Kernels for strings and applications in bioinformatics

Jean-Philippe Vert

Jean-Philippe. Vert@ensmp.fr

Centre for Computational Biology Ecole des Mines de Paris. ParisTech

ISM open forum, Tokyo, Japan, September 28, 2007

Outline

Kernels and kernel methods

- Kernels for biological sequences
 - Explicit vector space embedding
 - Mutual information kernels
 - Alignment kernels
 - Application: remote homology detection

Outline

Kernels and kernel methods

- Kernels for biological sequences
 - Explicit vector space embedding
 - Mutual information kernels
 - Alignment kernels
 - Application: remote homology detection

Kernels and Kernel Methods

Proteins

A: Alanine

F: Phenylalanine

E : Acide glutamique

T: Threonine

H : Histidine

I: Isoleucine

D : Acide aspartique

V : Valine

P: Proline

K : Lysine

C : Cysteine

 ${\color{red}{\mathsf{V}}}$: Thyrosine

S : Sérine

G: Glycine

L : Leucine

M : Méthionine

R : Arginine

N : Asparagine

W: Tryptophane

 \mathbf{Q} : Glutamine

Challenges with protein sequences

- A protein sequences can be seen as a variable-length sequence over the 20-letter alphabet of amino-acids, e.g., insuline:
 FVNOHLCGSHLVEALYLVCGERGFFYTPKA
- These sequences are produced at a fast rate (result of the sequencing programs)
- Need for algorithms to compare, classify, analyze these sequences
- Applications: classification into functional or structural classes, prediction of cellular localization and interactions, ...

Example: supervised sequence classification

Data (training)

Secreted proteins:

```
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA...
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW...
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...
```

Non-secreted proteins:

```
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG...
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG...
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP...
```

Goal

 Build a classifier to predict whether new proteins are secreted or not.

Supervised classification with vector embedding

The idea

- Map each string $x \in \mathcal{X}$ to a vector $\Phi(x) \in \mathbb{R}^p$.
- Train a classifier for vectors on the images $\Phi(x_1), \ldots, \Phi(x_n)$ of the training set (nearest neighbor, linear perceptron, logistic regression, support vector machine...)

Example: support vector machine

SVM algorithm

$$f(x) = \operatorname{sign}\left(\sum_{i=1}^n \alpha_i y_i \Phi(x_i)^\top \Phi(x)\right) ,$$

where $\alpha_1, \ldots, \alpha_n$ solve, under the constraints $0 \le \alpha_i \le C$:

$$\min_{\alpha} \left(\frac{1}{2} \sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \Phi(x_{i})^{\top} \Phi(x_{j}) - \sum_{i=1}^{n} \alpha_{i} \right) .$$

Explicit vector embedding

Difficulties

- How to define the mapping $\Phi: \mathcal{X} \to \mathbb{R}^p$?
- No obvious vector embedding for strings in general.
- How to include prior knowledge about the strings (grammar, probabilistic model...)?

Implicit vector embedding with kernels

The kernel trick

- Many algorithms just require inner products of the embeddings
- We call it a kernel between strings:

$$K(x, x') \stackrel{\Delta}{=} \Phi(x)^{\top} \Phi(x')$$

Examples

- SVM
- Nearest neighbor:

$$d(x,x')^2 = \|\Phi(x) - \Phi(x')\|^2 = K(x,x) + K(x',x') - 2K(x,x').$$

Many other kernel methods (perceptron, regression...)

Implicit vector embedding with kernels

The kernel trick

- Many algorithms just require inner products of the embeddings
- We call it a kernel between strings:

$$K(x, x') \stackrel{\Delta}{=} \Phi(x)^{\top} \Phi(x')$$

Examples

- SVM
- Nearest neighbor:

$$d(x,x')^2 = \|\Phi(x) - \Phi(x')\|^2 = K(x,x) + K(x',x') - 2K(x,x').$$

Many other kernel methods (perceptron, regression...)

