Kernel methods & sparse methods for computer vision

Francis Bach

Sierra project, INRIA - Ecole Normale Supérieure

CVML Summer School, Paris, July 2011

Machine learning for computer vision

- Multiplication of digital media
- Many different tasks to be solved
 - Associated with different machine learning problems
 - Massive data to learn from

Image retrieval \Rightarrow Classification, ranking, outlier detection

new york hotel bentley, new york

Is this New York ?

New-York,-New-York-3---2004

New York Landform Maps Cities AL

4

Image retrieval Classification, ranking, outlier detection

Google Iondon

<u>Web</u> **Images** <u>Groupes</u> <u>Actualités</u> <u>Desktop</u> <u>plus »</u>

Recherche d'images

Rechercher sur le Web

Images -- Recherche avancée Préférences

Images Afficher Toutes les tailles « Afficher tous les résultats de recherche pour Iondon

We had very nice days (London ... 500 x 375 - 32 ko - jpg www.bestvaluetours.co.uk

Angleterre : Londres 1150 x 744 - 89 ko - jpg www.bigfoto.com

London | 06 janvier 2006 800 x 1200 - 143 ko - jpg www.blogg.org

9. To beef or not to beef ... 555 x 366 - 10 ko - jpg jean.christophe-bataille.over-blog.coi

www.myspace.com/samtl 300 x 317 - 62 ko - gif profile.myspace.com

... the Tower of London. 830 x 634 - 155 ko - jpg www.photo.net

AUTHORISED CENTRE London Tests of English 989 x 767 - 271 ko - jpg www.alphalangues.org

Hellgate : London Trailer 500 x 365 - 109 ko - jpg www.tnggz.info

London dalek (Robot) posté le samediLondon dalek (Robot) posté le samedi

640 x 445 - 232 ko - jpg rbot.blogzoom.fr

on dalek (Robot) posté le sar ... 640 x 445 - 168 ko - jpg rbot blogzoom fr

TUBE 2 London (Symbian UIQ3) 320 x 320 - 12 ko - gif www.handango.com

Aéroport international de **London** 321 x 306 - 54 ko - jpg www.westjet.com

Image annotation Classification, clustering

Object recognition

\Rightarrow Multi-label classification

Machine learning for computer vision

- Multiplication of digital media
- Many different tasks to be solved
 - Associated with different machine learning problems
 - Massive data to learn from
- Similar situations in many fields (e.g., bioinformatics)

Machine learning for computer vision

- Multiplication of digital media
- Many different tasks to be solved
 - Associated with different machine learning problems
 - Massive data to learn from
- Similar situations in many fields (e.g., bioinformatics)

 \Rightarrow Machine learning for high-dimensional data

Supervised learning and regularization

• Data:
$$x_i \in \mathcal{X}$$
, $y_i \in \mathcal{Y}$, $i = 1, \dots, n$

• Minimize with respect to function $f \in \mathcal{F}$:

• Two theoretical/algorithmic issues:

– Loss

- Function space / norm

Image annotation \Rightarrow multi-class classification

Losses for multi-label classification (Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004)

- Two main strategies for k classes (with unclear winners)
 - 1. Using existing binary classifiers (efficient code!) + voting schemes
 - "one-vs-rest" : learn k classifiers on the entire data
 - "one-vs-one" : learn k(k-1)/2 classifiers on portions of the data

Losses for multi-label classification - Linear predictors

• Using binary classifiers (left: "one-vs-rest", right: "one-vs-one")

Losses for multi-label classification (Schölkopf and Smola, 2001; Shawe-Taylor and Cristianini, 2004)

- Two main strategies for k classes (with unclear winners)
 - 1. Using existing binary classifiers (efficient code!) + voting schemes
 - "one-vs-rest" : learn k classifiers on the entire data
 - "one-vs-one" : learn k(k-1)/2 classifiers on portions of the data
 - 2. Dedicated loss functions for prediction using $\arg \max_{i \in \{1,...,k\}} f_i(x)$
 - Softmax regression: loss = $-\log(e^{f_y(x)} / \sum_{i=1}^k e^{f_i(x)})$
 - Multi-class SVM 1: loss = $\sum_{i=1}^{k} (1 + f_i(x) f_y(x))_+$
 - Multi-class SVM 2: loss = $\max_{i \in \{1,...,k\}} (1 + f_i(x) f_y(x))_+$
- Strategies do not consider same predicting functions

Losses for multi-label classification - Linear predictors

• Using binary classifiers (left: "one-vs-rest", right: "one-vs-one")

• Dedicated loss function

Image retrieval \Rightarrow ranking

Images Showing: All image sizes 🗾

.... Un magasin ultra-moderne à **New York**

New York Travel Guide

New York City

Rockefeller Center in New York

True Crime: New York City

Air Rights in New York at \$430 sq ft

New York Hotels Discount Resorts

.... from Rider's New York City,

new york hotel bentley, new york

Is this New York ?

