Handout #13: Fractional factorial designs and orthogonal arrays

When the number of factors is large, it may be feasible to observe only a fraction
of all the treatment combinations. Under such a fractional factorial design, not all
factorial effects can be estimated. In this handout, we introduce an important
combinatorial structure called orthogonal arrays, and describe how they can be used to
run factorial experiments. We discuss the estimability of factorial effects under an
orthogonal array, and show that when some effects are assumed to be negligible, other
effects become estimable and their estimates are uncorrelated. Several examples are
given to illustrate different types of orthogonal arrays, in particular, the distinction
between regular and nonregular designs. We briefly discuss Hadamard matrices, an
important class of nonregular designs, and also present a useful design construction
technique called foldover. In this and the next few handouts, we assume that the
experimental units are unstructured and the experiment is to be conduced with complete
randomization. Multi-stratum fractional factorial designs will be discussed in a later
handout.

13.1. Model for completely randomized factorial experiments

When the experimental units are unstructured, a factorial design can be specified
by the number of observations to be taken on each treatment combination. For a design
d, let ny(xy,--- ,x,) be the number of observations on treatment combination (z,---
,x,)" and let n; be the (s;---s,) x 1 vector whose entries are the ng(xy, -+ ,x,)'s
arranged in lexicographic order. Then d is determined by ;. We have ;1 = N, where
N is the run size. When ng(z1,---,2,) = 0 or 1, iy can also be viewed as the indicator
function of the selected treatment combinations.

Let y1,---,yn be the IV observed responses. Without loss of generality, we may

assume that v, -- -, y are uncorrelated with constant variance, and if y; is an observation
on the treatment combination (z,--- ,x,)", then

E(yi) = p+ afxy, -+, 2,),

where a(zq,--- ,x,) is the effect of treatment combination (z1,--- ,x,). We have seen
in Handout #9 how to parametrize o(xy,--- ,z,) in terms of various factorial effects. In
general, let py = 1,,..,, and let piev, ---, p] ., e be s;---s, — 1 mutually orthogonal

treatment contrasts representing the factorial effects, with p/a being a k-factor
interaction contrast if the entries of p, only depend on the levels of k factors. Then o can
be expressed as P@, where P = [1:p,:---:p, . ]and B = (Bo, Br, - Bsy-oos,-1)"

with 3; = szra. We shall absorb p into 3, and still denote 1 + 3, as (. Then a full

model with all factorial effects present can be expressed as
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E(y) = ul + Xra = X PP, (13.1.1)

where y is the V x 1 vector of observed responses. Often some of the factorial effects
are assumed to be negligible; then the associated terms are dropped from (13.1.1). This
leads to a linear model

E(y) = XrQB, (13.1.2)

where Q is obtained from P by deleting the columns of P that correspond to negligible
factorial effects, and 3 is the subvector of 3 consisting of the nonnegligible effects.

The contrasts 3, ---, 5s,...s,—1 can be constructed by using finite geometry or by
the method as described in Theorem 9.6.3. In this Handout, we will use the latter method.
Then P isasin (9.6.18). We follow the notation in (9.6.17) to write each ; as 3%, where
z €S x---xS,. Let g* be the column of X @ corresponding to a nonnegligible 5%.
If the nonzero entries of z are z;, ---, z;,, then the entry of g corresponding to an

observation on the treatment combination (xy,---, x,)" is equal to Hlepfgw,zu as defined
in (9.6.12).

We define the Hadamard product of two vectors = = (z1,---,2,)" and y =
(y1, - yn) tobe z ©y = (z1y1, -, Toyn)’. Let g and g be two different columns of
XrQ, and w;,,---, u;, and v;,, ---, v;, be the nonzero entries of » and v, respectively.
Then ¢g* and g* can be expressed as

q’LL — quile“ @ .. @ qurej,.1

qv — qvjlefl @ e @ qvjsej,q’

where the ith entry of e; is equal to 1, and all its other entries are zero; i.e., each column
corresponding to an interaction contrast is the Hadamard product of the relevant main-
effect columns. If each treatment combination is observed exactly once (that is, we have
one replicate of the complete factorial), none of the factorial effects is negligible, and the
entries of y and 3 are arranged in lexicographic order, then X is the identity matrix and
Q=P=P, P, ® -®P,. Inthis case, the information matrix (X,Q)" XrQ
=Q" X[ XrQ =Q"Q = P"P is a diagonal matrix. As a consequence, the least
squares estimates of the factorial effects are uncorrelated and can be calculated easily:

P = @)y

A complete factorial experiment requires s;---s, runs. Cost and other practical
considerations often call for observing only a fraction of the treatment combinations.
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Indeed if only a subset of the factorial effects are expected to be important, then
observing a fraction of the treatment combinations would be sufficient Under such a
fractional factorial design, not all the factorial effects are estimable. There are two
interesting issues. Given a model where some of the factorial effects are assumed
negligible, under what designs can the nonnegligible effects be estimated? Given a
fractional factorial design, what models can it entertain? In the former question, one may
also ask, under what designs are the estimators of the nonnegligible effects uncorrelated?
In the next section, we introduce orthogonal arrays and provide some answers to this
question.

13.2 Orthogonal arrays

Orthogonal arrays were first introduced by Rao (1946, 1947) for the case where
all the factors have the same number of levels. Such arrays will be referred to as
symmetric orthogonal arrays. Rao (1973) extended the definition to also cover
asymmetrical (mixed-level) orthogonal arrays. A useful reference is the book
"Orthogonal Arrays: Theory and Applications” by Hedayat, Sloane and Stufken,
Springer, 1999.

Definition 13.2.1. An orthogonal array OA(NV, s; X «-+ X sp,,t) isan N x n matrix with
s; distinct symbols in the ith column, 1 < < n, such that in each N x t submatrix, all
combinations of the symbols appear equally often as row vectors. The positive integer ¢
is called the strength of the orthogonal array. If s; =--- = s, = s, then it is called a
symmetric orthogonal array and is denoted as OA(N, s", t).

From the definition it follows immediately that if an OA(N, s™, t) exists, then N
must be a multiple of s'.

An OA(N,s1 X «++ X s,,t) can be used to define a factorial design of size N for
n factors with sq,---, s, levels: each column corresponds to one factor and each row
represents a treatment combination. The following result explains the role of the strength
and the utility of orthogonal arrays.

Theorem 13.2.2. An orthogonal array of strength ¢ = 2k (k > 1) can be used to estimate
all the main-effect contrasts and all interaction contrasts involving up to £ factors,
assuming that all the interactions involving more than k factors are negligible. An
orthogonal array of strength ¢t = 2k — 1 (k > 2) can be used to estimate all the main-
effect contrasts and all interaction contrasts involving up to & — 1 factors, assuming that
all the interactions involving more than & factors are negligible. In both cases, all the
estimators are uncorrelated.

Proof. Suppose all the interactions involving more than k factors are negligible. Let

X Q@ be the model matrix as in (13.1.2). Then each column of X;Q is a g, where z
contains at most k£ nonzero entries.
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Case 1. t = 2k: We claim that the information matrix (X,Q)"(XrQ) is a diagonal
matrix; then (X7Q)" (X7r@Q) is invertible and all the unknown parameters in the model
are estimable with uncorrelated estimators.

Let g* and g” be two different columns of XQ, and w;,, -+, w;, and v, -+, vj,
be the nonzero entries of w and v, respectively. Then (g*)"g" is equal to the sum of the
entries of g% ® q¥ = (quileil OEO) q“frefr) ® (q%en OO qvjsej,s)_ Since r, s <k,
r 4+ s is no more than the strength of the orthogonal array. Therefore each row of the
N X (r + s) matrix [g"1®1 ... g"rcir 1 gUn®int...iq"s%s] is replicated s1s9---s, /N times
in the (3132. . ‘Sn) X (7» + S) matrix [puz']eu L.l lpti€ic DpUaCint .. ipliseis], It follows that
(qu)Tqv — 5152N-~~s" (pu)Tpv =0.

Case 2. t = 2k — 1: Partition X;Q as [U;:U,|, where U, consists of all the g*'s where
z contains at most k& — 1 nonzero entries, and U, consists of all the g*'s where w contains
k nonzero entries. Then the information matrix for the effects involving up to £ — 1
factors is equal to U U, — U U,(U, U,) U, U;. Similar to the proof of case 1, U] U,
is a diagonal matrix, and U/ U, = 0. Thus U U, — U] U,(U,SU,) U, U, = U{'Uj is
a diagonal matrix. [

In either case, the least squares estimators of the factorial effects of interest are

uncorrelated and can be calculated easily: 37 = —L (@®)"y.

