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Abstract. This paper explains some implications of markov-process theory
for models of mortality. We show that an important qualitative feature which

has been found in certain models — the convergence to a “mortality plateau”

— is, in fact, a generic consequence of the convergence to a “quasistationary
distribution”, which has been explored extensively in the mathematical litera-

ture. This serves not merely to free these results from specifics of the models,

but also to offer a new explanation of the convergence to constant mortality.
At the same time that we show that the late behavior — convergence to a finite

asymptote — of these models is almost logically immutable, we also show that

the early behavior of the mortality rates can be more flexible than has been
generally acknowledged. We point, in particular, that an appropriate choice

of initial conditions enables one popular model to approximate any reasonable
hazard-rate data. This illustrates how precarious it can be to read a model’s
vindication from the consilience with a favored hazard-rate function, such as

the Gompertz exponential.

1. Introduction

1.1. Outline of the problem. A host of probabilistic models have been pressed

into service to explain the randomness of aging and mortality. While many are

ingenious and even enlightening, they are in a certain respect scattershot efforts.

Quite commonly, some demographic principles or biological theory indicates a gen-

eral class of mathematically related models. The analysis, however, is typically

confined to a few selected examples, distinguished, as often as not, for being espe-

cially tractable. Even when the methods are competent to apprehend any particular

model we might choose, how ought we to identify the ones of interest? Efforts to

draw broad lessons from the behavior of a model are stymied when we cannot be

sure how widespread the behavior is, even among trivial variants of the model. At

the same time, when we attempt to validate a class of models empirically, our judg-

ment of success must depend on the ease with which the parameters might equally

have been tuned to match any arbitrary alternative data.
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More sophisticated mathematical theory can help to redress these defects, by

working with the models in their broader context. The first problem is overspeci-

ficity of particular models. Here it may be possible to show that the behavior under

consideration is indeed common to the entire class of models, without ever consid-

ering any particular example. Not only will this provide assurance that the match

of theory and phenomenon was not an artifact of the arbitrary choice of represen-

tative model, but the more general derivation will likely also be more illuminating

than the bare computation that may suffice in the special case. Solving the general

case typically forces us to come to grips with the fundamental issues. The second

problem is overgenerality of classes of models. Here we may hope to characterize

the widest class of patterns which could possibly be matched by suitable parameter

choices. From this we can judge whether our success with matching actual data

truly validates model, or whether it was simply unavoidable, given the loose def-

inition of the model. In some cases, the class is defined by parameters explicitly

built into the model. In other cases, the class is merely an implicit nimbus around

a single model, defined by alternatives to arbitrary or indifferent choices which may

have been fixed purely for technical convenience. For this reason, it will be appro-

priate to seek a mathematically natural class of models which will be equivalent

from the perspective of the biodemographic justification of the model.

Both of these problems have dogged the study of markov mortality models.

By a “markov mortality model” we will mean a process which is “killed” at a

random stopping time, according to the behavior of a markov process, which itself

is typically unobserved. In principle, requiring the hidden process to be markov is

no constraint at all, since the current state may be made arbitrarily complex, so

as to include whatever memory factors influence the future. In practice, though,

markov models are generally assumed to have simple state spaces, representing a

“vitality” often in one dimension.

Several authors (including [GG91, Section 6.4], [GG01], [WF01], [Bai00]) have

proposed markov mortality models, and pointed out that they produce plateaus

in late-life mortality. On a very general level, this could advance the discussion

of mortality plateaus, by offering an explanation essentially distinct from the con-

ventional dyad of physical heterogeneity of the population, as against temporal

heterogeneity of the aging process. (“Mortality correlation”, described by J. Vau-

pel et al. [Vau98], and modelled by B. Charlesworth [Cha01], is an evolutionary

explanation of underlying causes, not a functional explanation, and so exists on a

different plane from this pair.) What J. Weitz and H. Fraser, in particular, point

out explicitly, is that no special pleading is required to generate mortality plateaus.
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A very simple model — in this case, a Brownian motion with constant drift, killed

at the origin — does generate these features. While this “constant-drift model” is

not profoundly realistic, what is essential for their argument is merely the absence

of a priori reference to mortality at late ages. This important point deserves to be

rescued from the specificity of their methods.

The trouble begins with the “inverse Gaussian” computation, by which Weitz

and Fraser derive the asymptotics of the mortality rates in their model. This

approach resists generalization even to slight variants, as do the computations in

several of the other mentioned papers. (An exception, of sorts, is the paper by

W. Bains [Bai00], which presents only numerical computations. These could, in

principle, be extended to a broad class of related models, though only one by

one.) The mortality plateau in each of these analyses is sui generis, absent any

unifying principle. And yet, as we explain in section 3, when viewed in its proper

mathematical context, each model mortality plateau is an example of a generic

phenomenon, the convergence to quasistationary distributions. The decelerating

mortality rates, we see, are not the consequences of any special properties of these

models; rather, a markov process would need to be fairly pathological to escape

such behavior.

The benefit here, we wish to emphasize, is not merely in the generality of the

results. Where before we had merely an observation — this model, and that one,

produce mortality plateaus — we now have something more closely resembling

an explanation. In the biodemographic context, this might be called an evolving

heterogeneity theory of mortality tapering. As a markov process progresses, the

distribution of its state is being shaped by two forces: random motion, which

tends to spread the mass out and shift it in certain preassigned directions; and

deaths, which lop off mass at each point, at a fixed rate. In most cases, there

are certain distributions of probability mass whose shapes are stable, so that their

levels sink proportionately at every location. Intuitively, this often means that

mass is concentrated in locations with lower mortality rates, so that the flow out will

balance the slow death. What is more, it can be shown in many cases that no matter

where the process starts, if we wait long enough the distribution of those individuals

who survive will approach a certain one of these quasistationary distributions. The

mortality rate, of course, will also approach the mortality rate averaged over this

distribution. In other words, the mortality rate stops increasing, not because we

have selected out an exceptional subset of the population, but because the condition

This model has been applied to demography, with different goals, by J. Anderson [And00]. It

earlier appeared as a lifetime model in the engineering literature [CF77].
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of the survivors is reflective of their being survivors, even though they started out

the same as everyone else. (A suggestion along these lines may be found on page

210 of [FK00].) A population piled up in the low-vitality domain is unstable.

What is more, when the state space has regions of differing mortality, the surviving

population will be found concentrated in the more salubrious realms.

To make a banal analogy, compare this problem to the “mortality” of automo-

biles, such as has been described by J. Vaupel [Vau97]. It is natural to expect that

a 2000 automobile will be in better condition than a 1990 automobile (barring a

decline in the craft of automobile engineering), and consequently less likely to break

down. This will continue for some time into the past. But will the 1970 automobile

be more or less prone to breaking down than an old-timer from 1930? There are

very few 1930s automobiles still in service, but those that remain seem likely to

be in especially good condition. This is not because the survivors necessarily were

unusually sturdy to begin with, but rather, that their survival reflects a special life

course.

Some parallels might be drawn to the notion of “induced demographic schedules”,

proposed by Vaupel et al. [Vau98] as one explanation for mortality deceleration.

This refers to the ability of some organisms to switch among two or more distinct

life histories, often with wide disparities in the typical lifespans. This is similar

to our notion, in that the organisms may begin life identical, but become hetero-

geneous in the course of their lives, perhaps because of environmental influences.

An important difference is that we require no specialized life-history adaptations.

The heterogeneity that develops, and that induces the mortality plateaus, is in the

vitality itself, not in an extraneous genetic switch. (This is not intended as an

argument against induced demographic schedules, which are indisputably a real

phenomenon, and which may contribute to mortality deceleration; we wish merely

to point up the differences to our proposal.)