New-York,-New-York-3---2004

New York Landform Maps Cities AL

Losses for ther tasks

- Outlier detection (Schölkopf et al., 2001; Vert and Vert, 2006)
 - one-class SVM: learn only with positive examples
- Ranking
 - simple trick: transform into learning on pairs (Herbrich et al., 2000), i.e., predict $\{x > y\}$ or $\{x \le y\}$
 - More general "structured output methods" (Joachims, 2002)
- General structured outputs
 - Very active topic in machine learning and computer vision
 - see, e.g., Taskar (2005)

Kernel design

- Principle: kernel on $\mathcal{X} =$ space of functions on $\mathcal{X} +$ norm
- Two main design principles
 - 1. Constructing kernels from kernels by algebraic operations
 - 2. Using usual algebraic/numerical tricks to perform efficient kernel computation with very high-dimensional feature spaces
- Operations: $k_1(x,y) = \langle \Phi_1(x), \Phi_1(y) \rangle$, $k_2(x,y) = \langle \Phi_2(x), \Phi_2(y) \rangle$
 - Sum = concatenation of feature spaces:

$$k_1(x,y) + k_2(x,y) = \left\langle \begin{pmatrix} \Phi_1(x) \\ \Phi_2(x) \end{pmatrix}, \begin{pmatrix} \Phi_1(y) \\ \Phi_2(y) \end{pmatrix} \right\rangle$$

- **Product** = tensor product of feature spaces:

$$k_1(x,y)k_2(x,y) = \left\langle \Phi_1(x)\Phi_2(x)^{\top}, \Phi_1(y)\Phi_2(y)^{\top} \right\rangle$$

Classical kernels: kernels on vectors $x \in \mathbb{R}^d$

- Linear kernel $k(x,y) = x^{\top}y$
 - Linear functions
- Polynomial kernel $k(x,y) = (1 + x^{\top}y)^d$
 - Polynomial functions
- Gaussian kernel $k(x, y) = \exp(-\alpha ||x y||^2)$
 - Smooth functions
- Data are not always vectors!

Efficient ways of computing large sums

• Goal: $\Phi(x) \in \mathbb{R}^p$ high-dimensional, compute $\sum_{i=1}^p \Phi_i(x) \Phi_i(y)$ in o(p)

- **Sparsity**: many $\Phi_i(x)$ equal to zero (example: pyramid match kernel)
- Factorization and recursivity: replace sums of many products by product of few sums (example: polynomial kernel, graph kernel)

$$(1+x^{\top}y)^{d} = \sum_{\alpha_{1}+\dots+\alpha_{k} \leqslant d} \binom{d}{\alpha_{1},\dots,\alpha_{k}} (x_{1}y_{1})^{\alpha_{1}}\cdots(x_{k}y_{k})^{\alpha_{k}}$$

Kernels over (labelled) sets of points

- Common situation in computer vision (e.g., interest points)
- Simple approach: compute averages/histograms of certain features
 - valid kernels over histograms h and h' (Hein and Bousquet, 2004)
 - intersection: $\sum_{i} \min(h_i, h'_i)$, chi-square: $\exp\left(-\alpha \sum_{i} \frac{(h_i h'_i)^2}{h_i + h'_i}\right)$

Kernels over (labelled) sets of points

- Common situation in computer vision (e.g., interest points)
- Simple approach: compute averages/histograms of certain features
 - valid kernels over histograms h and h' (Hein and Bousquet, 2004)
 - intersection: $\sum_{i} \min(h_i, h'_i)$, chi-square: $\exp\left(-\alpha \sum_{i} \frac{(h_i h'_i)^2}{h_i + h'_i}\right)$
- Pyramid match (Grauman and Darrell, 2007): efficiently introducing localization
 - Form a regular pyramid on top of the image
 - Count the number of common elements in each bin
 - Give a weight to each bin
 - Many bins but most of them are empty
 - \Rightarrow use sparsity to compute kernel efficiently

Pyramid match kernel (Grauman and Darrell, 2007; Lazebnik et al., 2006)

• Two sets of points

• Counting matches at several scales: 7, 5, 4

Kernels from segmentation graphs

- Goal of segmentation: extract objects of interest
- Many methods available,
 - ... but, rarely find the object of interest entirely
- Segmentation graphs
 - Allows to work on "more reliable" over-segmentation
 - Going to a large square grid (millions of pixels) to a small graph (dozens or hundreds of regions)
- How to build a kernel over segmenation graphs?
 - NB: more generally, kernelizing existing representations?

