
Kernel methods & sparse methods
for computer vision

Francis Bach

Sierra project, INRIA - Ecole Normale Supérieure

CVML Summer School, Paris, July 2011

1

Machine learning for computer vision

• Multiplication of digital media

• Many different tasks to be solved

– Associated with different machine learning problems
– Massive data to learn from

3

Image retrieval
⇒ Classification, ranking, outlier detection

4

Image retrieval
Classification, ranking, outlier detection

5

Image annotation
Classification, clustering

7

Object recognition ⇒ Multi-label classification

8

Machine learning for computer vision

• Multiplication of digital media

• Many different tasks to be solved

– Associated with different machine learning problems
– Massive data to learn from

• Similar situations in many fields (e.g., bioinformatics)

10

Machine learning for computer vision

• Multiplication of digital media

• Many different tasks to be solved

– Associated with different machine learning problems
– Massive data to learn from

• Similar situations in many fields (e.g., bioinformatics)

⇒ Machine learning for high-dimensional data

12

Supervised learning and regularization

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n

• Minimize with respect to function f ∈ F :

n
∑

i=1

!(yi, f(xi)) +
λ

2
‖f‖2

Error on data + Regularization

Loss & function space ? Norm ?

• Two theoretical/algorithmic issues:

– Loss
– Function space / norm

13

Image annotation ⇒ multi-class classification

18

Losses for multi-label classification (Schölkopf and
Smola, 2001; Shawe-Taylor and Cristianini, 2004)

• Two main strategies for k classes (with unclear winners)

1. Using existing binary classifiers (efficient code!) + voting schemes
– “one-vs-rest” : learn k classifiers on the entire data
– “one-vs-one” : learn k(k−1)/2 classifiers on portions of the data

19

Losses for multi-label classification - Linear predictors

• Using binary classifiers (left: “one-vs-rest”, right: “one-vs-one”)

3

2

1

3

2

1

20

Losses for multi-label classification (Schölkopf and
Smola, 2001; Shawe-Taylor and Cristianini, 2004)

• Two main strategies for k classes (with unclear winners)

1. Using existing binary classifiers (efficient code!) + voting schemes
– “one-vs-rest” : learn k classifiers on the entire data
– “one-vs-one” : learn k(k−1)/2 classifiers on portions of the data

2. Dedicated loss functions for prediction using argmaxi∈{1,...,k} fi(x)

– Softmax regression: loss = − log(efy(x)/
∑k

i=1 e
fi(x))

– Multi-class SVM - 1: loss =
∑k

i=1(1 + fi(x)− fy(x))+
– Multi-class SVM - 2: loss = maxi∈{1,...,k}(1 + fi(x)− fy(x))+

• Strategies do not consider same predicting functions

21

Losses for multi-label classification - Linear predictors

• Using binary classifiers (left: “one-vs-rest”, right: “one-vs-one”)

3

2

1

3

2

1

• Dedicated loss function

3

2

1

22

Image retrieval ⇒ ranking

23

Losses for ther tasks

• Outlier detection (Schölkopf et al., 2001; Vert and Vert, 2006)

– one-class SVM: learn only with positive examples

• Ranking

– simple trick: transform into learning on pairs (Herbrich et al.,
2000), i.e., predict {x > y} or {x ! y}

– More general “structured output methods” (Joachims, 2002)

• General structured outputs

– Very active topic in machine learning and computer vision
– see, e.g., Taskar (2005)

25

Kernel design

• Principle: kernel on X = space of functions on X + norm

• Two main design principles

1. Constructing kernels from kernels by algebraic operations
2. Using usual algebraic/numerical tricks to perform efficient kernel

computation with very high-dimensional feature spaces

• Operations: k1(x, y)=〈Φ1(x),Φ1(y)〉, k2(x, y)=〈Φ2(x),Φ2(y)〉

– Sum = concatenation of feature spaces:

k1(x, y) + k2(x, y) =
〈
(Φ1(x)
Φ2(x)

)

,
(Φ1(y)
Φ2(y)

)
〉

– Product = tensor product of feature spaces:

k1(x, y)k2(x, y) =
〈

Φ1(x)Φ2(x)",Φ1(y)Φ2(y)"
〉

71

Classical kernels: kernels on vectors x ∈ Rd

• Linear kernel k(x, y) = x"y

– Linear functions

• Polynomial kernel k(x, y) = (1 + x"y)d

– Polynomial functions

• Gaussian kernel k(x, y) = exp(−α‖x− y‖2)

– Smooth functions

• Data are not always vectors!

