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Abstract

The “Huber Sandwich Estimator” can be used to estimate the variance of the MLE when the
underlying model is incorrect. If the model is nearly correct, so are the usual standard errors, and
robustification is unlikely to help much. On the other hand, if the model is seriously in error, the
sandwich may help on the variance side, but the parameters being estimated by the MLE are likely
to be meaningless—except perhaps as descriptive statistics.

Introduction

This paper gives an informal account of the so-called “Huber Sandwich Estimator,” for which
Peter Huber is not to be blamed. We discuss the algorithm, and mention some of the ways in which
it is applied. Although the paper is mainly expository, the theoretical framework outlined here may
have some elements of novelty. In brief, under rather stringent conditions, the algorithm can be
used to estimate the variance of the MLE when the underlying model is incorrect. However, the
algorithm ignores bias, which may be appreciable. Thus, results are liable to be misleading.

To begin the mathematical exposition, let i index observations whose values are yi . Let θ ∈ Rp

be a p×1 parameter vector. Let y → fi(y|θ) be a positive density. If yi takes only the values 0 or 1,
which is the chief case of interest here, then fi(0|θ) > 0, fi(1|θ) > 0, and fi(0|θ) + fi(1|θ) = 1.
Some examples involve real- or vector-valued yi , and the notation is set up in terms of integrals
rather than sums. We assume θ → fi(y|θ) is smooth. (Other regularity conditions are elided.)
Let Yi be independent with density fi(·|θ). Notice that the Yi are not identically distributed: fi

depends on the subscript i. In typical applications, the Yi cannot be identically distributed, as will
be explained below.

The data are modeled as observed values of Yi for i = 1, . . . , n. The likelihood function is∏n
i=1 fi(Yi |θ), viewed as a function of θ . The log likelihood function is therefore

L(θ) =
n∑

i=1

log fi(Yi |θ). (1)

The first and second partial derivatives of L with respect to θ are given by

L′(θ) =
n∑

i=1

gi(Yi |θ), L′′(θ) =
n∑

i=1

hi(Yi |θ). (2)

To unpack the notation in (2), let φ′ denote the derivative of the function φ: differentiation is with
respect to the parameter vector θ . Then

gi(y|θ) = [log fi(y|θ)]′ = ∂

∂θ
log fi(y|θ), (3)

1



a 1 × p-vector. Similarly,

hi(y|θ) = [log fi(y|θ)]′′ = ∂2

∂θ2 log fi(y|θ), (4)

a symmetric p × p matrix. The quantity −Eθh(Yi |θ) is called the “Fisher information matrix.” It
may help to note that −Eθhi(Yi |θ) = Eθ

(
gi(Yi |θ)Tgi(Yi |θ)

)
> 0, where T stands for transposition.

Assume for the moment that the model is correct, and θ0 is the true value of θ . So the Yi are
independent and the density of Yi is fi(·|θ0). The log likelihood function can be expanded in a
Taylor series around θ0:

L(θ) = L(θ0) + L′(θ0)(θ − θ0)

+ 1

2
(θ − θ0)

T L′′(θ0)(θ − θ0) + . . . . (5)

If we ignore higher-order terms and write
.= for “nearly equal”—this is an informal exposition—

the log likelihood function is essentially a quadratic, whose maximum can found by solving the
likelihood equation L′(θ) = 0. Essentially, the equation is

L′(θ0) + (θ − θ0)
T L′′(θ0) = 0. (6)

So
θ̂ − θ0

.= [−L′′(θ0)]
−1L′(θ0)

T . (7)

Then
covθ0 θ̂

.= [−L′′(θ0)]
−1[covθ0L

′(θ0)][−L′′(θ0)]
−1, (8)

the covariance being a symmetric p × p matrix.
In the conventional textbook development, L′′(θ0) and covθ0L

′(θ0) are computed—approxi-
mately or exactly—using Fisher information. Thus, −L′′(θ0)

.= − ∑n
i=1 Eθ0hi(Yi). Furthermore,

covθ0L
′(θ0) = − ∑n

i=1 Eθ0hi(Yi). The sandwich idea is to estimate L′′(θ0) directly from the
sample data, as L′′(θ̂). Similarly, covθ0L

′(θ0) is estimated as

n∑
i=1

gi(Yi |θ̂ )Tgi(Yi |θ̂ ).