Segmentation by watershed transform (Meyer, 2001)

image

gradient

watershed

287 segments

64 segments

10 segments

Segmentation by watershed transform (Meyer, 2001)

image

gradient

watershed

287 segments

64 segments

10 segments

Image as a segmentation graph

- Labelled undirected graph
 - Vertices: connected segmented regions
 - Edges: between spatially neighboring regions
 - Labels: region pixels

Image as a segmentation graph

- Labelled undirected graph
 - Vertices: connected segmented regions
 - Edges: between spatially neighboring regions
 - Labels: region pixels
- Difficulties
 - Extremely high-dimensional labels
 - Planar undirected graph
 - Inexact matching
- Graph kernels (Gärtner et al., 2003; Kashima et al., 2004; Harchaoui and Bach, 2007) provide an elegant and efficient solution

Kernels between structured objects Strings, graphs, etc... (Shawe-Taylor and Cristianini, 2004)

- Numerous applications (text, bio-informatics, speech, vision)
- Common design principle: enumeration of subparts (Haussler, 1999; Watkins, 1999)
 - Efficient for strings
 - Possibility of gaps, partial matches, very efficient algorithms
- Most approaches fails for general graphs (even for undirected trees!)
 - NP-Hardness results (Ramon and Gärtner, 2003)
 - Need specific set of subparts

Paths and walks

- Given a graph G,
 - A path is a sequence of distinct neighboring vertices
 - A walk is a sequence of neighboring vertices
- Apparently similar notions

Walks

Walk kernel (Kashima et al., 2004; Borgwardt et al., 2005)

- $\mathcal{W}^p_{\mathbf{G}}$ (resp. $\mathcal{W}^p_{\mathbf{H}}$) denotes the set of walks of length p in \mathbf{G} (resp. \mathbf{H})
- Given *basis kernel* on labels $k(\ell, \ell')$
- *p*-th order walk kernel:

$$k_{\mathcal{W}}^{p}(\mathbf{G},\mathbf{H}) = \sum_{\substack{(r_{1},\ldots,r_{p}) \in \mathcal{W}_{\mathbf{G}}^{p} \\ (s_{1},\ldots,s_{p}) \in \mathcal{W}_{\mathbf{H}}^{p}}} \prod_{i=1}^{p} k(\ell_{\mathbf{G}}(r_{i}),\ell_{\mathbf{H}}(s_{i})).$$

Dynamic programming for the walk kernel (Harchaoui and Bach, 2007)

- Dynamic programming in $O(pd_{\mathbf{G}}d_{\mathbf{H}}n_{\mathbf{G}}n_{\mathbf{H}})$
- $k_{\mathcal{W}}^p(\mathbf{G},\mathbf{H},r,s) = \text{sum restricted to walks starting at } r \text{ and } s$
- \bullet recursion between $p-1\mbox{-th}$ walk and $p\mbox{-th}$ walk kernel

Dynamic programming for the walk kernel (Harchaoui and Bach, 2007)

- Dynamic programming in $O(pd_{\mathbf{G}}d_{\mathbf{H}}n_{\mathbf{G}}n_{\mathbf{H}})$
- $k_{\mathcal{W}}^{p}(\mathbf{G},\mathbf{H},r,s) = \text{sum restricted to walks starting at } r \text{ and } s$
- \bullet recursion between $p-1\mbox{-th}$ walk and $p\mbox{-th}$ walk kernel

$$k_{\mathcal{W}}^{p}(\mathbf{G}, \mathbf{H}, r, s) = k(\ell_{\mathbf{G}}(r), \ell_{\mathbf{H}}(s)) \sum_{\substack{k_{\mathcal{W}}^{p-1}(\mathbf{G}, \mathbf{H}, r', s')\\r' \in \mathcal{N}_{\mathbf{G}}(r)\\s' \in \mathcal{N}_{\mathbf{H}}(s)}} k_{\mathcal{W}}^{p-1}(\mathbf{G}, \mathbf{H}, r', s')$$

• Kernel obtained as $k_{\mathcal{T}}^{p,\alpha}(\mathbf{G},\mathbf{H}) = \sum_{r \in \mathcal{V}_{\mathbf{G}}, s \in \mathcal{V}_{\mathbf{H}}} k_{\mathcal{T}}^{p,\alpha}(\mathbf{G},\mathbf{H},r,s)$

Extensions of graph kernels

- Main principle: compare all possible subparts of the graphs
- Going from paths to subtrees
 - Extension of the concept of walks \Rightarrow tree-walks (Ramon and Gärtner, 2003)
- Similar dynamic programming recursions (Harchaoui and Bach, 2007)
- Need to play around with subparts to obtain efficient recursions
 - Do we actually need positive definiteness?

Performance on Corel14 (Harchaoui and Bach, 2007)

• Corel14: 1400 natural images with 14 classes

Performance on Corel14 (Harchaoui & Bach, 2007) Error rates

Performance comparison on Corel14