
-13.1-

Handout #13: Fractional factorial designs and orthogonal arrays

When the number of factors is large, it may be feasible to observe only a  fraction
of all the treatment combinations. Under such a fractional factorial design, not all
factorial effects can be estimated. In this handout, we introduce an important
combinatorial structure called orthogonal arrays, and describe how they can be used to
run factorial experiments. We discuss the estimability of factorial effects under an
orthogonal array, and show that when some effects are assumed to be negligible, other
effects become estimable and their estimates are uncorrelated. Several examples are
given to illustrate different types of orthogonal arrays, in particular, the distinction
between regular and nonregular designs. We briefly discuss Hadamard matrices, an
important class of nonregular designs, and also present a useful design construction
technique called foldover. In this and the next few handouts, we assume that the
experimental units are unstructured and the experiment is to be conduced with complete
randomization. Multi-stratum fractional factorial designs will be discussed in a later
handout.

13.1. Model for completely randomized factorial experiments

When the experimental units are unstructured, a factorial design can be specified
by the number of observations to be taken on each treatment combination.  For a design
. 8 ÐB ßâ ß B Ñ ÐB ßâ, let   be the number of observations on treatment combination . " 8 "

ß B â= Ñ ‚ " 8 ÐB ßâ ß B Ñ8 8 . " 8ÑX  and let  vector whose entries are the  's8. " be the Ð=
arranged in lexicographic order.  Then  is determined by where. 8 8 ". ..  We have , X œ R
R 8 ÐB ßâ ß B Ñ œ ! is the run size.  When   or 1, . " 8 8. can also be viewed as the indicator
function of the selected treatment combinations.

Let  be the  observed responses. Without loss of generality, we mayC ßâß C R" R  
assume that  are uncorrelated with constant variance, and if  is an observationC ßâß C C" R 3 
on the treatment combination  ÐB ßâ ß B" 8Ñ

X , then

E  ,ÐC Ñ œ  ÐB ßâ ß B Ñ3 " 8. α

where   is the effect of treatment combination  .  We have seenαÐB ßâ ß B Ñ ÐB ßâ ß B Ñ" 8 " 8

in Handout #9 how to parametrize   in terms of various factorial effects. InαÐB ßâ ß B Ñ" 8

general, let  mutually orthogonal: " : :! = "" =œ â =
" "â= 8â= "8 8

 and let ,  ,  be  X Xα α â=  "

treatment contrasts representing the factorial effects, with  being a -factor:X
3 α 5

interaction contrast if the entries of :3 only depend on the levels of  factors. Then  can5 α
be expressed as , where      and , ,T T " : :" "œ Ò ã ã â ã Ó œ Ð â Ñ " = = "" "â= " ! " â= 8 8

" ", , " X

with . " . " . " "3 ! ! !œ "l l:3
#:

X
3 α We shall absorb  into  and still denote . Then a full as 

model with all factorial effects present can be expressed as
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E (13.1.1)ÐC " \ \ TÑ œ  œ. X Xα ",

where Often some of the factorial effectsC is the  vector of observed responses. R ‚ "
are assumed to be negligible; then the associated terms are dropped from 13.1.1 . ThisÐ Ñ
leads to a linear model

E , (13.1.2)ÐC \ UÑ œ X "
~

where  is obtained from  by deleting the columns of  that correspond to negligibleU T T
factorial effects, and  is the subvector of  consisting of the nonnegligible effects~

" " Þ

 The contrasts , ,  can be constructed by using finite geometry or by"" â= â "= "" 8

the method as described in Theorem 9.6.3. In this Handout, we will use the latter method.
Then  is as in (9.6.18).  We follow the notation in (9.6.17) to write each T "3 as "D , where
D ;− W ‚â‚ W" 8.  L  .et be the column of corresponding to a nonnegligible D D  \ UX "
If the nonzero entries of  are , D D3" â D , , then the entry of corresponding to an35 ;D  
observation on the  as definedtreatment combination  is equal to ÐB ßâß B" 8 4œ"