So (8) is estimated as
V̂ = (−A)−1B(−A)−1 (9a)

where

A = L′′(θ̂) and B =
n∑

i=1

gi(Yi |θ̂ )Tgi(Yi |θ̂ ) (9b)

The V̂ in (9) is the “Huber sandwich estimator.” The square roots of the diagonal elements of
V̂ are “robust standard errors” or “Huber-White standard errors.” The middle factor B in (9) is not
centered in any way. No centering is needed, because

Eθ [gi(Yi |θ)] = 0,

covθ

[
gi(Yi |θ)

] = Eθ

[
gi(Yi |θ)Tgi(Yi |θ)

]
. (10)
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Indeed,

Eθ [gi(Yi |θ)] =
∫

gi(y|θ)fi(y|θ) dy

=
∫

∂

∂θ
fi(y|θ) dy

= ∂

∂θ

∫
fi(y|θ) dy

= ∂

∂θ
1

= 0. (11)

A derivative was passed through the integral sign in (11). Regularity conditions are needed to justify
such maneuvers, but we finesse these mathematical issues.

If the motivation for the middle factor in (9) is still obscure, try this recipe. Let Ui be
independent 1 × p-vectors, with E(Ui) = 0. Now cov(

∑
Ui) = ∑

cov(Ui) = ∑
E(UT

i Ui).
Estimate E(UT

i Ui) by UT
i Ui . Take Ui = gi(Yi |θ0). Finally, substitute θ̂ for θ0.

The middle factor B in (9) is quadratic. It does not vanish, although

n∑
i=1

gi(Yi |θ̂ ) = 0. (12)

Remember, θ̂ was chosen to solve the likelihood equation L′(θ) = ∑n
i=1 gi(Yi |θ) = 0, explain-

ing (12).
In textbook examples, the middle factor B in (9) will be of order n, being the sum of n terms.

Similarly, −L′′(θ0) = − ∑n
i=1 hi(Yi |θ0) will be of order n: see (2). Thus, (9) will be of order

1/n. Under suitable regularity conditions, the strong law of large numbers will apply to −L′′(θ0),
so −L′′(θ0)/n converges to a positive constant; the central limit theorem will apply to L′(θ0), so√
nL′(θ0) converges in law to a multivariate normal distribution with mean 0. In particular, the

randomness in L′ is of order
√
n. So is the randomness in −L′′, but that can safely be ignored when

computing the asymptotic distribution of [−L′′(θ0)]−1L′(θ0)
T , because −L′′(θ0) is of order n.

Robust standard errors

We turn now to the case where the model is wrong. We continue to assume the Yi are inde-
pendent. The density of Yi , however, is ϕi—which is not in our parametric family. In other words,
there is specification error in the model, so the likelihood function is in error too. The sandwich
estimator (9) is held to provide standard errors that are “robust to specification error.” To make
sense of the claim, we need the

Key Assumption. There is a common θ0 such that fi(·|θ0) is closest—in the Kullback-
Leibler sense of relative entropy, defined in (14) below—to ϕi .
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(A possible extension will be mentioned, below.) Equation (11) may look questionable in this new
context. But

E0
[
gi(Yi |θ)

] =
∫ ( ∂

∂θ
fi(y|θ)

) 1

fi(y|θ)ϕi(y) dx

= 0 at θ = θ0. (13)

This is because θ0 minimizes the Kullback-Leibler relative entropy,

θ →
∫

log

[
ϕi(y)

fi(y|θ)
]
ϕi(y) dy. (14)

By the key assumption, we get the same θ0 for every i.
Under suitable conditions, the MLE will converge to θ0. Furthermore, θ̂ − θ0 will be asymp-

totically normal, with mean 0 and covariance V̂ given by (9), that is,

V̂ −1/2(θ̂ − θ0) → N(0p, Ip×p). (15)

By definition, θ̂ is the θ that maximizes θ → ∏
i fi(Yi |θ)—although it is granted that Yi does

not have the density fi(·|θ). In short, it is a pseudo-likelihood that is being maximized, not a true
likelihood. The asymptotics in (15) therefore describe convergence to parameters of an incorrect
model that is fitted to the data.

