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0 Kernels and kernel methods

@ Kernels for biological sequences
@ Explicit vector space embedding
@ Mutual information kernels
@ Alignment kernels
@ Application: remote homology detection
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Kernels and Kernel Methods

Jean-Philippe Vert (ParisTech) String kernels and bioinformatics



Proteins

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Méthionine
E : Acide glutamique K': Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine
H : Histidine V : Thyrosine W : Tryptophane
| : Isoleucine S : Sérine Q : Glutamine

D : Acide aspartique G : Glycine
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Challenges with protein sequences

@ A protein sequences can be seen as a variable-length sequence
over the 20-letter alphabet of amino-acids, e.g., insuline:
FVNQHLCGSHLVEALYLVCGERGFFYTPKA

@ These sequences are produced at a fast rate (result of the
sequencing programs)

@ Need for algorithms to compare, classify, analyze these
sequences

@ Applications: classification into functional or structural classes,
prediction of cellular localization and interactions, ...
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Example: supervised sequence classification

Data (training)

@ Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQONQCQLONIEA. . .
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL. . .

@ Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG. . .
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. . .
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP. .

Goal

@ Build a classifier to predict whether new proteins are secreted or
not.
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Supervised classification with vector embedding

The idea
@ Map each string x € X' to a vector ®(x) € RP.

@ Train a classifier for vectors on the images ®(x1), ..., ®(x,) of the
training set (nearest neighbor, linear perceptron, logistic
regression, support vector machine...)
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Example: support vector machine

SVM algorithm
n
f(x) = sign (Z Oéi}/id’(Xi)Tq’(X)) ;

i=1

where oy, ..., an solve, under the constraints 0 < «; < C:

main< ZZa,a,y,yj (x) T o(x) Za,).

i=1 i=1
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Explicit vector embedding

@ How to define the mapping ¢ : X — RP ?
@ No obvious vector embedding for strings in general.

@ How to include prior knowledge about the strings (grammar,
probabilistic model...)?
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Implicit vector embedding with kernels

The kernel trick

@ Many algorithms just require inner products of the embeddings
@ We call it a kernel between strings:

A

K(x,x') = &(x) " d(x')
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Implicit vector embedding with kernels

The kernel trick

@ Many algorithms just require inner products of the embeddings
@ We call it a kernel between strings:

A

K(x,x') = &(x) " d(x')

Examples

e SVM
@ Nearest neighbor:

d(x,x')2 = || &(x) — d(x') |2 = K(x, x) + K(X', X') — 2K(x, x').

@ Many other kernel methods (perceptron, regression...)

\
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Positive Definite Kernels

Definition

A positive definite (p.d.) kernel on the set X is a function
K: X x X — R symmetric:

V(x,x) e X%, K (x,x)=K(X,x),

and which satisfies, for all N € N, (X1,Xz,...,Xy) € XN et
(ay,a,...,an) € RN:

Za,a, (x;,%;) > 0.
=1

=
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Kernels as Inner Products

Theorem (Aronszajn, 1950)

K is a p.d. kernel on the set X if and only if there exists a Hilbert space
'H and a mapping

¢ X—H,
such that, for any x,x" in X :
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Examples

Kernels for vectors

Classical kernels for vectors (X = RP) include:
@ The linear kernel

Kiin (x,X') =x"x".
@ The polynomial kernel
d
Kool (X, X') = <xTx’ + a> .

@ The Gaussian RBF kernel:

X — X 2
KGaussian (x7 X/) = exp (_%) .
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Kernel for strings?

@ A kernel defines an implicit geometry on the space of data,
although data do not need to have any prior geometric/algebric
structure

@ Kernel engineering is the problem of designing specific kernel for
specific data and specific tasks. Good place to put prior
knowledge!

@ We will now see on a practical examples different technical tricks
to design kernels.
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Kernels for Biological
Sequences
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@ Kernels for biological sequences
@ Explicit vector space embedding
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Vector embedding for strings

The idea

Represent each sequence x by a fixed-length numerical vector
® (x) € RP. How to perform this embedding?
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Vector embedding for strings

The idea

Represent each sequence x by a fixed-length numerical vector
® (x) € RP. How to perform this embedding?