5Ñ :X # 3
B ßD
4

3 34 4

in 9.6.12 .Ð Ñ

We define the  of two vectors  and Hadamard product B Cœ ÐB ßâß B Ñ œ" 8
X

ÐC ßâß C Ñ œ ÐB C ßâß B C Ñ" 8 " " 8 8
X X to be . Let B C ; ;? @ and be two different columns of 

\ UX 3 4, and  ? ß ß
" "
â ? @ â @ ,  and  ,  be the nonzero entries of  and , respectively.3 4< =

? @
Then  and  can be expressed as ; ;? @

; ; ;? / /œ â ?3" 3 3 3" << ,?

; ; ;@ / /œ â @ @4" 4 4 4" == ,

where the th entry of  is equal to 1, and all its other entries are zero; i.e., each column3 /3
corresponding to an interaction contrast is the Hadamard product of the relevant main-
effect columns. If each treatment combination is observed exactly once (that is, we have
one replicate of the  factorial), none of the factorial effects is negligible, and thecomplete
entries of  and are then  is the identity matrix andC \"  arranged in lexicographic order, X

U T \ U \ Uœ œ ÑT T T= = =" # 8
Œ ŒâŒ Ð.  In this case, the information matrix X X

X

œ U \ \ U U U T TX X X X
X X œ œ  is a diagonal matrix.  As a consequence, the least

squares estimates of the factorial effects are uncorrelated and can be calculated easily:
"D D

:
s œ Ð"l lD # : ÑXC.

A complete factorial experiment requires  runs. Cost and other practical= â=" 8

considerations often call for observing only a fraction of the treatment combinations.



-13.3-

Indeed if only a subset of the factorial effects are expected to be important, then
observing a fraction of the treatment combinations would be sufficient Under such a
fractional factorial design, not all the factorial effects are estimable. There are two
interesting issues.  Given a model where some of the factorial effects are assumed
negligible, under what designs can the nonnegligible effects be estimated?  Given a
fractional factorial design, what models can it entertain?  In the former question, one may
also ask, under what designs are the estimators of the nonnegligible effects uncorrelated?
In the next section, we introduce orthogonal arrays and provide some answers to this
question.

13.2 Orthogonal arrays

Orthogonal arrays were first introduced by Rao (1946, 1947) for the case where
all the factors have the same number of levels.  Such arrays will be referred to as
symmetric orthogonal arrays.  Rao (1973) extended the definition to also cover
a .  A useful reference is the booksymmetrical mixed-level  ( ) orthogonal arrays
"Orthogonal Arrays: Theory and Applications" by Hedayat, Sloane and Stufken,
Springer, 1999.

Definition 13.2.1.  An orthogonal array OA  is an  matrix withÐRß = ‚â‚ = ß >Ñ R ‚ 8" 8

= 3 Ÿ 3 Ÿ 8ß R ‚ >3 distinct symbols in the th column, 1  such that in each  submatrix, all
combinations of the symbols appear equally often as row vectors.  The positive integer >
is called the  of the orthogonal array.  If , then it is called astrength = œ â œ = œ =" 8

symmetric orthogonal array and is denoted as OA .ÐRß = ß >Ñ8

From the definition it follows immediately that if an OA  exists, then ÐRß = ß >Ñ R8

must be a multiple of .=>

An OA  can be used to define a factorial design of size  forÐRß = ‚â‚ = ß >Ñ R" 8

8 = ßâß = factors with  levels: each column corresponds to one factor and each row" 8

represents a treatment combination. The following result explains the role of the strength
and the utility of orthogonal arrays.