Positive Definite Kernels

Definition

A positive definite (p.d.) kernel on the set \mathcal{X} is a function $\mathcal{K}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ symmetric:

$$\forall (\mathbf{x}, \mathbf{x}') \in \mathcal{X}^2, \quad K(\mathbf{x}, \mathbf{x}') = K(\mathbf{x}', \mathbf{x}),$$

and which satisfies, for all $N \in \mathbb{N}$, $(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N) \in \mathcal{X}^N$ et $(a_1, a_2, \dots, a_N) \in \mathbb{R}^N$:

$$\sum_{i=1}^{N}\sum_{j=1}^{N}a_{i}a_{j}K\left(\mathbf{x}_{i},\mathbf{x}_{j}\right)\geq0.$$

Kernels as Inner Products

Theorem (Aronszajn, 1950)

K is a p.d. kernel on the set $\mathcal X$ if and only if there exists a Hilbert space $\mathcal H$ and a mapping

$$\Phi: \mathcal{X} \mapsto \mathcal{H}$$
,

such that, for any \mathbf{x}, \mathbf{x}' in \mathcal{X} :

$$K(\mathbf{x}, \mathbf{x}') = \langle \Phi(\mathbf{x}), \Phi(\mathbf{x}') \rangle_{\mathcal{H}}.$$

Examples

Kernels for vectors

Classical kernels for vectors ($\mathcal{X} = \mathbb{R}^p$) include:

The linear kernel

$$K_{lin}\left(\mathbf{x},\mathbf{x}'\right)=\mathbf{x}^{\top}\mathbf{x}'$$
.

The polynomial kernel

$$K_{poly}\left(\mathbf{x},\mathbf{x}'\right) = \left(\mathbf{x}^{\top}\mathbf{x}' + a\right)^{d}$$
.

• The Gaussian RBF kernel:

$$K_{\textit{Gaussian}}\left(\mathbf{x},\mathbf{x}'
ight) = \exp\left(-rac{\parallel\mathbf{x}-\mathbf{x}'\parallel^2}{2\sigma^2}
ight) \ .$$

Kernel for strings?

- A kernel defines an implicit geometry on the space of data, although data do not need to have any prior geometric/algebric structure
- Kernel engineering is the problem of designing specific kernel for specific data and specific tasks. Good place to put prior knowledge!
- We will now see on a practical examples different technical tricks to design kernels.

Kernels for Biological Sequences

Outline

Kernels and kernel methods

- 2 Kernels for biological sequences
 - Explicit vector space embedding
 - Mutual information kernels
 - Alignment kernels
 - Application: remote homology detection

Vector embedding for strings

The idea

Represent each sequence \mathbf{x} by a fixed-length numerical vector $\Phi(\mathbf{x}) \in \mathbb{R}^p$. How to perform this embedding?

Physico-chemical kernel

Extract relevant features, such as:

- length of the sequence
- time series analysis of numerical physico-chemical properties of amino-acids along the sequence (e.g., polarity, hydrophobicity), using for example:
 - Fourier transforms (Wang et al., 2004)
 - Autocorrelation functions (Zhang et al., 2003)

$$r_j = \frac{1}{n-j} \sum_{i=1}^{n-j} h_i h_{i+j}$$

Vector embedding for strings

The idea

Represent each sequence \mathbf{x} by a fixed-length numerical vector $\Phi(\mathbf{x}) \in \mathbb{R}^p$. How to perform this embedding?