Physico-chemical kernel
Extract relevant features, such as:

@ length of the sequence

@ time series analysis of numerical physico-chemical properties of

amino-acids along the sequence (e.g., polarity, hydrophobicity),
using for example:

o Fourier transforms (Wang et al., 2004)
e Autocorrelation functions (Zhang et al., 2003)
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Substring indexation

The approach
Alternatively, index the feature space by fixed-length strings, i.e.,

& (%) = (Py (X)) yeax
where ¢, (x) can be:

@ the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)

@ the number of occurrences of u in x up to m mismatches (without
gaps) : mismaich kernel (Leslie et al., 2004)

@ the number of occurrences of u in x allowing gaps, with a weight

decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)
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Example: spectrum kernel

@ The 3-spectrum of
X = CGGSLIAMMWEGV
is:
(CGG, GGS, GSL, SLT,LIA, IAM, AMM, MMW, MWF , WEG, FGV) .

@ Let ¢, (x) denote the number of occurrences of u in x. The
k-spectrum kernel is:

K(x,X) = > &y(x)dy,(X) .

uc Ak

@ This is formally a sum over | A|¥ terms, but at most | x| — k + 1
terms are non-zero in ¢ (x)
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Substring indexation in practice

@ Implementation in O(|x| + [x’|) in memory and time for the
spectrum and mismatch kernels (with suffix trees)

@ Implementation in O(|x| x [x’|) in memory and time for the
substring kernels

@ The feature space has high dimension (|.4|), so learning requires
regularized methods (such as SVM)
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Dictionary-based indexation

The approach

@ Chose a dictionary of sequences D = (X1, X2, ..., Xp)
@ Chose a measure of similarity s (x,x’)
@ Define the mapping ®p (X) = (s (X, X;))

x;,eD
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Dictionary-based indexation

The approach
@ Chose a dictionary of sequences D = (X1, X2, ..., Xp)
@ Chose a measure of similarity s (x,x’)
@ Define the mapping ®p (x) = (s (X, X;))x.cp

Examples
This includes:
@ Motif kernels (Logan et al., 2001): the dictionary is a library of
motifs, the similarity function is a matching function
@ Pairwise kernel (Liao & Noble, 2003): the dictionary is the training
set, the similarity is a classical measure of similarity between
sequences.
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@ Kernels for biological sequences

@ Mutual information kernels
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Probabilistic models for sequences

Probabilistic modeling of biological sequences is older than kernel

designs. Important models include HMM for protein sequences, SCFG
for RNA sequences.

Parametric model
A model is a family of distribution

{Py,0 € © CR™} C M{ (X)

Jean-Philippe Vert (ParisTech) String kernels and bioinformatics




Mutual information kernels

Definition
@ Chose a prior w(d#) on the measurable set ©
@ Form the kernel (Seeger, 2002):

K(x,x') = - Py(X)Py(x")w(d0) .

@ No explicit computation of a finite-dimensional feature vector
° K(X,X/) =< ¢(X) ) ¢(X/) >L2(W) with

¢ (X) = (Po (X))geo -
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Example: coin toss

@ Let Py(X =1)=0and Py(X =0) =1 — 6 a model for random
coin toss, with 6 € [0, 1].

@ Let df be the Lebesgue measure on [0, 1]
@ The mutual information kernel between x = 001 and x’ = 1010 is:

Py(x) =6(1-6)>,
Py(x') =62(1-0)%,

! 141 4
K(x7X’)=/0 93(1—9)4d0:387!:%,
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Context-tree model

A context-tree model is a variable-memory Markov chain:

Pp o(X) = Pp (X H Ppo(Xi| Xi—p .. Xi—1)
i=D+1

@ D is a suffix tree
@ 0 c P is a set of conditional probabilities (multinomials)

Jean-Philippe Vert (ParisTech) String kernels and bioinformatics



Context-tree model: example

P(AABACBACC) = P(AAB)0a5(A)04(C)0c(B)0acs(A)0a(C)oc(A) .
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The context-tree kernel

Theorem (Cuturi et al., 2004)

@ fFor particular choices of priors, the context-tree kernel:

Kxx)=Y" /0 _ Pro(0Pp(x)w(d0[D)x(D)
AL

can be computed in O(|x| + |x'|) with a variant of the Context-Tree
Weighting algorithm.