Theorem 13.2.2.  An orthogonal array of strength  ( ) can be used to estimate> œ #5 5   "
all the main-effect contrasts and all interaction contrasts involving up to  factors,5
assuming that all the interactions involving more than  factors are negligible. An5
orthogonal array of strength  ( ) can be used to estimate all the main-> œ #5  " 5   #
effect contrasts and all interaction contrasts involving up to  factors, assuming that5  "
all the interactions involving more than  factors are negligible. In both cases, all the5
estimators are uncorrelated.

Proof   . Suppose all the interactions involving more than  factors are negligible.  Let5
\ U \ UX X be the model matrix as in (13.1.2).  Then each column of  is a ; DD , where 
contains at most  nonzero entries.5
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Case 1. > œ #5 Ð Ñ Ð Ñ:  We claim that the information matrix  is a diagonal\ U \ UX X
X

matrix; then  is invertible and all the unknown parameters in the modelÐ Ñ Ð Ñ\ U \ UX X
X

are estimable with uncorrelated estimators.

 Let and  ; ;? @ and be two different columns of  ,  and  ,  \ UX 3 4, ? ß ß
" "
â ? @ â @3 4< =

be the nonzero entries of  and , respectively.  Then is equal to the sum of the? @ ; ; Ð Ñ? @X  
entries of    .  Since ; ; ; ; ; ;? @ / // / œ Ð â  Ñ  Ð â  Ñ?3 4" "3 4" 3 3 4 4< =< " =? @@ < = Ÿ 5, ,
<  = is no more than the strength of the orthogonal array.  Therefore each row of the
R ‚ Ð<  =Ñ Ò = = â= Î matrix  times;?

" # 8
3 4" "
/ // /3 4" 3 3 4 4< =< " =ãâ ã ã ãâã Ó R; ; ;? @@  is replicated 

in the  matrix   It follows thatÐ= = â= Ñ ‚ Ð<  =Ñ Ò Þ" # 8
?: 3 4" "

/ // /3 4" 3 3 4 4< =< " =ãâ ã ã ãâã: : :? @@ ]
Ð Ñ œ Ð Ñ œ !; ; : :? @ ? @X XR

= = â=" # 8
.

Case 2.  :  Partition as > œ #5  " Ò\ U YX " ã ÓY Y ;# ", where consists of all the 's whereD  
D Y ; ? contains at most  nonzero entries, and consists of all the 's where  contains5  " 2

?  
5 nonzero entries.  Then the information matrix for the effects involving up to 5  "
factors is equal to .  SY Y Y Y Y Y Y Y Y Y" " # # "" # # " "

X X X X X Ð Ñ imilar to the proof of case 1, 
is a diagonal matrix is, and .  Thus  Y Y ! Y Y Y Y Y Y Y Y Y Y" " " # # "# " # # " "

X X X X X Xœ  Ð Ñ œ
a diagonal matrix.   

In either case, the least squares estimators of the factorial effects of interest are
uncorrelated and can be calculated easily: ."D D

;
s œ Ð1l lD # ; ÑXC

For orthogonal arrays of odd strengths, one can prove a result somewhat stronger
than that in Theorem 13.2.2.  Under an OA of strength , we may not be able to#5  "
estimate all interaction contrasts involving  factors.  However, consider the model5
which contains all the main-effect contrasts, all interaction contrasts involving up to
5  " 5 factors, and all the -factor interaction contrasts .  In thisinvolving a factor given 
case, the information matrix  for all the nonnegligible effects is alsoÐ Ñ Ð Ñ\ U \ UX X

X

diagonal.  This is because, as in the proof of Theorem 13.2.2, each off-diagonal entry of
Ð Ñ Ð Ñ\ U \ UX X

X  is the sum of all the entries of the Hadamard product of relevant main-
effect columns of .  The total number of factors involved in each of these\ UX

Hadamard products is no more than , since a common factor is involved in all the#5  "
nonnegligible -factor interactions.  Then the same argument as in the proof of Theorem5
13.2.2 shows that all the off-diagonal entries of  are zero since theÐ Ñ Ð Ñ\ U \ UX X