Physico-chemical kernel

Extract relevant features, such as:

- length of the sequence
- time series analysis of numerical physico-chemical properties of amino-acids along the sequence (e.g., polarity, hydrophobicity), using for example:
 - Fourier transforms (Wang et al., 2004)
 - Autocorrelation functions (Zhang et al., 2003)

$$r_j = \frac{1}{n-j} \sum_{i=1}^{n-j} h_i h_{i+j}$$

Substring indexation

The approach

Alternatively, index the feature space by fixed-length strings, i.e.,

$$\Phi\left(\boldsymbol{x}\right) = \left(\Phi_{u}\left(\boldsymbol{x}\right)\right)_{u \in \mathcal{A}^{k}}$$

where $\Phi_u(\mathbf{x})$ can be:

- the number of occurrences of u in x (without gaps): spectrum kernel (Leslie et al., 2002)
- the number of occurrences of u in \mathbf{x} up to m mismatches (without gaps): mismatch kernel (Leslie et al., 2004)
- the number of occurrences of u in x allowing gaps, with a weight decaying exponentially with the number of gaps: substring kernel (Lohdi et al., 2002)

Example: spectrum kernel

• The 3-spectrum of

is:

• Let $\Phi_u(\mathbf{x})$ denote the number of occurrences of u in \mathbf{x} . The k-spectrum kernel is:

$$K\left(\mathbf{x},\mathbf{x}'\right) := \sum_{u \in \mathcal{A}^k} \Phi_u\left(\mathbf{x}\right) \Phi_u\left(\mathbf{x}'\right) \ .$$

• This is formally a sum over $|\mathcal{A}|^k$ terms, but at most $|\mathbf{x}| - k + 1$ terms are non-zero in $\Phi(\mathbf{x})$

Substring indexation in practice

- Implementation in $O(|\mathbf{x}| + |\mathbf{x}'|)$ in memory and time for the spectrum and mismatch kernels (with suffix trees)
- Implementation in $O(|\mathbf{x}| \times |\mathbf{x}'|)$ in memory and time for the substring kernels
- The feature space has high dimension $(|\mathcal{A}|^k)$, so learning requires regularized methods (such as SVM)

Dictionary-based indexation

The approach

- Chose a dictionary of sequences $\mathcal{D} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$
- Chose a measure of similarity s (x, x')
- Define the mapping $\Phi_{\mathcal{D}}(\mathbf{x}) = (s(\mathbf{x}, \mathbf{x}_i))_{\mathbf{x}_i \in \mathcal{D}}$

Examples

This includes

- Motif kernels (Logan et al., 2001): the dictionary is a library of motifs, the similarity function is a matching function
- Pairwise kernel (Liao & Noble, 2003): the dictionary is the training set, the similarity is a classical measure of similarity between sequences.

Dictionary-based indexation

The approach

- Chose a dictionary of sequences $\mathcal{D} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$
- Chose a measure of similarity $s(\mathbf{x}, \mathbf{x}')$
- Define the mapping $\Phi_{\mathcal{D}}(\mathbf{x}) = (s(\mathbf{x}, \mathbf{x}_i))_{\mathbf{x}_i \in \mathcal{D}}$

Examples

This includes:

- Motif kernels (Logan et al., 2001): the dictionary is a library of motifs, the similarity function is a matching function
- Pairwise kernel (Liao & Noble, 2003): the dictionary is the training set, the similarity is a classical measure of similarity between sequences.

Outline

Kernels and kernel methods

- 2 Kernels for biological sequences
 - Explicit vector space embedding
 - Mutual information kernels
 - Alignment kernels
 - Application: remote homology detection

Probabilistic models for sequences

Probabilistic modeling of biological sequences is older than kernel designs. Important models include HMM for protein sequences, SCFG for RNA sequences.

Parametric model

A model is a family of distribution

$$\{P_{\theta}, \theta \in \Theta \subset \mathbb{R}^{m}\} \subset \mathcal{M}_{1}^{+}(\mathcal{X})$$

Mutual information kernels

Definition

- Chose a prior $w(d\theta)$ on the measurable set Θ
- Form the kernel (Seeger, 2002):

$$K\left(\mathbf{x},\mathbf{x}'
ight) = \int_{ heta \in \Theta} P_{ heta}(\mathbf{x}) P_{ heta}(\mathbf{x}') w(d heta) \; .$$

- No explicit computation of a finite-dimensional feature vector
- $K(\mathbf{x}, \mathbf{x}') = \langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle_{L_2(w)}$ with

$$\phi\left(\mathbf{x}\right) = \left(P_{\theta}\left(\mathbf{x}\right)\right)_{\theta\in\Theta}$$
.