1.2. Outline of the paper. In sections 2.2 and 3.1 we offer an account of some

general theory of quasistationary distributions, for finite and general state spaces

respectively. Much of this is hoary in the mathematical literature, although we offer

a few improvements. While these results are not specifically applied in the sequel,

they are central to our program, in that they reveal the convergence to quasistation-

ary distributions, and the convergence to asymptotic killing rates, as truly generic

features of markov models. The key idea, which is best understood in this abstract

setting, is the connection between asymptotic killing rates for markov processes,

and their invariant functions. It must be admitted that the general theory is not
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as complete as one might wish. Neither the convergence to quasistationary distri-

butions nor to asymptotic mortality rates can be guaranteed in perfect generality,

even when the state space is compact. What we have instead is a long-term aver-

age killing rate, called the decay parameter, and its link to sub- and superinvariant

functions, weaker forms of quasistationary distributions.

More complete results can be given when the markov processes are diffusions,

particularly in one dimension, and this theory is discussed in sections 3.2 and 3.3.

Numerous examples, both discrete-space and diffusions, including several which

have already been intensively studied in the aging literature, are then analyzed in

section 4. In particular, we see that in the constant-drift model, the limit mortality

is b2/2σ2, where b is the drift and σ the diffusion constant. (This was computed

directly from the inverse Gaussian density by R. Chhikara and J. Folks [CF77].) The

vitality converges to a gamma distribution, with shape parameter 2 and exponential

rate b/σ.

In section 5 we move from the behavior as time goes to infinity, to the early

behavior of some models. Here we mean to address the second problem mentioned

above, the unexplored flexibility of some models. Researchers often highlight the

hazard rates that appear from their models, seeing in them passable reflections

of real data. We point out, in passing, in section 5.1, how some have allowed

themselves to be misled by the appearance of the Gompertz curve into accepting an

erroneous computation. Turning then to the example of one-dimensional diffusions,

particularly those with constant drift, we see that even when the computation

is correct it may be rash to infer much from mere similarity of theoretical and

empirical curves. In most cases, the model presented is only one of a family of

possibilities that are all equally plausible, at least superficially. Viewing the class

as a whole, it may be possible to tune parameters to match almost any data we

might happen to be given. To illustrate this, we characterize all hazard rates which

can be obtained from the constant-drift model by varying the initial distributions.

There is nothing in the nature of the model which gives us a clear direction about

the appropriate starting state. And yet, we see that the indefiniteness of the initial

distribution translates into enormous latitude to shape the mortality rates in such

models. While this does not negate the value of such models, it suggests that

different and more careful work would be needed to identify appropriate models,

and appropriate versions of models.

2. Finite state spaces
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2.1. An introductory example. Consider a model in which an organism has

two possible states: healthy and sick. Healthy individuals may stay healthy or

get sick; sick individuals may stay sick or get healthy, but they may also die. For

definiteness, let us say that the rate of healthy individuals getting sick is α, the

rate of sick individuals getting well is β, and their rate of dying is δ. A markov

process is represented by a matrix Q with entries qij , being the rate at which a

process currently in state i makes jumps to the state j. The sum
∑

j qij of the

transition rates in any given row is 0. The unkilled process described above has

matrix
(−α α

β −β

)
, which means that it converges to a stationary state (corresponding

to the left eigenvector with eigenvalue 0) with a proportion β/(α+ β) healthy and

α/(α+ β) sick.

Naively, one might expect that the limiting mortality rate would be δ ·α/(α+β).

In fact, though, it will be smaller. Since being sick raises the likelihood of dying,

survival implies a greater chance of being healthy. An individual who has survived

a very long time is more likely to be healthy than an average individual who has

not been exposed to mortality. To compute this, we take the infinitesimal matrix

of the killed markov process. We can either define a third “cemetery” state ∂, such

that transitions to ∂ are equivalent to dying. Then we get the 3 × 3 transition

matrix

(1) Q =


−α α 0

β −β − δ δ

0 0 0

 .

Equivalently, we can just drop the last row and column, and work with the sub-

markov transition matrix

(2) Q =

(
−α α

β −β − δ

)
.

This has two eigenvalues,

r1,2 = −α+ β + δ

2
±
√

(α+ β + δ)2

4
− αδ.

Both eigenvalues are real and negative. The larger one, r1, will be the limiting

mortality rate. If, for example, we take α = δ = 1, and β = 2, we see that the

naive mortality asymptote is 1/3, while the correct value is about .268 It is easy to

see that the naive asymptote is always too large.

To make this more tangible, we know that if the starting distribution is (ph, ps),

then the distribution at time t will be (ph, ps) exp(tQ). To write down the explicit

formula would be more messy than illuminating; instead, we pursue the numerical
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example. By diagonalizing Q, we have

exp(tQ) =

(
.789e−.268t + .211e−3.73t .289e−.268t − .289e−3.73t

.577e−.268t − .577e−3.73t .211e−.268t + .789e−3.73t

)
.

Thus

e.268t
(
P t{healthy}, P t{sick}

)
=
(
.789ph + .577ps, .289ph + .211ps

)
+ e−3.46t

(
.211ph − .577ps,−.289ph + .789ps

)
.

For a healthy individual, we start with ph = 1 and ps = 0:

P
{
survive until time t

}
= P t{healthy}+ P t{sick} = 1.078e−.268t − 0.078e−3.73t.

The conditional probability of survival is then

P
{
survive until time t+ s

∣∣ survive until time t
}

=
e−.268s − 0.072e−3.46t−3.73s

1− 0.072e−3.46t

t→∞
−−−−−→ e−.268s.

Note, as well, that conditioned on survival until t, as t → ∞ the probability of

being healthy converges to
.789ph + .577ps

1.078ph + .788ps
= .732,

independent of the starting state. This distribution of healthy and sick — which is

the same as the top eigenvector — is what we call the quasistationary distribution.

2.2. General theory for finite state spaces. As in the above example, we may

represent death as entrance into the cemetery state ∂. A markov process with a

single absorbing state will be referred to as a killed markov process. We will follow

the alternative route of dropping the cemetery state, and allowing the particle

simply to disappear at death. This turns the markov process (where the sum of

the probabilities among the possible states is always 1) into a submarkov process

(where the sum of the probabilities is decreasing with time).

Suppose we have a submarkov process, whose state space is a finite set X. We

write the infinitesimal rate of transition from state i to state j as qij . The rate of

leaving state i is qii, so it is equal to −ki −
∑

j 6=i qij , where ki is the rate of dying

at state i. We say that a state y is accessible from the state x if there is a sequence

of states x = i0, i1, . . . , ik = y such that qimim+1 > 0 for every m. Stated simply,

this means that if the process starts at x, it has a nonzero probability of arriving

eventually at y. The process is said to be irreducible if every state is accessible from

every other.

Let A be the set of states which are accessible from all other states. Suppose

that A is nonempty. Let T be the time of “death”, and let TA be the first time the
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process arrives in A. Conditioned on T > t, the probability of TA > t (that is, the

probability that the process has never been in A up to time t) goes exponentially

to 0. Note that A is an absorbing set. Thus, conditioned on survival up to time t,

the process becomes concentrated on A.

Proposition 1. Let λ be the eigenvalue of −Q with the smallest real part. Then λ is

purely real and nonnegative, and is a simple eigenvalue. The unique left eigenvector

π with
∑
πi = 1, and right eigenvector v with

∑
πivi = 1, corresponding to λ, are

nonnegative, and all components in A are positive. For any states i and j,

lim
t→∞

Pi

{
Xt = j

∣∣T > t
}

= πj

and

lim
t→∞

P
{
T > t+ s

∣∣T > t
}

= e−λs.

(The i in the subscript represents the starting state.) In addition, for any states i

and j,

lim
t→∞

eλt P
{
Xt = i

∣∣X0 = j
}

= vjπi.

Proof. The positivity results are simply the Perron-Frobenius Theorem [HJ85], ap-

plied to etQ for arbitrary positive t. The rest is elementary linear algebra. The

theory of such “Perron-Frobenius eigenvalues” is discussed at length in [Sen73]. �

Note that when the set A is empty, the state space may be decomposed into

subsets which are mutually inaccessible. The above result may then be applied to

the subsets separately.

A version of this theory for finite state spaces and discrete time was worked out

in [DS65], and extended to some cases of infinite discrete state spaces in [SVJ66].

Infinite state spaces are not so easy to treat in a comprehensive framework, but

some general results for the special case of birth-death processes may be found in

[Doo91].