X

strength of the array is .  We state this result in the following theorem.#5  "

Theorem 13.2.3.  An orthogonal array of strength  ( ) can be used to> œ #5  " 5  "
estimate all the main-effect contrasts, all interaction contrasts involving up to 5  "
factors, and all the -factor interaction contrasts involving a given factor, assuming that5
all the other interaction contrasts are negligible.
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By counting the numbers of degrees of freedom for the estimable orthogonal
treatment contrasts, from Theorem 13.2.2 and Theorem 13.2.3, we obtain the following
general lower bounds on the run sizes of orthogonal arrays due to Rao (1947).

Theorem 13.2.4. If there exists an OA , thenÐRß = ß >Ñ8

(i) for ;> œ #5ß R   Ð=  "Ñ�ˆ ‰
3œ!

5
8
3

3

(ii) for , .> œ #5  " R   Ð=  "Ñ  Ð=  "Ñ�ˆ ‰ ˆ ‰
3œ!

5"
8 8"
3 5"

3 5

The following result follows easily from Theorem 13.2.4.

Corollary 13.2.5.

(i) If there exists an OA , then .  In particular, if thereÐRß = ß #Ñ 8 Ÿ ÐR  "ÑÎÐ=  "Ñ8

exists an OA 2 , then .ÐRß ß #Ñ 8 Ÿ R  "8

(ii) If there exists an OA 2 3 , then .ÐRß ß Ñ 8 Ÿ RÎ#8

An orthogonal array achieving the bound in Corollary 13.2.5(i) can accommodate
the maximum possible number of factors for a given run size, and is called a saturated
orthogonal array of strength two.

13.3 Examples of orthogonal arrays

We list a few examples of orthogonal arrays.  The first three are symmetric two-
level arrays in which the two levels are denoted by 1 and .  The fourth is asymmetrical"
with seven three-level factors and one two-level factor.  The first two designs are
examples of the so called  fractional factorial designs, while the last two designsregular
are nonregular.  Regular designs are discussed in the next section and Handout #14.

Example 13.3.1. an OA :Ð)ß # ß #Ñ'

" " " " "
" " 

" "  "
" " " "

" " " "
"  " "

"  " "
" "

1
1 1 1 1

1 1 1
1 1

1 1
1 1 1

1 1 1
1 1 1 1

Ð Þ Þ"Ñ13 3
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Example 13.3.2 an OA :Ð"'ß # ß $Ñ)

" " " " " " " 
" " " " " " " "
" " " " " " " "
" " " " " " " "
" " " " " " " "
" " " " " " " "
" " " " " " " "
" " " " " " " "

" " " " " " " "
" " " " " " " "
" " " " " " " "

1

" " " " " " " "
" " " " " " " "
" " " " " " " "
" " " " " " " "
" " " " " " " "

Ð Þ Þ#Ñ13 3

Example 13.3.3. an OA :Ð"#ß # ß #Ñ""

" " " " " " " " " " "
" " " " " " " " " " "

" " " " " " " " " " "
" " " " " " " " " " "
" " " " " " " " " " "
" " " " " " " " " " "

" " " " " " " " " " "
" " " " " " " " " " "
" " " " " " " " " " "
" " " " " " " " " " "

" " " " " " " " " " "
" " " " " " " " " " "

Ð Þ Þ$Ñ13 3
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Example 3.3.4. an OA 2 3 :Ð")ß ‚ ß #Ñ(

! ! ! ! ! ! ! !
! ! " " " " " "
! ! # # # # # #
! " ! ! " " # #
! " " " # # ! !
! " # # ! ! " "
! # ! " ! # " #
! # " # " ! # !
! # # ! # " ! "
" ! ! # # " " !
" ! " ! ! # # "
" ! # " " ! ! #
" " ! " # ! # "
" " " # ! " ! #
" " # ! " # " !
" # ! # " # ! "
" # " ! # ! " #
" # # " ! " # !