- 2
lg=|l

For orthogonal arrays of odd strengths, one can prove a result somewhat stronger
than that in Theorem 13.2.2. Under an OA of strength 2k — 1, we may not be able to
estimate all interaction contrasts involving & factors. However, consider the model
which contains all the main-effect contrasts, all interaction contrasts involving up to
k — 1 factors, and all the k-factor interaction contrasts involving a given factor. In this
case, the information matrix (X;Q)" (Xr@Q) for all the nonnegligible effects is also
diagonal. This is because, as in the proof of Theorem 13.2.2, each off-diagonal entry of
(X7Q)" (XrQ) is the sum of all the entries of the Hadamard product of relevant main-
effect columns of X;Q. The total number of factors involved in each of these
Hadamard products is no more than 2k — 1, since a common factor is involved in all the
nonnegligible k-factor interactions. Then the same argument as in the proof of Theorem
13.2.2 shows that all the off-diagonal entries of (X7Q)" (XrQ) are zero since the
strength of the array is 2k — 1. We state this result in the following theorem.

Theorem 13.2.3. An orthogonal array of strength ¢t = 2k — 1 (k > 1) can be used to
estimate all the main-effect contrasts,all interaction contrasts involving up to £ —1
factors, and all the k-factor interaction contrasts involving a given factor, assuming that
all the other interaction contrasts are negligible.
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By counting the numbers of degrees of freedom for the estimable orthogonal
treatment contrasts, from Theorem 13.2.2 and Theorem 13.2.3, we obtain the following
general lower bounds on the run sizes of orthogonal arrays due to Rao (1947).

Theorem 13.2.4. If there exists an OA(N, s", t), then
k

(i) fort =2k, N > > (") (s — 1)’;
1=0

(iiyfort=2k—1, N 22(?)(3 — 1)+ (7)) (s = Dk,

The following result follows easily from Theorem 13.2.4.
Corollary 13.2.5.

(i) If there exists an OA(NV,s",2), then n < (N —1)/(s—1). In particular, if there
exists an OA(N,2",2),thenn < N — 1.

(i) If there exists an OA(N,2",3), thenn < N /2.

An orthogonal array achieving the bound in Corollary 13.2.5(i) can accommodate
the maximum possible number of factors for a given run size, and is called a saturated
orthogonal array of strength two.

13.3 Examples of orthogonal arrays

We list a few examples of orthogonal arrays. The first three are symmetric two-
level arrays in which the two levels are denoted by 1 and —1. The fourth is asymmetrical
with seven three-level factors and one two-level factor. The first two designs are
examples of the so called regular fractional factorial designs, while the last two designs
are nonregular. Regular designs are discussed in the next section and Handout #14.

Example 13.3.1. an OA(8, 2%, 2):

-1 -1 -1 1 1 -1
1 -1 -1 -1 1 1
-1 1 -1 -1 -1 1
1 1 -1 1 -1 -1

-1 -1 1 1 -1 1 (13:3.1)
1 -1 1 -1 -1 -1
-1 1 1 -1 1 -1
1 1 1 1 1 1
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Example 13.3.2 an OA(16, 28, 3):
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(13.3.2)
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Example 13.3.3. an OA(12, 21, 2):
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(13.3.3)
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Example 3.3.4. an OA(18,2 x 37,2):

000 0 0 O0O0O0
0 0111111
0 0 2 2 2 2 2 2
01 00 1 1 2 2
01 11 2 2 00
01 2 2 0011
0 2010 2 1 2
021210 20
0 22 0 2101
10 0 2 2 1 1 0 (13.:34)
1 0100 2 21
10 2 1 1 0 0 2
11 01 2 0 2 1
111 2 0 1 0 2
112 01 2 1 0
1 2 0 2 1 2 01
121 0 2 0 1 2
12 2 1 01 2 0

13.4 Regular fractional factorial designs

The difference between regular and nonregular designs lies in their construction.
Design 13.3.1 is constructed in the following simple manner. The first three columns in
this design consist of all the eight treatment combinations of the first three factors.
Column 4 is the Hadamard product of the first two columns, column 5 is the Hadamard
product of the second and third columns, and column 6 is the Hadamard product of the
first three columns. If each row (treatment combination) is denoted by (xy,---,xs),
where z; = 1 or —1, then the eight treatment combinations in the design satisfy

Ty = T1X2, T5 = Tox3, Te = T1T2T3. (13.4.1)

In other words, since the design has 8 = 23 runs, we first write down all the combinations
of three factors (in this case, factors 1, 2, and 3); these factors are called basic factors.
Then we use (13.4.1) to define three additional factors, called added factors.