Example: coin toss

- Let $P_{\theta}(X = 1) = \theta$ and $P_{\theta}(X = 0) = 1 \theta$ a model for random coin toss, with $\theta \in [0, 1]$.
- Let $d\theta$ be the Lebesgue measure on [0, 1]
- The mutual information kernel between x = 001 and x' = 1010 is:

$$\begin{cases} P_{\theta}(\mathbf{x}) &= \theta (1 - \theta)^2, \\ P_{\theta}(\mathbf{x}') &= \theta^2 (1 - \theta)^2, \end{cases}$$

$$K(\mathbf{x}, \mathbf{x}') = \int_0^1 \theta^3 (1 - \theta)^4 d\theta = \frac{3!4!}{8!} = \frac{1}{280}.$$

Context-tree model

Definition

A context-tree model is a variable-memory Markov chain:

$$P_{\mathcal{D},\theta}(\mathbf{x}) = P_{\mathcal{D},\theta}(x_1 \dots x_D) \prod_{i=D+1}^n P_{\mathcal{D},\theta}(x_i \mid x_{i-D} \dots x_{i-1})$$

- \bullet \mathcal{D} is a suffix tree
- $\theta \in \Sigma^{\mathcal{D}}$ is a set of conditional probabilities (multinomials)

Context-tree model: example

$$P(AABACBACC) = P(AAB)\theta_{AB}(A)\theta_{A}(C)\theta_{C}(B)\theta_{ACB}(A)\theta_{A}(C)\theta_{C}(A) .$$

The context-tree kernel

Theorem (Cuturi et al., 2004)

• For particular choices of priors, the context-tree kernel:

$$\mathcal{K}\left(\mathbf{x},\mathbf{x}'
ight) = \sum_{\mathcal{D}} \int_{ heta \in \mathbf{\Sigma}^{\mathcal{D}}} P_{\mathcal{D}, heta}(\mathbf{x}) P_{\mathcal{D}, heta}(\mathbf{x}') w(d heta|\mathcal{D}) \pi(\mathcal{D})$$

can be computed in $O(|\mathbf{x}| + |\mathbf{x}'|)$ with a variant of the Context-Tree Weighting algorithm.

- This is a valid mutual information kernel.
- The similarity is related to information-theoretical measure of mutual information between strings.

Outline

Kernels and kernel methods

- 2 Kernels for biological sequences
 - Explicit vector space embedding
 - Mutual information kernels
 - Alignment kernels
 - Application: remote homology detection

Sequence alignment

Motivation

How to compare 2 sequences?

 $X_1 = CGGSLIAMMWFGV$

 $\mathbf{X}_2 = \text{CLIVMMNRLMWFGV}$

Find a good alignment:

CGGSLIAMM----WFGV

[...|||||....||||

C---LIVMMNRLMWFGV

Alignment score

In order to quantify the relevance of an alignment π , define:

- a substitution matrix $S \in \mathbb{R}^{A \times A}$
- a gap penalty function $g: \mathbb{N} \to \mathbb{R}$

Any alignment is then scored as follows

$$s_{S,g}(\pi) = S(C,C) + S(L,L) + S(I,I) + S(A,V) + 2S(M,M) + S(W,W) + S(F,F) + S(G,G) + S(V,V) - g(3) - g(4)$$

Local alignment kernel

Smith-Waterman score

 The widely-used Smith-Waterman local alignment score is defined by:

$$SW_{\mathcal{S},g}(\mathbf{x},\mathbf{y}) := \max_{\pi \in \Pi(\mathbf{x},\mathbf{y})} s_{\mathcal{S},g}(\pi).$$

It is symmetric, but not positive definite...