3. Quasistationary distributions for general state spaces

A general fact about killed markov processes, under fairly general conditions, is

that their rates of killing, averaged over a long time, converge to a finite rate, called

the decay parameter. The major results in section 3.1 are all due to R. Tweedie and

several coauthors. In the greatest generality, the existence of a decay parameter

λ is a fairly weak statement. It states, essentially, that P t(x,A) (the probability

that the process started from x will be in the set A at time t) declines, on an

exponential scale, at a rate on the order of e−λt. The decay parameter is defined

by the existence of so-called subinvariant measures and functions, a generalization
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of eigenmeasures and eigenfunctions. The exact statement is given in Proposition

3.

We will say that the decay parameter is the asymptotic killing rate for the process

— a much stronger statement, and one that is closer to our concerns — if the killing

time for the process started at any point x satisfies

(3) lim
t→∞

Px

{
T > t+ s

∣∣T > t
}

= e−λs.

Clearly, if for each x ∈ X there is a positive constant cx such that

lim
t→∞

eλt Px

{
T > t

}
= cx,

then λ is the asymptotic killing rate. As we explain below, a sufficient condition

for the decay parameter to be the asymptotic killing rate is that the process have

a property called λ-positivity. A characterization of λ-positive processes in terms

of subinvariant measures and functions, due to Tweedie and P. Tuominen, is given

here as Proposition 4.

Even when the process is not λ-positive, so that the rate of decay is not pre-

cisely exponential, we may still have an asymptotic killing rate if the conditional

probability converges to a quasistationary distribution. That is,

lim
t→∞

Px

{
Xt ∈ A

∣∣T > t
}

= µ(A),

where µ satisfies ∫
X

P t(x,A)dµ(x) ≤ e−λtµ(A).

This follows from

lim
t→∞

Px

{
T > t+ s

∣∣T > t
}

= lim
t→∞

∫
X

Pt(x, dy)P t(y,X)∫
X

Pt(x, dy)

=
∫

X

P s(y,X)µ(dy)

≤ e−λs.

It is this criterion that we will use in section 3.2 for diffusions on an unbounded

interval. Here

P t(x,A) = P
{
Xt ∈ A

∣∣X0 = x
}
.

While these theorems provide a useful overview of the convergence properties of

submarkov processes, they are limited in two ways. On the one hand, the conditions

are difficult to check in general. In particular, finding subinvariant measures and

functions (and, which is essential, knowing that we have found all of them) is rarely

possible in infinite state spaces, except when the state-space is the real line, where

we have the machinery of ordinary differential equations to hand. On the other
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hand, the conditions are too strict. When the process is not λ-positive, the general

theory tells us very little. Many of the models that would interest us — in particular,

diffusions which are not confined to a compact set — are not λ-positive. They may,

nonetheless, have asymptotic killing rates. The reason is straightforward: when the

process is λ-positive, the decay is exactly exponential. But in processes such as the

diffusion models we examine in sections 4.1 and 4.3, the probability of survival up

to time t falls as 1
t e
−λt. (In technical terms, this happens because the generator

has a continuous spectrum, rather than the discrete spectrum which is are typical

in diffusions on compact intervals.) This rules out an application of positivity

methods, but has no effect on the results that we are concerned with, which refer

only to relative probabilities: the probability of being in a given set conditioned

on having survived for a very long time. In section 3.2 we derive a general result

for the long-term behavior of one-dimensional diffusion processes. In section 3.3 we

explain why killed Brownian motions in general dimensions are indeed λ-positive,

as long as they are confined to a compact set.

3.1. General theory. Here we present the broadest current understanding of the

asymptotic killing rate of submarkov processes. For those unfamiliar with the

terminology of abstract markov processes, useful introductions may be found in

the books [KS88] and [RW00a], among many others.

For any real number `, the σ-finite measure µ on X is said to be `-subinvariant

for P t if for all t and all measurable A with µ(A) finite,

(4)
∫

X

P t(x,A)dµ(x) ≤ e−`tµ(A);

if the inequality (4) is an equality, then we call µ `-invariant. If f is a function

from X to R+, it is said to be `-subinvariant for P t if for all t

(5)
∫

X

P t(x, dy)f(y) ≤ e−`tf(x),

except for at most an exceptional set of points x with φ-measure 0. Superinvariant

functions and measures are defined by reversing these inequalities. A function or

measure is `-invariant if it is both `-subinvariant and `-superinvariant. Except for

some technical details, which we will not discuss here, an `-invariant function (or

measure) is the same as an eigenfunction (or eigenmeasure) of the generator (or its

adjoint) with eigenvalue −`. In the case of diffusions, the generator is a differential

operator, allowing the problem to be attacked with the methods of differential

equations. This case will be discussed in sections 3.2 and 3.3.

There is a powerful, though almost trivial, relationship between invariant mea-

sures and decay rates.
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Proposition 2. Let µ be the starting distribution for the submarkov process Xt. If

there exists a λ-subinvariant measure ν such that C := supx∈X dµ/dν(x) is finite,

then

(6) P
{
survive until time t

}
≤ Ce−λt,

which gives a lower bound on the decay parameter. If there exists a λ-superinvariant

measure ν such that c := infx∈X dµ/dν(x) > 0, then

(7) P
{
survive until time t

}
≥ ce−λt,

which gives an upper bound on the decay parameter. If there exists a λ-invariant

measure ν such that ∞ > C ≥ c > 0, then

(8) Ce−λt ≥ P
{
survive until time t

}
≥ ce−λt,

which implies that the decay parameter exists, and is equal to λ.

Proof. We prove statement (6). The other proofs are essentially the same. The

probability of survival is given by∫
X

P t(x,X)µ(dx) ≤ C

∫
X

P t(x,X)ν(dx) ≤ Ce−λtν(X) = Ce−λt.

�

This result is useful, in that it allows us to derive bounds on the decay rate in

particular cases. The upper bound on the decay parameter holds, loosely speaking,

if the starting condition is sufficiently diffuse (not concentrated at points, in partic-

ular) and if it avoids overemphasizing the boundary (when the invariant measure is

forced to 0 there). The lower bound holds, more or less, when the starting measure

is sufficiently spread out: putting positive weight whereever the invariant measure

does. Of course, we may start with a point mass and let the process run for a short

time, until the distribution has spread out, and then treat what results as the new

starting distribution.

Intuitively, one would expect that if the process is sufficiently smooth, and the

state space is compact, then it should be possible to compare the top invariant

measure with the result of running the process for a fixed time, and so apply

equation (8). For diffusions on a bounded domain in Rn with Hölder differentiable

coefficients, this is shown in [GQZ88].

It would help to know, more generally, when such sub- and super-invariant mea-

sures exist. In addition, we might like to know whether the average decay rate

holds uniformly over all starting measures. The most important results along these

lines are due to R. Tweedie and various coauthors. We summarize some of this
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work in the following Theorem, extracted from more extensive results in Theorems

2, 3, and 6 of [TT79], and Proposition 3.1 of [Twe74].

Theorem 3 (Tuominen and Tweedie). Let Xt be a φ-irreducible, submarkov pro-

cess, such that P t(x,A) is continuous in t for each x and measurable A. Let λ be

the supremum of those ` such that there is an `-subinvariant measure for P t. Then

there exists a λ-subinvariant function f and a λ-subinvariant measure π. If A is a

measurable set with 0 < π(A) <∞, then∫ ∞

0

estP t(x,A)dt <∞ if s < λ, and∫ ∞

0

estP t(x,A)dt = ∞ if s > λ.

(9)

If, in addition, infx∈A f(x) > 0,

(10) lim
t→∞

1
t

logP t(x,A) = −λ.

These results hold for all starting points x, except perhaps for an exceptional set

with φ-measure 0.

We say that the process Xt is λ-transient if∫ ∞

0

eλtP t(x,A)dt

is finite for all x ∈ X and all A with φ(A) > 0. Otherwise, Xt is said to be λ-

recurrent. Theorem 3 of [TT79] tells us that when Xt is recurrent, there is a unique

λ-subinvariant measure π and a unique λ-subinvariant function f , and these are

λ-invariant. If
∫
fdπ is finite, then we say that P t is positive λ-recurrent (or λ-

positive).