Note that (13.4.1) is equivalent to

T1x9xy = 1, Toxzxs = 1 and T1Toxr3xs = 1. (1342)

-13.7-



If x12914, Towsxs aNd x1 x93 are all equal to 1, then their products (z1xex4)(zoxsxs)
= r12324T5,  (T12224)(T12023%6) = X3xT4Te, (Tox3T5)(T1T97376) = T1257¢  and
(:L‘1332$4)($2$3$5)($1$2$3$6) = ToXT4T5T¢g aAlC also equal to 1. Thus the eight treatment
combinations in this fraction are solutions of the following system of equations

1= T1T9X4 = XX 3Ty — T1X2X3LG — T1X3LAL; — 3T 4Te — L1X 5L — ToLAT5TG-

(13.4.3)

Suppose the two levels are represented by the two elements 0 and 1 of Z.
Specifically we replace 1 and —1 with 0 and 1, respectively. Then (13.4.2) is equivalent
to

w1+x2+x420,x2+w3+x5:Oandm1+x2+az3+x620. (1344)

In other words, the eight treatment combinations in this fraction are the solutions of a
system of three independent linear equations. They are those in the principal block when
the 64 treatment combinations in a complete 28 factorial are divided into eight blocks of
size eight by confounding the interactions of factors 1, 2, 4, factors 2, 3, 5 and factors 1,
2, 3, 6. These eight treatment combinations also constitute a three-dimensional subspace
of EG(6,2) when each treatment combination is considered as a point in EG(6,2). In
general, when s is a prime or prime power, subspaces (or flats) of EG(n, s) are called
regular fractional factorial designs. This implies that the run size of a regular design
must be a power of s. Construction and properties of regular designs will be discussed in
more details in Handout #14.

13.5 Hadamard matrices

Design 13.3.3 can be constructed from a Hadamard matrix of order 12. A
Hadamard matrix of order IV isan NV x N matrix H of 1's and —1's such that

H"H = N1y,

where Iy is the identity matrix of order V. If we multiply all the entries in the same row
or the same column of a Hadamard matrix by —1, then the resulting matrix is still a
Hadamard matrix. Therefore, without loss of generality, we may assume that all the
entries in the first row and/or the first column of H are equal to 1.

We have the following equivalence between a Hadamard matrix of order N and
an OA(N,2V-12).

Theorem 13.5.1. Suppose H is a Hadamard matrix of order NV > 2 such that all the
entries in the first column are equal to 1. Then the matrix obtained by deleting the first
column of H is an OA(N,2"~1 2). Conversely, adding a column of 1's to an
OA(N, 2V=1 2) results in a Hadamard matrix of order N.
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Proof. It is trivial that an OA(NV,2Y~1 2) supplemented by a column of 1's is a
Hadamard matrix. Thus it is enough to prove the converse. Suppose H is a Hadamard
matrix such that all the entries in the first column are equal to 1. Let h; = [hys, -+, havi]”
and h; = [hyj,---, hx;]" be the ith and jth columns of H, where i # 1, j # 1 and i # j.
We need to show that each of (1, 1), (1, —1), (=1, 1) and (—1,—1) appears N /4
times among the N pairs (hi;, hi;), -+, (hni, haj). Suppose (1, 1) appears a times, (1,
—1) appears b times, (—1, 1) appears ¢ times, and (—1, —1) appears d times. Then
since h; is orthogonal to A;, and they are both orthogonal to the column of 1's, we have

a+b+c+d=N,
a+b—c—d=0,

a—b+c—d=0,
and
a—b—c+d=0.