72

Efficient ways of computing large sums

• Goal: Φ(x) ∈ Rp high-dimensional, compute
p
∑

i=1

Φi(x)Φi(y) in o(p)

• Sparsity: many Φi(x) equal to zero (example: pyramid match kernel)

• Factorization and recursivity: replace sums of many products by
product of few sums (example: polynomial kernel, graph kernel)

(1 + x"y)d =
∑

α1+···+αk!d

(
d

α1, . . . ,αk

)

(x1y1)
α1 · · · (xkyk)

αk

73

Kernels over (labelled) sets of points

• Common situation in computer vision (e.g., interest points)

• Simple approach: compute averages/histograms of certain features

– valid kernels over histograms h and h′ (Hein and Bousquet, 2004)

– intersection:
∑

imin(hi, h′
i), chi-square: exp

(

−α
∑

i
(hi−h′

i)
2

hi+h′
i

)

74

Kernels over (labelled) sets of points

• Common situation in computer vision (e.g., interest points)

• Simple approach: compute averages/histograms of certain features

– valid kernels over histograms h and h′ (Hein and Bousquet, 2004)

– intersection:
∑

imin(hi, h′
i), chi-square: exp

(

−α
∑

i
(hi−h′

i)
2

hi+h′
i

)

• Pyramid match (Grauman and Darrell, 2007): efficiently introducing
localization

– Form a regular pyramid on top of the image
– Count the number of common elements in each bin
– Give a weight to each bin
– Many bins but most of them are empty
⇒ use sparsity to compute kernel efficiently

75

Pyramid match kernel
(Grauman and Darrell, 2007; Lazebnik et al., 2006)

• Two sets of points

• Counting matches at several scales: 7, 5, 4

76

Kernels from segmentation graphs

• Goal of segmentation: extract objects of interest

• Many methods available,

– ... but, rarely find the object of interest entirely

• Segmentation graphs

– Allows to work on “more reliable” over-segmentation
– Going to a large square grid (millions of pixels) to a small graph
(dozens or hundreds of regions)

• How to build a kernel over segmenation graphs?

– NB: more generally, kernelizing existing representations?

77

Segmentation by watershed transform (Meyer, 2001)

image gradient watershed

287 segments 64 segments 10 segments

78

Segmentation by watershed transform (Meyer, 2001)

image gradient watershed

287 segments 64 segments 10 segments

79

Image as a segmentation graph

• Labelled undirected graph

– Vertices: connected segmented regions
– Edges: between spatially neighboring regions
– Labels: region pixels

⇒

80

Image as a segmentation graph

• Labelled undirected graph

– Vertices: connected segmented regions
– Edges: between spatially neighboring regions
– Labels: region pixels

• Difficulties

– Extremely high-dimensional labels
– Planar undirected graph
– Inexact matching

• Graph kernels (Gärtner et al., 2003; Kashima et al., 2004; Harchaoui
and Bach, 2007) provide an elegant and efficient solution

81

Kernels between structured objects
Strings, graphs, etc... (Shawe-Taylor and Cristianini, 2004)

• Numerous applications (text, bio-informatics, speech, vision)

• Common design principle: enumeration of subparts (Haussler,
1999; Watkins, 1999)

– Efficient for strings
– Possibility of gaps, partial matches, very efficient algorithms

• Most approaches fails for general graphs (even for undirected trees!)

– NP-Hardness results (Ramon and Gärtner, 2003)
– Need specific set of subparts

82

Paths and walks

• Given a graph G,

– A path is a sequence of distinct neighboring vertices
– A walk is a sequence of neighboring vertices

• Apparently similar notions

83

Paths

84

Walks

85

Walk kernel (Kashima et al., 2004; Borgwardt et al., 2005)

• Wp
G (resp. Wp

H) denotes the set of walks of length p in G (resp. H)

• Given basis kernel on labels k(!, !′)

• p-th order walk kernel:

kpW(G,H) =
∑

(r1, . . . , rp) ∈Wp
G

(s1, . . . , sp) ∈Wp
H

p
∏

i=1

k(!G(ri), !H(si)).

G

1

s3

2s

s 1r2

3r
H

r

86

Dynamic programming for the walk kernel
(Harchaoui and Bach, 2007)

• Dynamic programming in O(pdGdHnGnH)

• kpW(G,H, r, s) = sum restricted to walks starting at r and s

• recursion between p− 1-th walk and p-th walk kernel

kpW(G,H, r, s)=k(!G(r), !H(s))
∑

r′ ∈ NG(r)
s′ ∈ NH(s)

kp−1
W (G,H, r′, s′).

G
s

r

H

87

Dynamic programming for the walk kernel
(Harchaoui and Bach, 2007)

• Dynamic programming in O(pdGdHnGnH)

• kpW(G,H, r, s) = sum restricted to walks starting at r and s

• recursion between p− 1-th walk and p-th walk kernel

kpW(G,H, r, s)=k(!G(r), !H(s))
∑

r′ ∈ NG(r)
s′ ∈ NH(s)

kp−1
W (G,H, r′, s′)

• Kernel obtained as kp,αT (G,H) =
∑

r∈VG,s∈VH

kp,αT (G,H, r, s)

88

Extensions of graph kernels

• Main principle: compare all possible subparts of the graphs

• Going from paths to subtrees

– Extension of the concept of walks ⇒ tree-walks (Ramon and
Gärtner, 2003)

• Similar dynamic programming recursions (Harchaoui and Bach, 2007)

• Need to play around with subparts to obtain efficient recursions

– Do we actually need positive definiteness?

89

Performance on Corel14 (Harchaoui and Bach, 2007)

• Corel14: 1400 natural images with 14 classes

90

Performance on Corel14 (Harchaoui & Bach, 2007)

Error rates

• Histogram kernels (H)

• Walk kernels (W)

• Tree-walk kernels (TW)

• Weighted tree-walks
(wTW)

• MKL (M) H W TW wTW M

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Te
st

 e
rro

r

Kernels

Performance comparison on Corel14

91