Conversely, we have (combining Theorems 4 and 5 of [TT79] with Proposition

4.4 of [Twe74])

Proposition 4. Let Xt be a φ-irreducible submarkov process such that P t(x,A)

is a continuous function of t for every x and A. If for some ` there exists an `-

invariant function f and a `-invariant measure π, such that
∫
fdπ is finite, then

` = λ and the process is λ-positive.

For a λ-positive process,

(11) lim
t→∞

eλtP t(x,A) =
f(x)π(A)∫

fdπ

for π-almost every x, and every measurable A such that infx∈A f(x) > 0. The

asymptotic killing rate is λ.
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3.2. One-dimensional diffusions with killing. A strong markov process with

continuous sample paths on some subset of Rd is called a diffusion. Most reasonable

one-dimensional diffusions that appear in practice may be defined, for state space

X = (r1, r2), where r1 may be −∞ and r2 may be +∞, by three functions: the

diffusion rate σ : X → [0,∞), the drift b : X → R, and the killing rate κ : X →
[0,∞). General terminology and theory of diffusions may be found in any number of

books, including [KS88], [RY90], and [RW00a]. Those unfamiliar with the theory of

boundaries for one-dimensional diffusions can find two very different presentations

in [Fel52] and [RW00b, section V.51]. We will assume the drift to be continuously

differentiable, the diffusion rate to be continuously twice differentiable, and the

killing rate to be continuous. Proofs of all the results in this section may be found

in [SE03].

The infinitesimal generator of the unkilled process is (see, for example, section

VII.2 of [RY90])

(12) Lφ(x) := lim
t↓0

Ex[φ(Xt)]− φ(x)
t

=
1
2
σ2(x)φ′′(x) + b(x)φ′(x),

and the adjoint operator is

(13) L∗φ =
1
2
(
σ2(x)φ(x)

)′′ − (b(x)φ(x)
)′
.

The generator describes the behavior of the diffusion in the interior of X. To

describe the complete behavior of the diffusion we need to add boundary conditions

(as discussed below), to determine whether it is reflected or killed at the endpoints.

By the Feynman-Kac formula (Proposition VIII.3.10 of [RY90]), the infinitesimal

generator of the process with killing is L− κ.

We may simplify the problem somewhat by assuming that σ is identically 1.

There is no loss of generality since (following [Fel52]) we can replace Xt by Yt =

F (Xt), where F (x) :=
∫ x

x0
du/σ(u), where c is an arbitrary point in (r1, r2). The

killing rate for Yt becomes κ(F−1(Yt)), while the drift may be computed by Itô’s

formula to be

(14)
b(F−1(Yt))
σ(F−1(Yt))

− σ′(F−1(Yt)).

Since σ is positive on the interior of the interval, this transformation is finite. From

now on, we will always assume, unless otherwise stated, that the diffusion rates of

our one-dimensional diffusions are identically 1.

Fix any point x0 in the interior of the interval (r1, r2), and define

B(x) :=
∫ x

x0

2b(z)dz.
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We define the function φλ : X → R to be the unique nonzero solution to the initial

value problem

1
2
d2

dx2
φλ−

d

dx

(
b · φλ

)
− κφλ = −λφλ

with (1− pi)e−B(ri)φλ(ri) = pi

(
φ′(ri)− b(ri)φλ(ri)

)
,

(15)

if it exists. Here pi represents the degree of reflection at the boundary point ri. It

is implicitly 0 at an inaccessible boundary.

Theorem 5. Suppose that r1 and r2 are both regular boundaries. Let λ = min{λ : φλ exists}.
Suppose

(16) φλ is nonnegative.

If both boundaries are reflecting and κ = 0 almost everywhere then λ = 0; otherwise,

λ is positive. For any measurable subset A ⊂ (r1, r2), and any starting point x,

(17) lim
t→∞

eλtPx

{
Xt ∈ A

}
=
e−B(x)φλ(x) ·

∫
A
φλ(y)dy∫ r2

r1
e−B(y)φ2

λ(y)dy
.

The asymptotic killing rate is λ.

If b is finite at both boundaries then condition (16) is automatically satisfied.

Note that the orthogonality of eigenfunctions implies that λ is the only eigenvalue

for which the boundary value problem (15) has a nonnegative solution.

Theorem 6. Suppose that r1 is a regular boundary, the drift b is continuous at

r1and r2 = ∞ a natural or entrance boundary. (An equivalent result holds if r2 is

the regular boundary and r1 the natural boundary.) Suppose, too, that

(18)
∫ ∞

r1

eB(z)dz <∞,

and

(19) lim inf
z→∞

z−2
(
b(z)2 + b′(z) + 2κ(z)

)
> −∞.

Then λ is finite, and is equal to the decay parameter for the process Xt. For any

measurable subset A ⊂ [r1,∞),

(20) lim
t→∞

P
{
Xt ∈ A

∣∣T > t
}

=

∫
A
φλ(z)dz∫∞

r1
φλ(z)dz

,

and
∫∞

r1
φλ(z)dz is finite. The asymptotic killing rate is λ.

Note that the condition (19) is fairly weak: it is automatically satisfied if the

drift b(z) does not drop suddenly for large z. There is little cost in imposing this

condition, since it constrains only the local fluctuations of the drift. The condition
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(18), on the other hand, is a global constraint on the behavior of b(z) as z → ∞.

Essentially, this requires the drift to be sufficiently negative to keep the mass from

drifting off to ∞. This is clearly too restrictive, since in some models (such as the

one discussed in section 4.3) the process is prevented from drifting off to ∞ not by a

countervailing drift, but by an increasing killing rate, which forces the conditioned

process to lurk near the origin. For such models, we have the following result:

Theorem 7. The conclusions of Theorem 6 remain valid when the condition (18)

is replaced by

(21) lim inf
z→∞

κ(z) > λ.

3.3. Killed Brownian motion on a compact set. Let X be a bounded open

subset of Rn, with a smooth boundary. Let κ : X → R+ be a measurable function,

and let L be the generator of a diffusion, whose diffusion rate is differentiable and

whose drift is continuous on a neighborhood of X. The diffusion rate for a process

in Rn is a differentiable function on X, whose values are n×n matrices. The drift is

a continuous function that takes values in Rn. For any distribution µ on X we may

define a process Xt which starts at µ, and continues as a diffusion with generator

L until the time T , which is the minimum of the killing time defined by κ and the

first time when the process hits the boundary of X.

In general, we have the following theorem due to M. Donsker and S. Varadhan

[DV76, Theorem 2.2]:

Theorem 8 (Donsker and Varadhan).

(22) lim
t→∞

sup
x∈X

log Px

{
T > t

}
= sup

µ
inf
φ

∫
X

Lφ(z)− κ(z)φ(z)
φ(z)

dµ(z),

where µ ranges over all probability measures on the closure of X, and φ ranges over

the functions in the domain of L which are bounded away from 0.

R. Pinsky [Pin85] has cited this theorem in a stronger form, with the supremum

over x ∈ X on the left-hand side removed (so that the result applies to the decay

parameter from any starting point). It is not clear to us how the stronger form

follows from the weaker, in general.

If the base diffusion is Brownian motion — that is, with no drift, and with σ

everywhere equal to the identity matrix — we may apply the same arguments as

for Theorem 5 to show

Theorem 9. Let Xt be Brownian motion on the bounded domain X in Rn, killed

at rate κ. The process Xt is λ-positive. Let λ be the maximum λ such that there is
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a nontrivial φλ : Int(X) → R+ satisfying

(23)
1
2
∆φλ − κφλ = −λφλ,

which converges to 0 on the boundary. (Here ∆ is the Laplacian operator.) Then

λ is the decay parameter for Xt, and the asymptotic killing rate is λ. In addition,

for any measurable set A ⊂ X,

(24) lim
t→∞

Pµ

{
Xt ∈ A

∣∣T > t
}

=

∫
A
φλ(z)dnz∫

X
φλ(z)dnz

where T is the killing time, and

(25) lim
t→∞

Px

{
T > t+ s

∣∣T > t
}

= e−λs.