Solving these equations, we havea =b=c=d. U

We shall call an OA(V, 2¥ -1, 2) constructed from a Hadamard matrix of order N
as described in Theorem 13.5.1 a Hadamard design. Design 13.3.3 can be obtained by
deleting a column of 1's from a Hadamard matrix of order 12. In view of Corollary
13.2.5, all Hadamard designs are saturated.

An immediate consequence of Theorem 13.5.1 is that if there exists a Hadamard
matrix of order NV > 2, then N must be a multiple of 4. Hadamard designs are not regular
when N is not a power of 2; when NV is a power of 2, they may or may not be regular.

The following are Hadamard matrices of orders 1 and 2:

1 1
P, = [1 _1} .
It has been conjectured that a Hadamard matrix of order N exists for every N that is a
multiple of 4. This is called the Hadamard conjecture.

It is easy to see that if H and K are Hadamard matrices of orders m and n,
respectively, then the Kronecker product H ® K is a Hadamard matrix of order mn.
Applying this result to P, repeatedly, we conclude that there exists a Hadamard matrix of
order 2" for every positive integer n.
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Remark 13.5.2. As shown in Section 9.6 in Handout #9, the 2" — 1 columns of the n-

fold Kronecker product
1 -1 - 1 -1
1 1 1 1’

except the first one, constitute an orthogonal basis of R?" © Gy, representing the various
factorial effects in a 2" complete factorial. Notice that the Hadamard design obtained by

deleting the first column of “ _” ® H _ﬂ ® “ _1] is the same as the array

in (9.6.3) after the seven columns of the array are rearranged in the lexicographic order
(1, 2,12, 3, 13, 23, 123). In fact, the regular fractional factorial design in Example 13.3.1
consists of six of these seven columns. It can be seen from (13.4.1) that the construction
of this design amounts to using interaction contrasts of the basic factors to define the
added factors. This construction will be treated in more details in Handout #14.

Although the Hadamard conjecture has not been proved, so far no
counterexamples have been found, and Hadamard matrices have been constructed for
many orders that are multiples of four. This provides more flexibility than regular designs
in terms of the run sizes. Plackett and Burman (1946) were the first to propose the use of
Hadamard designs in factorial experiments. The Hadamard designs constructed in their
paper are referred to as Plackett-Burman designs.

A method of constructing Hadamard matrices used by Plackett and Burman was
due to Paley (1933). Suppose N is a multiple of 4 such that N — 1 is an odd prime
power. Letg =N —1andleta; =0, o, ---, oy denote the elements of GF'(q). Define
a function y : GF(q) — {0, 1, —1} by

1, if 3=y forsomey € GF(q),
x(B)=1<¢0, if3=0,

—1, otherwise.

Let A be the ¢ x ¢ matrix [a;;], where a;; = x(o; — ;) fori,j=1,2,---, ¢, and

Py |t Tl (13.5.1)

YTl A+ A
where 1, is the ¢ x 1 vector of 1's and I, is the identity matrix of order ¢q. Then Py is a
Hadamard matrix. For a proof see Hedayat, Sloane and Stufken (1999). We shall call
the OA(IV, 2~1,2) obtained by deleting the first column of (13.5.1) the Paley design of
order N.

There is also a connection between Hadamard matrices and balanced incomplete
block designs (BIBD). Suppose H is a Hadamard matrix of order V. Without loss of
generality, assume that all the entries in the first row and first column of H are equal to
1. Delete the first row and first column from H; then we have an (N — 1) x (N — 1)
matrix H* of 1's and —1's. Define a block design d with N — 1 treatments and N — 1
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blocks such that the ith treatment appears in the j th block once if the (4, j)th entry of H*

is equal to 1; otherwise, it does not appear. Then d is a balanced incomplete block design.
The block size is N/2 —1 since there are N/2—1 1's in each column of H*.
Conversely, given a balanced incomplete block design d with N — 1 treatments and
N — 1 blocks of size N/2 — 1, write down an (N — 1) x (N — 1) incidence matrix H*
of 1's and —1's such that the (i, 7)th entry of H* is equal to 1 if and only if the ith

treatment appears in the jth block of d. Supplement H* by a row and column of 1's; then

we obtain an N x N matrix which can be shown to be a Hadamard matrix.

