proof of Proposition 14. Note that Eq. (26) means

∥∥∥ 1

n

n∑

i=1

(F (Xi; θ1) − F (Xi; θ2))
∥∥∥

2

H
≤ D(θ1, θ2)

2 1

n

n∑

i=1

φ(Xi)
2.

Let M > 0 be a constant such that E[φ(X)2] < M , and let An =
{
Xn |∥∥ 1

n

∑n
i=1(F (Xi; θ1) − F (Xi; θ2))

∥∥2

H ≤ MD(θ1, θ2)
2}. Since the probability

of An converges to zero as n→ ∞, it suffices to show that there exists δ > 0
such that the probability

Pn = Pr
(
Xn

∣∣∣An ∩
{

sup
θ∈Θ

∥∥∥ 1√
n

n∑

i=1

(
F (Xi; θ) − E[F (X; θ)]

)∥∥∥
H
> δ

})
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satisfies lim supn→∞ Pn = 0.
With the notation F̃θ(x) = F (x; θ)−E[F (X; θ)], from Lemma 16 we can

derive

Pr
(
An ∩

{
Xn

∣∣∣
∥∥∥ 1√

n

n∑

i=1

(
F̃θ1

(Xi) − F̃θ2
(Xi)

)∥∥∥
H
> t

})

≤ 8 exp
(
− t2

512 · 2MD(θ1, θ2)2

)
,

for any t > 0 and sufficiently large n. Because the covering integral J(δ)
with respect to D is finite by the compactness of Θ, and the sample path
Θ 3 θ 7→ 1√

n

∑n
i=1 F̃θ(Xi) ∈ H is continuous, the chaining lemma implies

that for any 0 < ε < 1

Pr

(
An ∩

{
Xn

∣∣∣ sup
θ1,θ2∈Θ,D(θ1,θ2)≤ε

∥∥∥ 1√
n

n∑

i=1

(
F̃θ1

(Xi) − F̃θ2
(Xi)

)∥∥∥
H

> 26 · 512M · J(ε)
})

≤ 2ε.

Take an arbitrary ε ∈ (0, 1). We can find a finite number of partitions

Θ = ∪ν(ε)
a=1Θa (ν(ε) ∈ N) so that any two points in each Θa are within the

distance ε. Let θa be an arbitrary point in Θa. Then the probability Pn is
bounded by

Pn ≤Pr
(

max
1≤a≤ν(ε)

∥∥∥ 1√
n

n∑

i=1

F̃θa
(Xi)

∥∥∥
H
>
δ

2

)

+ Pr

(
An ∩

{
Xn

∣∣∣ sup
θ,η∈Θ,D(θ,η)≤ε

∥∥∥ 1√
n

n∑

i=1

(
F̃θ(Xi) − F̃η(Xi)

)∥∥∥
H
>
δ

2

})
.

(27)

From Chebyshev’s inequality the first term is upper-bounded by

ν(ε) Pr
(∥∥∥ 1√

n

n∑

i=1

F̃θa
(Xi)

∥∥∥
H
>
δ

2

)
≤ 4ν(ε)E‖F̃θa

(X)‖2
H

δ2
.

If we take sufficiently large δ so that 512MJ(ε) < δ/2 and
4ν(ε)E‖F̃θa (X)‖2

H

ε <
δ2, the right hand side of Eq. (27) is bounded by 3ε, which competes the
proof.
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