
Kernel methods & sparse methods
for computer vision

Francis Bach

Sierra project, INRIA - Ecole Normale Supérieure

CVML Summer School, Paris, July 2011

1



Machine learning for computer vision

• Multiplication of digital media

• Many different tasks to be solved

– Associated with different machine learning problems
– Massive data to learn from
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Image retrieval
⇒ Classification, ranking, outlier detection
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Image retrieval
Classification, ranking, outlier detection
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Image annotation
Classification, clustering
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Object recognition ⇒ Multi-label classification
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Machine learning for computer vision

• Multiplication of digital media

• Many different tasks to be solved

– Associated with different machine learning problems
– Massive data to learn from

• Similar situations in many fields (e.g., bioinformatics)

⇒ Machine learning for high-dimensional data
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Supervised learning and regularization

• Data: xi ∈ X , yi ∈ Y, i = 1, . . . , n

• Minimize with respect to function f ∈ F :

n
∑

i=1

!(yi, f(xi)) +
λ

2
‖f‖2

Error on data + Regularization

Loss & function space ? Norm ?

• Two theoretical/algorithmic issues:

– Loss
– Function space / norm
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Image annotation ⇒ multi-class classification
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Losses for multi-label classification (Schölkopf and
Smola, 2001; Shawe-Taylor and Cristianini, 2004)

• Two main strategies for k classes (with unclear winners)

1. Using existing binary classifiers (efficient code!) + voting schemes
– “one-vs-rest” : learn k classifiers on the entire data
– “one-vs-one” : learn k(k−1)/2 classifiers on portions of the data
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Losses for multi-label classification - Linear predictors

• Using binary classifiers (left: “one-vs-rest”, right: “one-vs-one”)
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Losses for multi-label classification (Schölkopf and
Smola, 2001; Shawe-Taylor and Cristianini, 2004)

• Two main strategies for k classes (with unclear winners)

1. Using existing binary classifiers (efficient code!) + voting schemes
– “one-vs-rest” : learn k classifiers on the entire data
– “one-vs-one” : learn k(k−1)/2 classifiers on portions of the data

2. Dedicated loss functions for prediction using argmaxi∈{1,...,k} fi(x)

– Softmax regression: loss = − log(efy(x)/
∑k

i=1 e
fi(x))

– Multi-class SVM - 1: loss =
∑k

i=1(1 + fi(x)− fy(x))+
– Multi-class SVM - 2: loss = maxi∈{1,...,k}(1 + fi(x)− fy(x))+

• Strategies do not consider same predicting functions
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Losses for multi-label classification - Linear predictors

• Using binary classifiers (left: “one-vs-rest”, right: “one-vs-one”)
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Image retrieval ⇒ ranking
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Losses for ther tasks

• Outlier detection (Schölkopf et al., 2001; Vert and Vert, 2006)

– one-class SVM: learn only with positive examples

• Ranking

– simple trick: transform into learning on pairs (Herbrich et al.,
2000), i.e., predict {x > y} or {x ! y}

– More general “structured output methods” (Joachims, 2002)

• General structured outputs

– Very active topic in machine learning and computer vision
– see, e.g., Taskar (2005)
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Kernel design

• Principle: kernel on X = space of functions on X + norm

• Two main design principles

1. Constructing kernels from kernels by algebraic operations
2. Using usual algebraic/numerical tricks to perform efficient kernel

computation with very high-dimensional feature spaces

• Operations: k1(x, y)=〈Φ1(x),Φ1(y)〉, k2(x, y)=〈Φ2(x),Φ2(y)〉

– Sum = concatenation of feature spaces:

k1(x, y) + k2(x, y) =
〈
(Φ1(x)
Φ2(x)

)

,
(Φ1(y)
Φ2(y)

)
〉

– Product = tensor product of feature spaces:

k1(x, y)k2(x, y) =
〈

Φ1(x)Φ2(x)",Φ1(y)Φ2(y)"
〉
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Classical kernels: kernels on vectors x ∈ Rd

• Linear kernel k(x, y) = x"y

– Linear functions

• Polynomial kernel k(x, y) = (1 + x"y)d

– Polynomial functions

• Gaussian kernel k(x, y) = exp(−α‖x− y‖2)

– Smooth functions

• Data are not always vectors!
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Efficient ways of computing large sums

• Goal: Φ(x) ∈ Rp high-dimensional, compute
p
∑

i=1

Φi(x)Φi(y) in o(p)

• Sparsity: many Φi(x) equal to zero (example: pyramid match kernel)

• Factorization and recursivity: replace sums of many products by
product of few sums (example: polynomial kernel, graph kernel)

(1 + x"y)d =
∑

α1+···+αk!d

(
d

α1, . . . ,αk

)

(x1y1)
α1 · · · (xkyk)

αk
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Kernels over (labelled) sets of points

• Common situation in computer vision (e.g., interest points)

• Simple approach: compute averages/histograms of certain features

– valid kernels over histograms h and h′ (Hein and Bousquet, 2004)

– intersection:
∑

imin(hi, h′
i), chi-square: exp

(

−α
∑

i
(hi−h′

i)
2

hi+h′
i

)
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Kernels over (labelled) sets of points