LA kernel

The local alignment kernel:

$$K_{LA}^{\left(eta
ight)}\left(\mathbf{x},\mathbf{y}
ight) = \sum_{\pi\in\Pi\left(\mathbf{x},\mathbf{y}
ight)}\exp\left(eta s_{\mathcal{S},g}\left(\mathbf{x},\mathbf{y},\pi
ight)
ight)$$

is symmetric positive definite (Vert et al., 2004).

Local alignment kernel

Smith-Waterman score

 The widely-used Smith-Waterman local alignment score is defined by:

$$SW_{\mathcal{S},g}(\mathbf{x},\mathbf{y}) := \max_{\pi \in \Pi(\mathbf{x},\mathbf{y})} s_{\mathcal{S},g}(\pi).$$

It is symmetric, but not positive definite...

LA kernel

The local alignment kernel:

$$\mathcal{K}_{\mathsf{LA}}^{\left(eta
ight)}\left(\mathbf{x},\mathbf{y}
ight) = \sum_{\pi \in \Pi\left(\mathbf{x},\mathbf{y}
ight)} \exp\left(eta s_{\mathcal{S},g}\left(\mathbf{x},\mathbf{y},\pi
ight)
ight),$$

is symmetric positive definite (Vert et al., 2004).

LA kernel is p.d.: proof

 If K₁ and K₂ are p.d. kernels for strings, then their convolution defined by:

$$\mathcal{K}_1\star\mathcal{K}_2(\boldsymbol{x},\boldsymbol{y}):=\sum_{\boldsymbol{x}_1\boldsymbol{x}_2=\boldsymbol{x},\boldsymbol{y}_1\boldsymbol{y}_2=\boldsymbol{y}}\mathcal{K}_1(\boldsymbol{x}_1,\boldsymbol{y}_1)\mathcal{K}_2(\boldsymbol{x}_2,\boldsymbol{y}_2)$$

is also p.d. (Haussler, 1999).

 LA kernel is p.d. because it is a convolution kernel (Haussler, 1999):

$$\textit{K}_{LA}^{(\beta)} = \sum_{n=0}^{\infty} \textit{K}_{0} \star \left(\textit{K}_{a}^{(\beta)} \star \textit{K}_{g}^{(\beta)}\right)^{(n-1)} \star \textit{K}_{a}^{(\beta)} \star \textit{K}_{0}.$$

where K_0 , K_a and K_g are three basic p.d. kernels (Vert et al., 2004).

LA kernel in practice

• Implementation by dynamic programming in $O(|\mathbf{x}| \times |\mathbf{x}'|)$

• In practice, values are too large (exponential scale) so taking its logarithm is a safer choice (but not p.d. anymore!)

Outline

Kernels and kernel methods

- 2 Kernels for biological sequences
 - Explicit vector space embedding
 - Mutual information kernels
 - Alignment kernels
 - Application: remote homology detection

Remote homology

Sequence similarity

- Homologs have common ancestors
- Structures and functions are more conserved than sequences
- Remote homologs can not be detected by direct sequence comparison

SCOP database

A benchmark experiment

- Goal: recognize directly the superfamily
- Training: for a sequence of interest, positive examples come from the same superfamily, but different families. Negative from other superfamilies.
- Test: predict the superfamily.

Difference in performance

Performance on the SCOP superfamily recognition benchmark (from Vert et al., 2004).

Conclusion

Conclusion

- Many multivariate statistical methods can be used with strings when a string kernel is defined.
- We saw several principles for string kernel design
 - explicit vector embedding
 - mutual information kernels
 - alignment kernels
- We omitted many other examples (marginalized kernels, Fisher kernels, ...)
- The choice of the kernel does matter in the final performance.
- Many open questions: which principles to choose / select good kernels?