Ð Þ Þ%Ñ13 3

13.4 Regular fractional factorial designs

The difference between regular and nonregular designs lies in their construction.
Design 13.3.1 is constructed in the following simple manner.  The first three columns in
this design consist of all the eight treatment combinations of the first three factors.
Column 4 is the Hadamard product of the first two columns, column 5 is the Hadamard
product of the second and third columns, and column 6 is the Hadamard product of the
first three columns.  If each row (treatment combination) is denoted by ,ÐB ßâ ß B Ñ" 6
where  or , then the eight treatment combinations in the design satisfyB œ " "3

B œ B B ß B œ B B B œ B B B Ð Þ Þ"Ñ% " # & # $ " # $ , . 13 46

In other words, since the design has 8  runs, we first write down all the combinationsœ #$

of three factors (in this case, factors 1, 2, and 3); these factors are called .basic factors
Then we use 13 4  to define three additional factors, called .Ð Þ Þ"Ñ added factors

Note that 13 4  is equivalent toÐ Þ Þ"Ñ

 ,  and . 13 4B B B œ " B B B œ " B B B B œ " Ð Þ Þ#Ñ" # % # $ & " # $ '
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If ,  and  are all equal to 1, then their products B B B B B B B B B B ÐB B B ÑÐB B B Ñ" # % # $ & " # $ ' " # % # $ &

œ B B B B ÐB B B ÑÐB B B B Ñ œ B B B ÐB B B ÑÐB B B B Ñ œ B B B" $ % & " # % " # $ $ % # $ & " # $ ' " & ', ,  and6 6
ÐB B B ÑÐB B B ÑÐB B B B Ñ œ B B B B" # % # $ & " # $ ' # % & ' are also equal to 1.  Thus the eight treatment
combinations in this fraction are solutions of the following system of equations

" œ B B B œ B B B œ B B B B œ B B B B œ B B B œ B B B œ B B B B" # % # $ & " # $ ' " $ % & $ % " & ' # % & '6 .

Ð Þ Þ$Ñ13 4

Suppose the two levels are represented by the two elements 0 and 1 of .™#

Specifically we replace 1 and  with 0 and 1, respectively.  Then 13 4  is equivalent" Ð Þ Þ#Ñ
to

B  B  B œ !ß B  B  B œ ! B  B  B  B œ ! Ð Þ Þ Ñ" # % # $ & " # $ ' and . 13 4 4

In other words, the eight treatment combinations in this fraction are the solutions of a
system of three independent linear equations. They are those in the principal block when
the 64 treatment combinations in a complete 2  factorial are divided into eight blocks of6

size eight by confounding the interactions of factors 1, 2, 4, factors 2, 3, 5 and factors 1,
2, 3, 6. These eight treatment combinations also constitute a three-dimensional subspace
of EG  when each treatment combination is considered as a point in EG .  InÐ'ß #Ñ Ð'ß #Ñ
general, when  is a prime or prime power, subspaces (or flats) of EG  are called= Ð8ß =Ñ
regular fractional factorial designs.  This implies that the run size of a regular design
must be a power of .  Construction and properties of regular designs will be discussed in=
more details in Handout #14.

13.5 Hadamard matrices

Design 13.3.3 can be constructed from a Hadamard matrix of order 12. A
Hadamard matrix of order  is an  matrix  of 1's and 's such thatR R ‚R "L

L L œ MX R R , 

where  is the identity matrix of order .  If we multiply all the entries in the same rowMR R
or the same column of a Hadamard matrix by , then the resulting matrix is still a"
Hadamard matrix.  Therefore, without loss of generality, we may assume that all the
entries in the first row and/or the first column of  are equal to 1.L

We have the following equivalence between a Hadamard matrix of order  andR
an OA .ÐRß # ß #ÑR"