Furthermore,

lim
t→∞

eλtPx

{
Xt ∈ A

}
=

∫
A
φλ(z)dnz ·

∫
X
φ(z)dµ(z)∫

X
φλ(z)2dnz

.

More generally, as pointed out in the appendix to [Pin85], the same methods

apply if σ−1b is a gradient function.

4. Examples

4.1. Constant drift and killing at 0. In the case when b is a negative constant,

κ ≡ 0 on R+, and 0 is an absorbing boundary (the model, we recall, considered

in [WF01], [And00], [CF77]), Theorem 6 becomes particularly easy to apply. For

λ 6= b2/2 we get the solution

φλ(x) =
1

2
√
b2 − 2λ

[
exp

{(
b+

√
b2 − 2λ

)
x
}
− exp

{(
b−

√
b2 − 2λ

)
x
}]

,

which changes sign for λ > b2/2. Thus the limit mortality rate is b2/2, and the

density of the fitnesses of the survivors converges to

φb2/2(x) = xebx,

which is a gamma distribution with exponential rate |b| and shape parameter 2. If

σ is not 1, we simply need to replace b by b/σ. (Remember that σ is constant here.)

4.2. General killing: a discrete-space example. The well-known “cascading

failure” model was introduced by H. Le Bras [Bra76], and further studied by L.

Gavrilov and N. Gavrilova [GG91]. This represents senescence as a discrete variable,

with motion only in the increasing direction by steps of size 1. The rate of jumps

from state x to x + 1 is a constant λ times x, and the process is killed at rate

µx when it is in state x. One diffusion analogue of this would have a Brownian

component of intensity σx when the process is at x, upward drift of magnitude bx,

and killing rate κ(x) = µx. We will discuss this variant in section 4.3.
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The concept of quasistationary distribution is still relevant to this model, even

though it progresses always in the same direction, hence is not irreducible. Con-

ditioned on survival, the process will indeed converge to a fixed quasistationary

distribution, from any starting state. The difference from the standard setting is,

that the distribution will depend on the starting state. We can analyze the model

as follows: Assume first that X0 is 1. Let p = µ/(µ + λ) and α = µ + λ. If the

particle is at state x, the probability that it dies before moving on to x + 1 is p.

Thus, the final senescence state Xω of the particle has geometric distribution with

ratio q = 1 − p. Conditioned on Xω = k, the time of death T may be represented

as T = τ1 + τ2 + · · ·+ τk, where τi is exponentially distributed with parameter iα,

and all are independent. We have then

P
{
T > t

∣∣Xω = k
}

= 1−
{
1− e−αt

}k
.

(To see this, observe that the sum of exponential variables with parameters 1, . . . , k

has the same distribution as the maximum of k exponential variables with param-

eter 1.) This yields

P
{
T > t

}
= 1−

∞∑
k=1

pqk−1
(
1− e−αt

)k =
1

q + peαt
=

µ+ λ

λ+ µe(µ+λ)t
.

The hazard rate is then

µ(µ+ λ)e(µ+λ)t

λ+ µe(µ+λ)t
.

The rate is approximately exponential early on, and converges to µ+ λ as t→∞.

(That the rate begins as an exponential is hardly surprising. If we remove all

randomness from the motion, and simply have it remain at site x for a deterministic

time 1/λx, the position at time t will be approximately a constant times eλt. The

hazard rate at time t will be µ times the position.)

Suppose, now, we know that an individual has survived to time t, where t is

very large. What is the distribution of the individual’s senescence state? It is

important to notice that this is not the same as the distribution of Xt if killing

were eliminated. Conditioned on survival to time t, Xt will be smaller than it

would be without killing, since survival is more likely lower down. Let Tk be the

time when Xt leaves state k (or ∞ if it never reaches k). Then

P
{
Xt = k

∣∣T > t
}

=
P
{
Tk−1 < t < Tk and Xω ≥ k

}
P
{
T > t

}
=
((

1− e−αt
)k−1 −

(
1− e−αt

)k)
qk−1

(
q + peαt

)
.
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The distribution ofXt conditioned on survival is geometric with parameter q(1− e−αt).

As t goes to infinity, this settles into a quasistationary distribution which is geo-

metric with parameter q: coincidentally, the same as the distribution of the state

at death, Xω.

For a general starting distribution, the limit distribution is simply the same as

for X0 = 1, conditioned on being no smaller than X0. This is

(26) P
{
Xt = k

∣∣T > t
}

= E
[
pqk−X01X0≤k

]
= pqk

k∑
j=1

q−j P
{
X0 = j

}
.

4.3. A continuous version of Le Bras’ process. The defining feature of Le

Bras’ model is that the rate of the random motion, as well as the killing rate,

increase linearly with the state. We keep these features, but allow the process to

move up and down, in order to arrive at a continuous process (which must be a

diffusion).

We define a process on [1,∞) by the stochastic differential equation

(27) dXt = σXtdWt + bXtdt,

where σ is a positive constant and b is a constant larger than σ2/2. The process

starts at X0 = 1, is killed at the rate kXt, and is reflected when it hits 1. By Ito’s

formula we see that Xt is geometric Brownian motion, and can be written as

Xt = exp {σ(Wt + b′t)} ,

where b′ = b
σ −

σ
2 . Equivalently, then, we could consider the Brownian motion with

drift:

Yt = Wt + b′t,

killed at a rate keσy and reflected at 0. This will have the same mortality distri-

bution as Xt. This makes it trivial to see that if σk is small, then for intermediate

times t, such that

b′

σk
� eb′t

we will have Yt ≈ b′t/σ, so the killing rate will be about k exp{b′t}.
In the notation of section 3.2 we have B(x) = b′x, where b′ is positive. The left

boundary 0 is regular, while the right boundary ∞ is natural. Since κ(x) → ∞
as x → ∞, we can apply Theorem 7, as long as λ is finite. This guarantees the

convergence to a quasistationary distribution.
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The details may be found in section 3 of [SE03]. The result is that the process

conditioned on survival far a long time converges to the quasistationary distribution

φ(x) =
x

b
σ2− 3

2Kiỹ

(√
8kx
σ

)
∫∞
0
x

b
σ2− 3

2Kiỹ

(√
8kx
σ

)
dx
,

whereK is the modified Bessel function, and ỹ is the smallest y such thatK ′
iy(
√

8k/σ) =

0. This function φ behaves asymptotically as

x
b

σ2−2e−
√

8kx/σ

as x→∞. The asymptotic killing rate is

σ2

8

[(
2b
σ2
− 1
)2

+ ỹ2

]
.

4.4. Multidimensional fitness. An interesting variant of the model proposed by

Anderson and Weitz-Fraser, would view fitness as having several — perhaps many

— components (X1(t), . . . , Xn(t)), all carrying out independent Brownian motions.

We think of 0 as representing the optimum, and we represent total senescence by

a continuous function f(x1, . . . , xn) which is taken to be increasing in |xi| for each

i; we assume, as well, that {(x1, . . . , xn) : f(x1, . . . , xn) ≤ K} is bounded, for each

K. The process is killed at a rate κ(f(x1, . . . , xn)) when it is at (x1, . . . , xn), but

there is also a maximum senescence K, such that the process is killed as soon as its

senescence reaches K. Since the state space of the process is compact, we may infer

from Theorem 9 that the killing rate and the distribution of the fitness conditioned

on survival converges to a limit given by the solution to the eigenvalue problem

(23).

In general, explicit solutions will be difficult (though numeric solutions could be

computed with standard algorithms). One case which we can solve in closed form,

though, is that where f(x1, . . . , xn) = x2
1+· · ·+x2

n, with n ≥ 3, and the killing occurs

only when f reaches a fixed magnitudeK2. What makes this case so straightforward

is the fact that the magnitude of the n-dimensional Brownian motion is itself a well-

explored one-dimensional Markov process, known as the Bessel process of order ν,

where ν = n/2− 1. The generator is

(28) Lφ(x) =
1
2
φ′′(x) +

(
ν +

1
2
)
x−1φ′(x).