For some rigorous theory in the independent but not identically distributed case, see Amemiya
(1985, Section 9.2.2) or Fahrmeir and Kaufmann (1985). For the more familiar IID (independent and
identically distributed) case, see Rao (1973, Chapter 6), or Lehmann and Casella (2003, Chapter 6).
Lehmann (1998, Chapter 7) and van der Vaart (1998) are less formal, more approachable. These
references all use Fisher information rather than (9), and consider true likelihood functions rather
than pseudo-likelihoods.

Why not assume IID variables?

The sandwich estimator is commonly used in logit, probit, or cloglog specifications. See, for
instance, Gartner and Segura (2000), Jacobs and Carmichael (2002), Gould, Lavy, and Passerman
(2004), Lassen (2005), or Schonlau (2006). Calculations are made conditional on the explanatory
variables, which are left implicit here. Different subjects have different values for the explanatory
variables. Therefore, the response variables have different conditional distributions. Thus, accord-
ing to the model specification itself, the Yi are not IID. If the Yi are not IID, then θ0 exists only by
virtue of the key assumption.

Even if the key assumption holds, bias should be of greater interest than variance, especially
when the sample is large and causal inferences are based on a model that is incorrectly specified.
Variances will be small, and bias may be large. Specifically, inferences will be based on the incorrect
density fi(·|θ̂ ) .= fi(·|θ0), rather than the correct density ϕi . Why do we care about fi(·|θ0)? If
the model were correct, or nearly correct—that is, fi(·|θ0) = ϕi or fi(·|θ0)

.= ϕi—there would be
no reason to use robust standard errors.
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A possible extension

Suppose the Yi are independent but not identically distributed, and there is no common θ0 such
that fi(·|θ0) is closest to ϕi . One idea is to choose θn to minimize the total relative entropy, that is,
to minimize

n∑
i=1

∫
log

[
ϕi(y)

fi(y|θ)
]
ϕi(y) dy. (16)

Of course, θn would depend on n, and the MLE would have to be viewed as estimating this moving
parameter. Many technical details remain to be worked out. For discussion along these lines, see
White (1994, pp. 28–30, pp. 192–195).

Cluster samples

The sandwich estimator is often used for cluster samples. The idea is that clusters are inde-
pendent, but subjects within a cluster are dependent. The procedure is to group the terms in (9),
with one group for each cluster. If we denote cluster j by cj , the middle factor in (9) would be
replaced by ∑

j

[ ∑
i∈cj

gi(Yi |θ̂ )
]T [ ∑

i∈cj
gi(Yi |θ̂ )

]
. (17)

The two outside factors in (9) would remain the same. The results of the calculation are sometimes
called “survey-corrected” variances, or variances “adjusted for clustering.”

There is undoubtedly a statistical model for which the calculation gives sensible answers,
because the quantity in (17) should estimate the variance of

∑
j

[ ∑
i∈cj gi(Yi |θ̂ )

]
—if clusters are

independent and θ̂ is nearly constant. (Details remain to be elucidated.) It is quite another thing
to say what is being estimated by solving the non-likelihood equation

∑n
i=1 gi(Yi |θ) = 0. This

is a non-likelihood equation because
∏

i fi(·|θ) does not describe the behavior of the individuals
comprising the population. If it did, we would not be bothering with robust standard errors in
the first place. The sandwich estimator for cluster samples presents exactly the same conceptual
difficulty as before.

The linear case

The sandwich estimator is often conflated with the correction for heteroscedasticity in White
(1980). Suppose Y = Xβ + ε. We condition on X, assumed to be of full rank. Suppose
the εi are independent with expectation 0, but not identically distributed. The OLS estimator
is β̂OLS = (X′X)−1X′Y . White proposed that the covariance matrix of β̂OLS should be estimated
as (X′X)−1X′ĜX(X′X)−1, where e = Y − Xβ̂OLS is the vector of residuals, Ĝij = e2

i if i = j ,

and Ĝij = 0 if i �= j . Similar ideas can be used if the εi are independent in blocks. White’s method
often gives good results, although Ĝ can be so variable that t-statistics are surprisingly non-t-like.
Compare Beck, Katz, Alvarez, Garrett, and Lange (1993).