Theorem 13.5.1.  Suppose  is a Hadamard matrix of order  such that all theL R  #
entries in the first column are equal to 1.  Then the matrix obtained by deleting the first
column of  is an OA .  Conversely, adding a column of 1's to anL ÐRß # ß #ÑR"

OA  results in a Hadamard matrix of order .ÐRß # ß #Ñ RR"
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Proof.  It is trivial that an OA  supplemented by a column of 1's is aÐRß # ß #ÑR"

Hadamard matrix.  Thus it is enough to prove the converse.  Suppose  is a HadamardL
matrix such that all the entries in the first column are equal to 1.  Let 23 "3œ Ò2 ßâß 2 ÓR3

X

and , where  and .2 L4 "4œ Ò2 ß 3 Á "ß 4 Á " 3 Á 4âß 2 Ó 3 4R4
X  be the th and th columns of 

We need to show that each of  and  appears Ð"ß "Ñß Ð"ß "Ñß Ð"ß "Ñ Ð  "ß"Ñ RÎ%
times among the  pairs  appears  times, R Ð2 ß 2 Ñß Ð"ß "Ñ + Ð"ß"3 "4 âß Ð2 ß 2 ÑR3 R4 . Suppose 
"Ñ , Ð"ß "Ñ - Ð"ß "Ñ . appears  times,  appears  times, and  appears  times.  Then
s  is orthogonal to , and they are both orthogonal to the column of 1's, we haveince 2 23 4

+  ,  -  . œ Rß

+  ,  -  . œ !ß

+  ,  -  . œ !ß

and

+  ,  -  . œ !.

Solving these equations, we have .    + œ , œ - œ .

We shall call an OA  constructed from a Hadamard matrix of order ÐRß # ß #Ñ RR"

as described in Theorem 13.5.1 a Hadamard design.  Design 13.3.3 can be obtained by
deleting a column of 1's from a Hadamard matrix of order 12.  In view of Corollary
13.2.5, all Hadamard designs are saturated.

An immediate consequence of Theorem 13.5.1 is that if there exists a Hadamard
matrix of order , then  must be a multiple of 4. Hadamard designs are not regularR  # R
when  is  isR R not a power of 2; when  a power of 2, they may or may not be regular.

The following are Hadamard matrices of orders 1 and 2:

T" œ Ò"Ó,

T# œ
" "
" "” •.

It has been conjectured that a Hadamard matrix of order  exists for every  that is aR R
multiple of 4   This is called the .Þ Hadamard conjecture

It is easy to see that if  and are Hadamard matrices of orders  and ,L O  7 8
respectively, then the Kronecker product  is a Hadamard matrix of order .L OŒ 78
Applying this result to  repeatedly, we conclude that there exists a Hadamard matrix ofT#

order 2  for every positive integer .8 8
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Remark 13.5.2. As shown in Section 9.6 in Handout #9, the columns of the -2  8  " 8
fold Kronecker product

” • ” •" " " "
" " " "

Œ Œâ ,

except the first one, constitute an orthogonal basis of ‘#8 ‹ K0, representing the various
factorial effects in a 2  complete factorial.  Notice that the Hadamard design obtained by8

deleting the first column of  the array” • ” • ” •" " " " " "
" " " " " "

Œ Œ  is the same as

in 9 3  after the seven columns of the array are rearranged in the lexicographic orderÐ Þ'Þ Ñ
(1, 2, 12, 3, 13, 23, 123).  In fact, the regular fractional factorial design in Example 13.3.1
consists of six of these seven columns.  It can be seen from 13 4  that the constructionÐ Þ Þ"Ñ
of this design amounts to using interaction contrasts of the basic factors to define the
added factors.  This construction will be treated in more details in Handout #14.