We may either apply Theorem 6, with the inaccessible (entrance) boundary at

0 and the regular boundary at 1

The adjoint eigenvalue problem is

1
2
φ′′(x) +

(
ν +

1
2
)[
x−1φ(x)

]′ + λφ(x) = 0,
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for x ∈ (0,K), with φ(K) = 0 and φ′(0) = 0. It has the general solution

(29) xν+1
(
c1Jν(

√
2λx) + c2Yν(

√
2λx)

)
,

in terms of the Bessel functions Jν and Yν . Since ν > 0, and Jν(z) ∼ ( 1
2z)

ν/Γ(ν+1)

(by 9.1.7 of [AS65]), we see that xν+1Jν(
√

2λx) has derivative 0 at x = 0. On the

other hand, by 9.1.9 of [AS65] we see that xν+1Yν(
√

2λx) behaves asymptotically

like a nonzero constant times x near 0, so it has a nonzero derivative at 0. Conse-

quently, our solution to the boundary-value problem must have the form

φ(x) = cxν+1Jν(
√

2λx).

The other boundary value is φ(K) = 0. This means that
√

2λK is a zero of Jν .

The function Jν will be positive on (0,K) only if it is the smallest positive zero,

conventionally denoted jν,1. (In general, the i-th positive zero is denoted jν,i. Thus,

the limiting rate of mortality for this process is

λ =
j2ν,1

2K2
,

and the senescence states of those individuals who survive until time t converges to

(30) cxν+1Jν

(
jν,1x/K

)
as t→∞.

In fact, the eigenvalue expansion may be continued to give the exact distribution

of the time when the Bessel process of order ν hits K. This is given by formula

6.2.0.2 of [BS96]:

(31) Px

{
T ∈ dt

}
=

∞∑
i=1

jν,ix
−νJν(jν,ix/K)Kν−2

Jν+1(jν,i)
e−j2

ν,it/2K2
dt.

When x (the starting point) is 0, this simplifies slightly to

(32) P0

{
T ∈ dt

}
=

∞∑
i=1

(jν,i)ν+1

Γ(ν + 1)2νK2Jν+1(jν,i)
e−j2

ν,it/2K2
dt.

4.5. The series-parallel model. Another discrete-space model that has been ad-

vanced by Gavrilov and Gavrilova in [GG91] and [GG01] represents the organism

as an assemblage of independent “elements” in each of k independent “organ sys-

tems”. A system fails when all of its components has failed, but the organism dies

as soon as any one of its organs fails. The failure times of the components are

independent exponential random variables with expectation 1/λ. (The particular

assumptions that Gavrilov and Gavrilova impose on the starting condition we defer

to section 5.1.)

We represent this model as a Markov process with state space k-tuples of non-

negative integers. If the process is in state (i1, i2, . . . , ir, . . . , ik), with all the ij
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positive, the rate of transition to state (i1, i2, . . . , ir − 1, . . . , ik) is irλ, for each

1 ≤ r ≤ k.

Let T be the time of death, and let Ti be the time when component i first reaches

0. Then T = minTi. Each Ti is the sum of exponential waiting times with rates

λ, 2λ, . . . , xiλ, where xi is the initial number of elements in system i. Ti has the

same distribution as the maximum of xi independent exponential waiting times

with rate λ, so

P
{
Ti > t

}
= 1−

(
1− e−λt

)xi
.

This gives us the distribution

P
{
T > t

}
=

k∏
i=1

(
1−

(
1− e−λt

)xi
)
.

The hazard rate is then given by the logarithmic derivative with respect to t:

h(t) =
k∑

i=1

λe−λtxi(1− e−λt)xi−1

1−
(
1− e−λt

)xi
(33)

= kx
λe−λt(1− e−λt)x−1

1−
(
1− e−λt

)x when all xi have the same value x.(34)

(It is perhaps worth noting that, although great emphasis is placed on the two-

stage structure of this model — multiple serial systems, each comprised of multiple

parallel components — the serial systems have no effect on the hazard rate, but to

multiply it by a constant.)

It follows from (34) that

(35) lim
t→∞

h(t) = kλ.

This may also be understood in terms of a quasistationary distribution. Condi-

tioned on a given system surviving up to time t, as t becomes very large, the

number of components surviving in the system converges to 1 with high probabil-

ity. Since the systems are independent, we see that the distribution of the total

state converges to one wholly concentrated at (1, 1, . . . , 1), the state in which all

systems have one surviving component. From that state, clearly, the hazard rate is

kλ.

5. Initial distributions

When a mathematical model succeeds in reproducing target features of the em-

pirical data, it is natural to suppose that the model is correct in some significant

sense. But mortality models are generally too vague, and leave too much latitude to

arbitrary manipulation of parameters, to assign much significance to the resulting

mortality distributions. Moreover, researchers typically aim to match a particular
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formula only in a part of the life course, and this allows for arbitrary definition

of “small t” or “large t”. In one case, the Brownian motion with drift, we show

how a large class of mortality-time distributions, including all mixtures of gamma

distributions with certain bounds on their parameters, could be the exact outcome

of this model, if the initial distribution were chosen appropriately. In addition, any

distribution at all could appear for small t, to any desired degree of accuracy, if we

allow the drift b to be increased ad libitum.

5.1. Series-parallel model redux. As we intend to suggest that the freedom

to choose an initial distribution (or other arbitrary parameters of a model) could

create the impression of a model magically matching the empirical facts, it will

perhaps be useful to consider an example in which wishful thinking, combined with

loose application of initial distributions, have contrived a Gompertz curve out of

whole cloth. Here the computations which yield the desired hazard rates are wrong,

and would presumably quickly have been recognized as such if the result were not

otherwise so pleasing.

We return to the series-parallel model, which we described in section 4.5, and

begin by explaining how its inventors derived Gompertz hazard rates in [GG91]

and [GG01]. For t which are small in comparison with 1/λ — that is, times when

a typical component should still be functioning — we have the approximation to

first order in λt

h(t) ≈
k∑

i=1

xiλ
xitxi−1(36)

= kxλxtx−1 when all xi have the same value x.(37)

It would be tempting to meld (37) and (35), and so to imagine a hazard rate

which is initially Weibull — a power of t, that is — until it gradually flattens out

at a mortality plateau. The temptation becomes even greater when Gavrilov and

Gavrilova in [GG01] claim that by mixing these Weibull distributions with a Poisson

starting state — that is, letting the number of components initially functioning in

each system be independent Poisson random variables with common expectation µ

— the early hazard rate looks like

(38) h(t) ≈ k
∞∑

x=1

e−µµx

x!
xλxtx−1 = kλµeµ(λt−1),

which is the coveted Gompertz hazard rate.

Unfortunately, this depends on two significant errors. The approximation which

gives the Weibull hazard rate, is accurate only very close to t = 0, while the

asymptote is only relevant for large t. For intermediate values of t, the hazard rate
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Figure 1. Weibull hazard rates
(equation 36) with λ = 1, k = 1,
x = 4 (solid curve), and the ex-
act hazard rate for the series-parallel
model (equation 33) with the same
parameters (dots).
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Figure 2. Hazard rate (equation
40) for the series-parallel process
with k = 1, and λ = 1 (solid) or
λ = 2 (dots), started with the ini-
tial number of components having
a Poisson distribution with expecta-
tion µ = 1 (solid) or µ = 3 (dots),
conditioned on at least one working
component.

for this model is no more similar to the Weibull or Gompertz approximation than

many another curve might be. Once we have started with the assumption that eλt

is indistinguishable from 1 + λt, we cannot hope to make fine distinctions among

the various powers and exponentials of t. As an example, we plot in figure 1 the

correct hazard rate for λ = 1, k = 1, x = 4, together with the curve 4t3 (the Weibull

hazard rate for the same parameters). These curves are treated as interchangeable

in the Gavrilovs’s analysis, though they are clearly very different.