@ This is a valid mutual information kernel.

@ The similarity is related to information-theoretical measure of
mutual information between strings.
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@ Kernels for biological sequences

@ Alignment kernels
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Sequence alignment

How to compare 2 sequences?

X1 = CGGSLIAMMWEGV
Xo> = CLIVMMNRLMWE GV

Find a good alignment:

CGGSLIAMM-——-WEGV

R R
C——-LIVMMNRLMWEGV
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Alignment score

In order to quantify the relevance of an alignment 7, define:
@ a substitution matrix S € RA*A
@ a gap penalty function g : N — R

Any alignment is then scored as follows

CGGSLIAMM-——-WEGV

R R
C—-—-LIVMMNRLMWEGV

$s4(m) = S(C, C) + S(L, L) + S(I, 1) + S(A, V) + 25(M, M)
+ S(W, W) + S(F,F) + S(G,G) + S(V, V) — g(3) — g(4)

v
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Local alignment kernel

Smith-Waterman score

@ The widely-used Smith-Waterman local alignment score is defined
by:

SWs g(x,y) := B e”%%?‘y) Ss,g().

@ It is symmetric, but not positive definite...
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Local alignment kernel

Smith-Waterman score

@ The widely-used Smith-Waterman local alignment score is defined
by:

SWs g(x,y) := B Q%%?‘y) Ss,g().

@ It is symmetric, but not positive definite...

| \

LA kernel
The local alignment kernel:

KD (xy)= Y exp(Bssg(x.y.m),
wen(x,y)

is symmetric positive definite (Vert et al., 2004).

\
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LA kernel is p.d.: proof

@ If Ky and K5 are p.d. kernels for strings, then their convolution
defined by:

K-| *KQ(X,y) = Z K1 (X1aY1)K2(X27YZ)
X1 Xo=X,y1Y2=Y

is also p.d. (Haussler, 1999).

@ LA kernel is p.d. because it is a convolution kernel (Haussler,
1999):

LAfZK ( /3*/((5))( Ve KD s Ky,

where Ky, K5 and Ky are three basic p.d. kernels (Vert et al.,
2004).
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LA kernel in practice

@ Implementation by dynamic programming in O(|x| x |[x'|)
0:0/1

@ In practice, values are too large (exponential scale) so taking its
logarithm is a safer choice (but not p.d. anymore!)
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@ Kernels for biological sequences

@ Application: remote homology detection
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Remote homology

%
o
\Oqo OQQ/ O\oqo
S a5 &
& X &
%Oé\ ﬂi&% il
< C

Sequence similarity

@ Homologs have common ancestors
@ Structures and functions are more conserved than sequences

@ Remote homologs can not be detected by direct sequence
comparison
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SCOP database

SCOP

Fold
Super family Cijé ED
Family \@ éo C&Pé) CE O ED

Renot e honol ogs  C ose honol ogs
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A benchmark experiment

@ Goal: recognize directly the superfamily

@ Training: for a sequence of interest, positive examples come from
the same superfamily, but different families. Negative from other
superfamilies.

@ Test: predict the superfamily.
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Difference in performance

vv T T T

T
SVM-LA —+—
SVM-pairwise ---<---
SVM-Mismatch ---
50 SVM-Fisher -

0 %

40 |49

e

No. of families with given performance
[FH]

10

ROC50

Performance on the SCOP superfamily recognition benchmark (from
Vert et al., 2004).
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Conclusion
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Conclusion

@ Many multivariate statistical methods can be used with strings
when a string kernel is defined.
@ We saw several principles for string kernel design
o explicit vector embedding
e mutual information kernels
e alignment kernels
@ We omitted many other examples (marginalized kernels, Fisher
kernels, ...)

@ The choice of the kernel does matter in the final performance.

@ Many open questions: which principles to choose / select good
kernels?
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