• Common situation in computer vision (e.g., interest points)

• Simple approach: compute averages/histograms of certain features

– valid kernels over histograms h and h′ (Hein and Bousquet, 2004)

– intersection:
∑

imin(hi, h′
i), chi-square: exp

(

−α
∑

i
(hi−h′

i)
2

hi+h′
i

)

• Pyramid match (Grauman and Darrell, 2007): efficiently introducing
localization

– Form a regular pyramid on top of the image
– Count the number of common elements in each bin
– Give a weight to each bin
– Many bins but most of them are empty
⇒ use sparsity to compute kernel efficiently
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Pyramid match kernel
(Grauman and Darrell, 2007; Lazebnik et al., 2006)

• Two sets of points

• Counting matches at several scales: 7, 5, 4
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Kernels from segmentation graphs

• Goal of segmentation: extract objects of interest

• Many methods available, ....

– ... but, rarely find the object of interest entirely

• Segmentation graphs

– Allows to work on “more reliable” over-segmentation
– Going to a large square grid (millions of pixels) to a small graph
(dozens or hundreds of regions)

• How to build a kernel over segmenation graphs?

– NB: more generally, kernelizing existing representations?
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Segmentation by watershed transform (Meyer, 2001)

image gradient watershed

287 segments 64 segments 10 segments
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Segmentation by watershed transform (Meyer, 2001)

image gradient watershed

287 segments 64 segments 10 segments
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Image as a segmentation graph

• Labelled undirected graph

– Vertices: connected segmented regions
– Edges: between spatially neighboring regions
– Labels: region pixels

⇒
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Image as a segmentation graph

• Labelled undirected graph

– Vertices: connected segmented regions
– Edges: between spatially neighboring regions
– Labels: region pixels

• Difficulties

– Extremely high-dimensional labels
– Planar undirected graph
– Inexact matching

• Graph kernels (Gärtner et al., 2003; Kashima et al., 2004; Harchaoui
and Bach, 2007) provide an elegant and efficient solution
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Kernels between structured objects
Strings, graphs, etc... (Shawe-Taylor and Cristianini, 2004)

• Numerous applications (text, bio-informatics, speech, vision)

• Common design principle: enumeration of subparts (Haussler,
1999; Watkins, 1999)

– Efficient for strings
– Possibility of gaps, partial matches, very efficient algorithms

• Most approaches fails for general graphs (even for undirected trees!)

– NP-Hardness results (Ramon and Gärtner, 2003)
– Need specific set of subparts
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Paths and walks

• Given a graph G,

– A path is a sequence of distinct neighboring vertices
– A walk is a sequence of neighboring vertices

• Apparently similar notions
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Paths
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Walks
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Walk kernel (Kashima et al., 2004; Borgwardt et al., 2005)

• Wp
G (resp. Wp

H) denotes the set of walks of length p in G (resp. H)

• Given basis kernel on labels k(!, !′)

• p-th order walk kernel:

kpW(G,H) =
∑

(r1, . . . , rp) ∈Wp
G

(s1, . . . , sp) ∈Wp
H

p
∏

i=1

k(!G(ri), !H(si)).

G

1

s3

2s

s 1r2

3r
H

r
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Dynamic programming for the walk kernel
(Harchaoui and Bach, 2007)

• Dynamic programming in O(pdGdHnGnH)

• kpW(G,H, r, s) = sum restricted to walks starting at r and s

• recursion between p− 1-th walk and p-th walk kernel

kpW(G,H, r, s)=k(!G(r), !H(s))
∑

r′ ∈ NG(r)
s′ ∈ NH(s)

kp−1
W (G,H, r′, s′).

G
s

r

H
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Dynamic programming for the walk kernel
(Harchaoui and Bach, 2007)

• Dynamic programming in O(pdGdHnGnH)

• kpW(G,H, r, s) = sum restricted to walks starting at r and s

• recursion between p− 1-th walk and p-th walk kernel

kpW(G,H, r, s)=k(!G(r), !H(s))
∑

r′ ∈ NG(r)
s′ ∈ NH(s)

kp−1
W (G,H, r′, s′)

• Kernel obtained as kp,αT (G,H) =
∑

r∈VG,s∈VH

kp,αT (G,H, r, s)
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Extensions of graph kernels

• Main principle: compare all possible subparts of the graphs

• Going from paths to subtrees

– Extension of the concept of walks ⇒ tree-walks (Ramon and
Gärtner, 2003)

• Similar dynamic programming recursions (Harchaoui and Bach, 2007)

• Need to play around with subparts to obtain efficient recursions

– Do we actually need positive definiteness?
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Performance on Corel14 (Harchaoui and Bach, 2007)

• Corel14: 1400 natural images with 14 classes
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Performance on Corel14 (Harchaoui & Bach, 2007)

Error rates

• Histogram kernels (H)

• Walk kernels (W)

• Tree-walk kernels (TW)

• Weighted tree-walks
(wTW)

• MKL (M) H W TW wTW M
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Performance comparison on Corel14
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