For example, the OA(12,2!,2) displayed in (13.3.3) can be constructed by
applying the method described in the previous paragraph to a balanced incomplete block
design with 11 treatments and 11 blocks of size 5. The first 11 rows of the array come
from the incidence matrix of the BIBD which can be developed from the initial block
{1,3,4,5,9} in a cyclic manner. Thus the associated incidence matrix is a circulant
matrix. One row of 1's is then added at the bottom to produce an orthogonal array. If we
also add a column of 1's, then a Hadamard matrix of order 12 is obtained.

13.6 Foldover designs

The orthogonal array displayed in (13.3.2) has strength three. One can see that

the first eight rows of this design constitute the Hadamard matrix
1 -1 1 -1 1 -1 o C oy

[1 1] ® [1 1] ® [1 1], which is also the OA(8,27,2) in (9.6.3)
supplemented by a column of 1's after the other columns are rearranged in lexicographic
order. The last eight rows of array (13.3.2) are obtained from the first eight rows by
interchanging the two levels. We say that array (13.3.2) is the foldover of (the
rearranged) array (9.6.3). In general, given an OA(N, 2", ¢) X where the two levels are
represented by 1 and —1, the following array is called the foldover of X:

X = {_i _ﬁ} (13.6.1)

where 1 isthe N x 1 vector of 1's. The foldover design is of size 2N and has n + 1 two-
level factors Compared with the original design, one factor is added and the run size is
doubled.

The method of foldover was first proposed by Box and Wilson (1951) for regular
fractional factorial designs. The following result for general two-level orthogonal arrays
is due to Seiden and Zemach (1966).

Theorem 13.6.1. The foldover of a two-level orthogonal array of even strength ¢ has
strength ¢ + 1.

Theorem 13.6.1 follows from the following lemma.
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Lemma 13.6.2. Suppose X is an OA(N,2",¢) with n > ¢ + 1 in which the two levels
are denoted by 1 and —1. Let Y be an N x (¢ + 1) submatrix of X. Then there exist
two nonnegative integers o and 3 with o + 8 = N /2 such that all the vectors z = (21,
X, -+, Tey1) With 129 -+ - 2411 = 1, where x; = 1 or —1, appear « times as row vectors
of Y’, and each of those with x,xz5 --- ;.1 = —1 appears 3 times.

Proof. Foreach = (xy,---,x¢1) With z; = 1 or —1, let f(z) be the number of times z
appears as row vectors of Y. Then since X has strength ¢, we have

f(wl,"',xt,ItH) + f(l‘la"'axta —$t+1) = A\
Also,
f(xb sy, — Ty, _xtJrl) + f(xla croy Tty _xt+l) =\

It follows from these two equations that f(zq,- -, @, zi01) = f(x1, -+, =X, —T41).
Repeating the same argument, we see that any two rows x and y differing in an even
number of components appear the same number of times as row vectors of Y. Thus all
the vectors = = (x1, x2, -+, T¢41) With 2129 -+ 24,1 = 1 appear the same number of
times, say « times, as row vectors of Y, and each of those with zyxy --- 2,1 = —1 also
appears the same number of times, say [ times. Since X has strength ¢, we have
a+pB=N/2t. 0O

Now we prove Theorem 13.6.1. Let X be an OA(N,2",t), where ¢ is even, and
let Y be a 2N x (¢ + 1) submatrix of X. If ¥ contains the first column of X as
displayed in (13.6.1), then since X has strength ¢, it is clear that all the (¢ + 1)-tuples of
1's and —1's appear the same number of times as row vectors of Y. Suppose

~ Y

-]
where Y is an N x (t+ 1) submatrix of X. Then by Lemma 13.6.2, there exists a
nonnegative integer « such that each = = (x1, x2, --- , z411) appears either o or

N /2! — « times as a row vector of Y. Since ¢ + 1 is odd, if = appears « times, then —z
must appear N /2' — « times. It follows that if = appears « times in Y, then it appears
N /2! — o times in —Y7, and thus appears a + (N /2! —a) = N /2" timesinY. O

It is also clear from the above proof why the foldover method does not increase
the strength when it is applied to an orthogonal array of odd strength.

Corollary 13.2.5 shows that an OA(NV,2",2) must have N >n+1 and an
OA(N,2",3) must have N > 2n. It follows from Theorem 13.6.1 that the foldover of a
saturated two-level orthogonal array of strength two achieves the lower bound on the run
size of an orthogonal array of strength three.
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