A more serious problem is the computation which underlies (38). A hazard rate

is h(t) = −F ′(t)/F (t), where F (t) = P
{
T > t

}
, and T is the failure time. If F (t)

depends on a random variable X (in this case, the number of initially functioning

components in a system), with P{T > t|X = x} = Fx(t) and P{X = x} = px, then

F (t) =
∑

x pxFx(t). We have then the hazard rate

h(t) = −
∑

x pxF
′
x(t)∑

x pxFx(t)
.
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On the other hand, the Gompertz hazard rate results from averaging the individual

hazard rates

−
∑

x

pk
F ′k(t)
Fk(t)

.

If we start from the approximation (36), and mix with the Poisson distribution, we

get

(39)
k

1− e−µ

∞∑
x=1

e−µµx

x!
xλ(λt)x−1 =

kλµ

eµ − 1
eµλt.

(The factor (1 − e−µ)−1 comes from the fact that we condition on there being at

least one working component at the beginning.)

As it happens, the exact hazard rate, when computed correctly, has a simple

form. The distribution function is[ ∞∑
x=1

e−µµx

x!(1− e−µ)
(
1−

(
1− e−λt

)x)]k

=

(
1− e−µe−λt

1− e−µ

)k

.

Thus, the hazard rate becomes

(40)
kµλe−λt

eµe−λt − 1
.

This is very different from an exponentially increasing function. Examples are

shown in figure 2. In particular, for µ smaller than about 1.8, the second derivative

at t = 0, given by the expression

λ2
(
e2 µ − 2 eµ + 1− 3µ e2 µ + 3µ eµ + µ2e2 µ + µ2eµ

)
(eµ − 1)3

is negative. Thus, the hazard rate is already concave at t = 0 for these values of µ.

This is not to say that no version of this model can generate anything remotely

like a Gompertz hazard rate. There are several parameters, offering ample scope

for cherry-picking. In particular, if we make λ very small, say .005, this will have

the effect of stretching the mortality curve out in time, creating the appearance of

a fairly constant linear growth. This makes the hazard rate extremely small, so we

can blow it up by choosing a very large value of k, such as 20000. We still have a

very compressed hazard rate: it seems exponential for the first 75 years or so, but

barely completes a single doubling in that time. This may be remedied by choosing

µ somewhat larger: say 15. The result may be seen on the left of figure 3.

It might be argued that the model ought to be applied in exactly this range

of parameters. However, as we have already pointed out, it is a frail defense for a

model, to say that it can be compelled to approximate a line by skillful manipulation
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Figure 3. Left: Natural logarithm of the hazard rate (equation

40) for the series-parallel process with k = 20000, λ = .005, and

µ = 15, conditioned on at least one working component. Right:
Natural logarithm of the Weibull hazard rate given in equation

(41).

of multiple parameters. The same may be achieved with the Weibull model. For

instance, if the hazard rate were given by

(41) (.0025t+ .77)20 ,

we get the log hazard shown on the right of figure 3. Merely matching the coarse

features of the hazard rate is well known to be only a weak success of a model. What

was promised here — erroneously — was an analytic derivation of the Gompertz

curve.

5.2. Brownian motion with drift. After introducing their model for arbitrary

intitial distributions of fitness, Weitz and Fraser carry out their computations only

for “homogeneous” populations; that is, with X0 a deterministic constant. Ander-

son constrains his model similarly. In fact, though, there is no obvious justification

for the starting condition to be deterministic. It turns out that the choice of start-

ing distribution is enough to realize almost any hitting-time distribution, up to an

error which can be made as small as you like, though at the expense of making the

limiting mortality rate larger. The results in this section are all proved in section 6
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To fix our conventions, we give the gamma density as

γr,β(x) = Γ(r)−1βrxr−1e−βx,

where the shape parameter r ≥ −1 and the scale parameter β is any positive

number. We remind the reader that a gamma random variable has expectation

r/β and variance r/β2. For r = 1, this is the exponential distribution, while large

values of r converge to the normal distribution.

If µ and µ∗ are probability distributions on R, we define the distance between

them to be

(42) d(µ, µ∗) = inf
X∼µ

X∗∼µ∗

E
∣∣X −X∗∣∣ = ∫ ∞

0

∣∣F (t)− F ∗(t)
∣∣dt,

where F and F ∗ are the corresponding distribution functions. (The infimum is

taken over X and X∗ with distribution µ and µ∗ respectively.) This means (see

[SW86]) that µ and µ∗ are close if
∫
f(x)µ(dx) and

∫
f(x)µ∗(dx) are close, whenever

f is a function which does not vary too rapidly (for example, |f ′| ≤ 1).

If µ is a probability distribution on [0,∞), σ a positive constant, and b a function,

we denote by νσ,b(µ) the distribution of the time when a Brownian motion started

in the distribution µ, with drift b and diffusion constant σ, first hits 0. We will also

write νσ,b(g) where g is a probability density. When σ is dropped from the notation,

it is implicitly assumed to be 1. We will call a distribution ν on R+ b-attainable if

there is a distribution µ such that ν = νb(µ). It is ε-approximately b-attainable if

there is a distribution µ such that d(ν, νb(µ)) < ε.

Note that the time of killing at 0 is unchanged by a linear rescaling of the space.

This implies that νσ,b(µ) = νb/σ(µ).

Our first result tells us that any target mortality-time distribution ν is ε-approximately

b/σ-attainable when σ is a sufficiently small rescaling factor.

Theorem 10. Suppose that ∞ is a natural boundary for the process. Assume, in

addition, that b is Lipschitz, bounded away from zero, and sublinear; that is, there

are positive constants α1 and α2 such that

(43) α1 ≤ −b(x) ≤ α2(1 + x),

and a constant L such that

(44)
∣∣b(x)− b(y)

∣∣ ≤ L|x− y| for all x, y ∈ R+.

Then for any probability distribution ν on R+ such that

(45)
∫ ∞

0

eα2z
√
zν(dz) <∞,
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and any positive ε, for every σ sufficiently small there exists a distribution µ on R+

such that d(ν, νb/σ(µ)) ≤ ε.

In particular, any potential exit-time distribution may be approximated from

some initial distribution, as long as the constant drift is made sufficiently large.

The rest of the results are specific to the case of constant drift.

We remind the reader of a few facts about Laplace transforms. If µ is a proba-

bility distribution on R+, its Laplace transform is the function

f(s) =
∫ ∞

0

e−szµ(dz).

have the same Laplace transform.

Theorem 11. Let b be a negative constant, and let ν be a probability distribution

on R+, with Laplace transform f . Then ν is b-representable if and only if

φ(s) := f

(
s2

2
− bs

)
is the Laplace transform of some distribution µ. This is equivalent to

bn/2c∑
j=0

(−1)j

(
n− j

j

)
4−j

(
1− b2 − 2r

(−b+ s)2

)j

ξn−j

(s2
2
− bs

)
> 0

∀s ∈ R+, n ∈ Z+,

(46)

where

ξk(s) := (−1)k (s+ r)k

k!
f (k)(s) > 0.

In that case, µ is the desired starting distribution.

This allows us to show, by direct computation, that a given distribution is not

b-attainable. For example, if we consider a logistic Gompertz distribution with

θ = r = a = 1, since the asymptotic hazard rate is 1, it could, in principle, be

b-attainable for any b ≤ −
√

2. But it is straightforward to compute that (46) is

negative for b = −
√

2, s = 0, n = 3. If we let b = −2, we get a negative sum for

s = 0 when n = 19.

On the other hand, Theorem 11 also allows us to show that a large class of

distributions is b-attainable.

Corollary 12. Let b be a fixed negative number. Any convex combination of gamma

distributions with scale parameter β ≤ b2/2 and arbitrary shape parameters, is b-

attainable.

In the constant-drift setting, we can give a simple bound on the error of approx-

imating a given distribution.
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Corollary 13. Let µ be any distribution on R+. For any fixed negative b there

exists a probability distribution µ∗ on R+ such that

(47)
∫ ∞

0

xνb(µ∗)(dx) =
∫ ∞

0

xµ(dx)

(that is, the two distributions define stopping times with the same expectation) and

(48) d
(
µ, νb(µ∗)

)
≤ |b|−1

√
2
∫ ∞

0

x1/2µ(dx).