The linear model is much nicer than other models, because β̂OLS is unbiased even in the case
we are considering, although OLS may of course be inefficient, and—more important—the usual
SEs may be wrong. White’s correction tries to fix the SEs.
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An example

Suppose there is one real-valued explanatory variable, x, with values xi spread fairly uniformly
over the interval from 0 to 10. Given the xi , the response variables Yi are independent, and

logitP(Yi = 1) = α + βxi + γ x2
i , (18)

where logit p = log[p/(1 − p)]. Equation (18) is a logit model with a quadratic response. The
sample size is moderately large. However, an unwitting statistician fits a linear logit model,

logitP(Yi = 1) = a + bxi. (19)

If γ is nearly 0, for example, then â
.= α, b̂

.= β, and all is well—with or without the robust
SEs. Suppose, however, that α = 0, β = −3, and γ = .5. (The parameters are chosen so the
quadratic has a minimum at 3, and the probabilities spread out through the unit interval.) The
unwitting statistician will get â

.= −5 and b̂
.= 1, concluding that on the logit scale, a unit increase

in x makes the probability that Y = 1 go by one, across the whole range of x. The only difference
between the usual SEs and the robust SEs is the confidence one has in this absurd conclusion.

In truth, for x near 0, an unit increase in x makes the probability of a response go down, by 3
(probabilities are measured here on the logit scale). For x near 3, increasing x makes no difference.
For x near 10, a unit increase in x makes the probability go up by 7.

Could the specification error be detected by some kind of regression diagnostics? Perhaps,
especially if we knew what kind of specification errors to look for. Keep in mind, however, that the
robust SEs are designed for use when there is undetected specification error.

What about Huber?

The usual applications of the so-called “Huber sandwich estimator” go far beyond the mathe-
matics in Huber (1967), and our critical comments do not apply to his work. In free translation—
this is no substitute for reading the paper—he assumes the Yi are IID, so fi ≡ f , and gi ≡ g, and
hi ≡ h. He considers the asymptotics when the true density is f0, not in the parametric family. Let
A = ∫

h(y|θ0)f0(y) dy, and B = ∫
g(y|θ0)

Tg(y|θ0)f0(y) dy. Both are p×p symmetric matrices.
Plainly, L′(θ0) = 1

n

∑n
i=1 g(Yi |θ0). Under regularity conditions discussed in the paper,

(i) θ̂ → θ0, which minimizes the “distance” between f (·|θ) and f0.

(ii) 1
n
L′′(θ0) = 1

n

∑n
i=1 h(Xi |θ0) → A.

(iii) n1/2B−1/2L′(θ0) → N(0p, Ip×p).

Asymptotic normality of the MLE follows:

C
−1/2
n (θ̂ − θ0) → N(0p×1, Ip×p), (20a)

where
Cn = n−1(−A)−1B(−A)−1. (20b)

Thus, Huber’s paper answers a question that (for a mathematical statistician) seems quite natural:
what is the asymptotic behavior of the MLE when the model is wrong? Applying the algorithm to
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data, while ignoring the assumptions of the theorems and the errors in the models—that is not Peter
Huber.

Summary and conclusions

The sandwich algorithm, under stringent regularity conditions, yields variances for the MLE
that are asymptotically correct even when the specification—and hence the likelihood function—are
incorrect. However, it is quite another thing to ignore bias. It remains unclear why applied workers
should care about the variance of an estimator for the wrong parameter.

More particularly, inferences are based on a model that is admittedly incorrect. (If the model
were correct, or nearly correct, there would be no need for sandwiches.) The chief issue, then, is
the difference between the incorrect model that is fitted to the data and the process that generated
the data. This is bias due to specification error. The algorithm does not take bias into account.
Applied papers that use sandwiches rarely mention bias. There is room for improvement here.

See Koenker (2005) for additional discussion. On White’s correction, see Greene (2003,
p. 220). For a more general discussion of independence assumptions, see Berk and Freedman
(2003) or Freedman (2005). The latter reference also discusses model-based causal inference in
the social sciences.
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