
Statistics 151B Midterm Thu 17 Mar 2011

Name: ______________________________________

Student ID: ___________________________________

There are five questions on the exam. Each question is worth 20 points total. CHOOSE FOUR
OUT OF THE FIVE QUESTIONS, AND SOLVE ONLY THOSE FOUR. The exam is geared
to take you around an hour to complete. Write your solutions in the accompanying packet of
answer sheets. If you need extra paper, ask the proctor. Hand in both your answer sheets and this
copy of the exam questions.
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Question 1

Part A. Explain what is meant by the training error and test error of a prediction rule.

Part B. Refer to the following figure.38 2. Overview of Supervised Learning
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FIGURE 2.11. Test and training error as a function of model complexity.

be close to f(x0). As k grows, the neighbors are further away, and then
anything can happen.

The variance term is simply the variance of an average here, and de-
creases as the inverse of k. So as k varies, there is a bias–variance tradeoff.

More generally, as the model complexity of our procedure is increased,
the variance tends to increase and the squared bias tends to decreases.
The opposite behavior occurs as the model complexity is decreased. For
k-nearest neighbors, the model complexity is controlled by k.

Typically we would like to choose our model complexity to trade bias
off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training error 1

N

∑
i(yi − ŷi)2. Unfortunately

training error is not a good estimate of test error, as it does not properly
account for model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In
that case the predictions f̂(x0) will have large variance, as reflected in the
last term of expression (2.46). In contrast, if the model is not complex
enough, it will underfit and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimal amount of
model complexity for a given prediction method and training set.

Label one of the curves as “training” and the other as “test”. Explain your reasoning.

Part C. Which of these choices best describes the 1-nearest-neighbor prediction rule? Why?

(I) low bias, low variance
(II) low bias, high variance

(III) high bias, low variance
(IV) high bias, high variance

Now answer the same question, but for a linear prediction rule based on a single predictor variable.
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Question 2

Having fit a regression tree to a training set
{
(x1, y1), . . . , (xN , yN )

}
, we can write its prediction

on the vector xtest as

f̂tree(xtest) =

M∑
m=1

ĉm1[xtest ∈ Rm]. (1)

Here M is the number of leaves in the tree, Rm is the (hyper-)rectangle in predictor space corre-
sponding to the mth leaf, and ĉm is the constant predicted value for the mth leaf:

ĉm :=
1

Nm

∑
{i : xi∈Rm}

yi , (2)

with Nm denoting the number of training points xi which belong to rectangle Rm .

Part A. Show that the tree’s prediction can also be written in the form

f̂tree(xtest) =

N∑
i=1

w(xtest, xi )yi , (3)

where the weight function w(xtest, xi ) has these properties: for a fixed value of xtest,

w(xtest, xi ) ≥ 0 for all i, (4)

and (again for a fixed value of xtest),

N∑
i=1

w(xtest, xi ) = 1. (5)

Part B. The weight function from Part A has particular characteristics which lead us to describe
CART as an “adaptive nearest-neighbor” prediction rule. Describe these characteristics and explain
the relationship to nearest-neighbors prediction.
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Question 3

Part A. Suppose X is an N × p design matrix built from p real-valued predictor variables. Why
do the columns of X need to be standardized (i.e., centered, then scaled to unit variance) prior to
fitting a ridge regression or the lasso? What would happen if you tried to put the intercept term (a
column of 1’s) into X before standardizing?

Part B. Suppose we have data
{
(x1, y1), . . . , (xN , yN )

}
, where each xi = (x1

i , . . . , x p
i ) is a vector

of p real values. We standardize the design matrix, then fit a ridge regression with complexity
parameter λ, obtaining regression coefficients β̂1, . . . , β̂p. Give a formula for f̂RR(xtest), the value
of the ridge-regression prediction rule at the input xtest. (Your formula can use the β̂ j ’s; you do not
need to write them in terms of the data.)

Part C. Why does the lasso usually set some of its fitted regression coefficients β̂ j to exactly zero,
whereas ridge regression essentially never does? Draw a picture if it helps you explain.

Part D. Can putting additional predictor variables into an OLS regression cause the residual sum
of squares on the training set to increase? Why or why not? What implications does this have for
the variable-subset selection problem?
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Question 4

Part A. You and Joe are discussing your favorite topic: cross-validation. Joe says, “When you do
cross-validation, you don’t need a test set. Whichever complexity setting λ̂ you finally choose, you
can just use the cross-validated error estimate of f̂λ̂(x) to assess its future prediction error.” Do
you agree or disagree with Joe? Explain.

Part B. (HTF 7.10.2) Consider a classification problem with a large number of predictors, as may
arise, for example, in genomic or proteomic applications. A typical strategy for analysis might be
as follows:

1. Screen the predictors: find a subset of “good” predictors that show fairly strong (univariate)
correlation with the class labels;

2. using just this subset of predictors, build a multivariate classifier;

3. use cross-validation to estimate the unknown model complexity parameters.

Is this a correct application of cross-validation? Why or why not?
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Question 5

Part A. You and Joe are getting into it again; this time the subject is local versus global prediction
rules. Joe: “It makes no sense to build a prediction rule with OLS regression. The assumption that
E[Y |x] is linear in x over all of predictor space will never be true in practice. I’m always going
to use k-nearest neighbors for my prediction problems.” Explain to Joe a problem with k-NN that
should make him reconsider.

Part B. Joe thinks that least-squares fitting always means we are fitting a prediction rule which is
linear in x . Name and describe to him a general method by which OLS can be used to produce
nonlinear (in x) prediction rules. Give details.
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