As long as the drift is reasonably well behaved — in particular, if the drift is

constant — one could go even further, to show that the densities and the hazard

rates may also be made to converge to target functions. The details are not very

enlightening, though, so we leave them out. In addition, it may reasonably be crit-

icized, that this convergence as b→∞ is somewhat trivial, since it essentially just

means that as b grows large, the process behaves more and more like a determinis-

tic process. The target mortality is programmed into the distribution which slides

down the axis, with minimal stochastic perturbation. This criticism does not affect

Corollary 12, which tells us that a large class of killing-time distributions may be

attained with fixed drift.

6. Proofs of results from section 5.2

6.1. Proof of Theorem 10. Let

P (x) =
∫ x

0

dy

b(y)
,

µ∗ the push-forward of ν by P ; that is, for any A ⊂ R+, µ∗(A) = ν
(
P−1(A)

)
. Let

Wt be a single Brownian motion, and define X(σ)
t to be the strong solution to the

SDE

dXt = σdWt + b(Xt)dt

started in the distribution µ∗. The assumption that ∞ is a natural boundary

guarantees the existence of a strong solution[KS88, Theorem 2.9].

Let τ (σ) be the first time when X(σ)
t hits 0. Note that for σ > 0, the distribution

of τ (σ) is the same as the one we have denoted νb/σ(µ∗). The only randomness in

X(0) is the starting point, and it is easy to see that τ (0) has the distribution ν. We

need only to show that

lim
σ→0

d
(
τ (σ), τ (0)

)
= 0.

where the distance between the random variables is understood to be the distance

between their distributions. But for this it will suffice to show that

(49) lim
σ→0

E
∣∣τ (σ) − τ (0)

∣∣ = 0.
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Fix σ > 0, and let

Zt = X
(σ)
t −X

(0)
t .

Also, let Z∗t be a strong solution to

dZ∗t = σdWt + α2

(∣∣Z∗t ∣∣+ 1
)
dt,

with initial condition Z∗0 = Z0. Then Z∗ and Z have the same diffusion term, and

(by the Lipschitz condition) the drift of Z∗ is greater. Thus, by the comparison

theorem [KS88, Proposition 2.18] we see that Z∗t ≥ Zt for all 0 ≤ t ≤ T almost

surely. By Gronwall’s Lemma [DZ93, Lemma E.6], it follows that

(50) ζ := sup
{
Zt : 0 ≤ t ≤ τ (0)

}
≤ σeα2τ(0)

· sup
0≤t≤τ(0)

∣∣Wt

∣∣.
Since X(σ) is a diffusion with negative drift at least α1, and since X(σ)

τ(0) ≤ ζ, it

must be that

E
[(
τ (σ) − τ (0)

)+ ∣∣ ζ] ≤ ζ

α1
.

(That is, a diffusion with drift −α has an expected time of arrival at 0 no more than

α−1 times its starting point.) Thus the expected overhang of τ (σ) over τ (0) is no

more than α−1
1 times its distance from 0 when X(0) hits. Similarly, if τ (σ) ≤ τ (0),

it must be that X(0)

τ(σ) ≤ ζ. The difference between the hitting times is bounded by

E
∣∣τ (σ) − τ (0)

∣∣ ≤ 2 E ζ
α1

.

By (50), then, and using the reflection principle (see, for example, [KS88]) to see

that

E
[

sup
0≤t≤s

|Wt|
]

= 2E
[
|Ws|

]
= 4

√
s/
√

2π,

we see that

E
∣∣τ (σ) − τ (0)

∣∣ ≤ 4σ
α1

E
[√

τ (0)eα2τ(0)
]
.

By assumption (45) this is finite, and goes to 0 with σ.

6.2. Proof of Theorem 11. Suppose µ is a starting distribution such that νb(µ) =

ν, and call its Laplace transform g. For positive x, let τx be the time when a

Brownian motion with drift b < 0, started at x, first hits 0. Define for positive α,

ζα(x) := E
[
e−ατx

]
.

By the Feynman-Kac formula [RS90, 8.10b], ζ satisfies

(51)
1
2
ζ ′′α + bζ ′α = αζα,

with boundary conditions ζα(0) = 1 and ζα(∞) = 0. This yields

ζα(x) = exp
{
(−b−

√
b2 + 2α)x

}
.
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Since the hitting time from a start in distribution µ has distribution ν, it must be

that

f(α) =
∫ ∞

0

ζα(x)µ(dx) = g
(
b+

√
b2 + 2α

)
.

Thus for s positive,

φ(s) = f

(
s2

2
− bs

)
= g(s),

which is the Laplace transform of µ.

Now suppose that φ is the Laplace transform of a distribution µ. By the above

computation, if µ is the initial distribution, and we let ψ(α) be the Laplace trans-

form of the time of first hitting 0, we have

ψ(α) = φ
(
b+

√
b2 + 2α

)
= f(α).

Since the hitting time has the same Laplace transform as ν, they are the same

distribution.

By Theorem XIII.1.4. of [Fel71], φ is the Laplace transform of some probability

distribution if and only if limz→0 φ(z) = 1 and phi is totally monotone (meaning

that (−1)nφ(n)(s) is positive for all n and s; here φ(n) is the n-th derivative of φ.)

It is straightforward to show by induction that

φ(n)(s) =
n∑

k=dn/2e

n!
2n−k(2k − n)!(n− k)!

(s− b)2k−nf (k)

(
s2

2
− bs

)
.

A change of variables j = n− k shows then that the sum in (46) is precisely

(−1)n(n!)−1

(
s2

2
− bs+ r

)n

(−b+ s)−nφ(n)(s),

whose positivity for all s and n is the definition of φ being totally monotone, which

is equivalent to φ being the Laplace transform of some distribution.

6.3. Proof of Corollary 12. We begin by noting that any convex combination

of b-attainable distributions is also b-attainable, simply by starting from the cor-

responding convex combination of the starting distributions. Thus, we need only

show that all gamma distributions with exponential rate β ≤ b2/2 are b-attainable.

(It is also worth noting that any convolution of b-attainable distributions is also

b-attainable.)

The gamma distribution with parameters (r, β) has Laplace transform

f(s) = βr (β + s)−r
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Thus

f

(
s2

2
− bs

)
= βr

(
β +

s2

2
− bs

)−r

= (2β)r
(
s− b+

√
b2 − 2β

)−r (
s− b−

√
b2 − 2β

)−r

For β ≤ b2/2, the roots are real, so each of the two factors is the Laplace transform

of a gamma distribution. The product of two Laplace transforms is itself a Laplace

transform (of the convolution of the two distributions), which completes the proof.

6.4. Proof of Corollary 13. Let β =
√

2|b|. Define the kernel

(52) Kβ(x, y) = γβx,x(y),

and let

(53) g(y) :=
∫ ∞

0

Kβ(x, y)µ(dx).

Observe first that g is a probability density, since it is nonnegative and∫ ∞

0

g(y)dy =
∫ ∞

0

∫ ∞

0

Kβ(x, y)µ(dx)dy = 1

by changing the order of integration. Similarly, the expectation of µ∗ is∫ ∞

0

yg(y)dy =
∫ ∞

0

∫ ∞

0

yKβ(x, y)µ(dx)dy

=
∫ ∞

0

(∫ ∞

0

yKβ(x, y)dy
)
µ(dx)

=
∫ ∞

0

xµ(dx)

= ‖µ‖1.

Since g is a mixture of gamma densities with scale β = b2/2, we know from Corollary

12 that a distribution µ∗ exists such that νb(µ∗) has density g. It only remains then

to show that this distribution does indeed have the right distance from µ.

Let X be a random variable with distribution µ. Conditioned on X, let Y be

a random variable with a gamma distribution, with parameters (βX,X). Observe

that, conditioned onX, the random variable (X−Y ) has expectation 0 and standard

deviation
√
x/β. Then Y has density g(y) and

E
[
|X − Y |

]
= E

[
E[|X − Y |

∣∣X]
]

≤ E
[√

X/β
]
.
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