Although the Hadamard conjecture has not been proved, so far no
counterexamples have been found, and Hadamard matrices have been constructed for
many orders that are multiples of four. This provides more flexibility than regular designs
in terms of the run sizes.  Plackett and Burman (1946) were the first to propose the use of
Hadamard designs in factorial experiments. The Hadamard designs constructed in their
paper are referred to as .Plackett-Burman designs

A method of constructing Hadamard matrices used by Plackett and Burman was
due to Paley (1933). Suppose  is a multiple of 4 such that  is an odd primeR R  "
power.  Let  and let  denote the elements of .  Define; œ R  " œ !ß ß KJÐ;Ñα α α" # ;â ß
a function   by; À KJÐ;Ñ Ä Ö!ß "ß "×

; "
"
"Ð Ñ œ

" œ C C − KJÐ;Ñß
! œ
"

Ú
ÛÜ

,    if  for some 
,    if 0,

, otherwise. 

#

Let  for ,E be the  matrix , where , and; ‚ ; Ò+ Ó + œ â ß ;34 34 ; α αÐ  Ñ 3 4 œ "ß #ß3 4

T
"

" E MR
;

; ;
œ ß Ð Þ "Ñ

" 

” •X

13 5.

where  is the 1 vector of 1's and  is the identity matrix of order .  " M T; ; R; ‚ ; Then  is a
Hadamard matrix.  For a proof see Hedayat, Sloane and Stufken (1999).  We shall call
the OA  obtained by deleting the first column of 13 5  the  ofÐRß # ß #Ñ Ð Þ Þ"ÑR" Paley design
order .R

There is also a connection between Hadamard matrices and balanced incomplete
block designs (BIBD). Suppose  is a Hadamard matrix of order .  Without loss ofL R
generality, assume that all the entries in the first row and first column of  are equal toL
1.  Delete the first row and first column from ; then we have an L   ÐR  "Ñ ‚ ÐR  "Ñ
matrix  of 1's and 's.  Define a block design  with  treatments and L‡ " . R  " R  "
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blocks such that the th treatment appears in the  th block once if the th entry of 3 4 Ð3ß 4Ñ L‡

is equal to 1; otherwise, it does not appear. Then  is a balanced incomplete block design..
The block size is  since there are  1's in each column of .RÎ#  " RÎ#  " L‡

Conversely, given a balanced incomplete block design  with  treatments and. R  "
R  " RÎ#  " ÐR  "Ñ ‚ ÐR  "Ñ blocks of size , write down an   incidence matrix L‡

of 1's and 's such that the th entry of  is equal to 1 if and only if the th" Ð3ß 4Ñ 3L‡

treatment appears in the th block of .  Supplement  by a row and column of 1's; then4 . L‡

we obtain an  matrix which can be shown to be a Hadamard matrix.R ‚R

For example, the OA 2  displayed in 13 3  can be constructed byÐ"#ß ß #Ñ Ð Þ Þ$Ñ""

applying the method described in the previous paragraph to a balanced incomplete block
design with 11 treatments and 11 blocks of size 5. The first 11 rows of the array come
from the incidence matrix of the BIBD which can be developed from the initial block
Ö"ß $ß %ß &ß *× in a cyclic manner.  Thus the associated incidence matrix is a circulant
matrix.  One row of 1's is then added at the bottom to produce an orthogonal array.  If we
also add a column of 1's, then a Hadamard matrix of order 12 is obtained.

13.6 Foldover designs

The orthogonal array displayed in 13 3  has strength three.  One can see thatÐ Þ Þ#Ñ
the first eight rows of this design constitute the Hadamard matrix

” • ” • ” •" " " " " "
" " " " " "

Œ Œ Ð)ß ß #Ñ Ð Þ'Þ Ñ , which is also the OA 2  in 9 3(

supplemented by a column of 1's after the other columns are rearranged in lexicographic
order.  The last eight rows of array 13 3  are obtained from the first eight rows byÐ Þ Þ#Ñ
interchanging the two levels.  We say that array 13 3  is the  of (theÐ Þ Þ#Ñ foldover
rearranged) array 9 3 .  In general, given an OA  where the two levels areÐ Þ'Þ Ñ ÐRß # ß >Ñ8 \ 
represented by 1 and , the following array is called the foldover of :" \

\
~ , 13 6œ Ð Þ Þ"Ñ” •1 \

" \ 

where  is the  vector of 1's.  The foldover design is of size 2  and has  two-1 R ‚ " R 8  "
level factors Compared with the original design, one factor is added and the run size is
doubled.

The method of foldover was first proposed by Box and Wilson (1951) for regular
fractional factorial designs. The following result for general two-level orthogonal arrays
is due to Seiden and Zemach (1966).

Theorem 13.6.1. The foldover of a two-level orthogonal array of even strength  has>
strength .>  "

Theorem 13.6.1 follows from the following lemma.
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Lemma 13.6.2. Suppose  is an OA 2  with 1 in which the two levels\ ÐRß ß >Ñ 8   > 8

are denoted by 1 and .  Let  be an  submatrix of .  Then there exist" R ‚ Ð>  "Ñ] \
two nonnegative integers  and  with  such that all the vectors ,α " α " œ RÎ# œ ÐB>

"B
B â B Ñ B B â B œ B œ # >" " # >" 3,  ,  with   1, where 1 or 1, appear  times as row vectorsα
of , and each of those with    1 appears  times.] B B â B œ " # >" "

Proof.  For each  with  or , let  be the number of times B B Bœ ÐB ß B œ " " 0Ð Ñ" 3âß B Ñ>"

appears as row vectors of . Then since  has strength , we have] \ >

0ÐB ß B ß" "âß B ß B Ñ  0Ð âß B ßB Ñ œ> >" > >" -.

Also,

0ÐB ß B ß" "âß  B ßB Ñ  0Ð âß B ßB Ñ œ> >" > >" -.

It follows from these two equations that 0Ð âß B ß B Ñ œ 0Ð âßB ßB ÑB ß B ß" "> >" > >" .
Repeating the same argument, we see that any two rows  and  differing in an evenB C
number of components appear the same number of times as row vectors of .  Thus all]
the vectors , ,  ,  with   1 appear the same number ofB œ ÐB B â B Ñ B B â B œ" # >" " # >"

times, say  times, as row vectors of , and each of those with    1 alsoα ] B B â B œ " # >"

appears the same number of times, say  times.  Since  has strength , we have" \ >
α " œ RÎ#>.    

Now we prove Theorem 13.6.1.  Let  be an OA 2 , where  is even, and\ ÐRß ß >Ñ >8

let  be a 2  submatrix of .  If  contains the first column of  as~ ~ ~ ~
] \ ] \R ‚ Ð>  "Ñ  

displayed in 13.6.1 , then since  has strength , it is clear that all the -tuples ofÐ Ñ > Ð>  "Ñ\
1's and 's appear the same number of times as row vectors of .  Suppose~

" ]

]
]
]

~ ,œ
” •

where  is an  submatrix of .  Then by Lemma 13.6.2, there exists a] \ R ‚ Ð>  "Ñ
nonnegative integer  such that each , ,  ,  appears either  orα αB œ ÐB B â B Ñ" # >"

RÎ#  >  " > α α times as a row vector of .  Since  is odd, if appears  times, then ] B B 
must appear  times.  It follows that if appears  times in , then it appearsRÎ# > α αB ] 
RÎ#    ÐRÎ#  Ñ œ RÎ#> > >α α α times in and thus appears   times in .  ~

] ], 

It is also clear from the above proof why the foldover method does not increase
the strength when it is applied to an orthogonal array of odd strength.

Corollary 13.2.5 shows that an OA  must have  and anÐRß # ß #Ñ R   8  "8

OA 3  must have 2 .   It follows from Theorem 13.6.1 that the foldover of aÐRß # ß Ñ R   88

saturated two-level orthogonal array of strength two achieves the lower bound on the run
size of an orthogonal array of strength three.


