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For i = 1, 2 and j = 1, . . . , n, let Yij be independent normal random variables, with
common expectation α. For i = 1, 2, the variance is σ2

i > 0. We refer to the Yij as
“observations,” and the full collection {Yij : i = 1, 2, j = 1, . . . , n} is a “sample”; the
sub-collections with i = 1 or 2 are “sub-samples.” As a matter of notation, α and σ2

i are
arguments in the likelihood function, as well as the true values from which the sample is
drawn. When the distinction matters, the true values will be denoted by underscores, as
α, σ2

i . Let

(1) yi =
1
n

n∑
i=1

yij and s2
i =

1
n

n∑
i=1

(yij − yi)2,

the mean and variance of the sub-samples with i = 1, 2; we use the old-fashioned denomi-
nator n for the variances. We consider only samples with

(2) n > 1, y1 �= y2, s2
1 > 0, and s2

2 > 0.

Proposition 1. For some samples satisfying (2), the log likelihood function has two
maxima. On the other hand, for given α and σ2

i , there is an exceptional set of sam-
ples whose probability decreases at a geometric rate as n → ∞; for all other samples,
the log likelihood function is unimodal, and the feasible-GLS algorithm converges to this
maximum.

Argument. Up to an additive constant, the log likelihood function is

L(α, σ1, σ2) = −
n∑

j=1

(y1j − α)2

2σ2
1

−
n∑

j=1

(y2j − α)2

2σ2
2

− n log σ1 − n log σ2(3)

= −n

2

{s2
1 + (y1 − α)2

σ2
1

+
s2
2 + (y2 − α)2

σ2
2

+ log σ2
1 + log σ2

2

}
,

where yi and s2
i are defined by (1).

(4) Fix α. The log likelihood function is strictly concave in (1/σ2
1 , 1/σ2

2). The maximum
in σi is attained when σ2

i = s2
i + (yi − α)2.

Substitute these σi(α) into (3):

(5) M(α) = −n

2

{
log [s2

1 + (y1 − α)2] + log [s2
2 + (y2 − α)2]

}
,

up to an additive constant. Hence,

(6) M(±∞) = −∞.
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Differentiate (5) with respect to α:

(7) M ′(α) =
n(y1 − α)

s2
1 + (y1 − α)2

+
n(y2 − α)

s2
2 + (y2 − α)2

.

By change of scale, including perhaps change of sign, we can take y1 = 0 and y2 = 1. In
the new scale, the sample variance of the first group of data is a2 > 0, the second variance
is b2 > 0, and the common expectation becomes µ. The scale is data-dependent. Now
rewrite M ′(α) in (7) as

(8) n
1

a2 + µ2

1
b2 + (1− µ)2

Q(µ) where Q(µ) = −2µ3 + 3µ2 − (a2 + b2 + 1)µ + a2.

Of course, Q(−∞) = ∞ and Q(∞) = −∞. Moreover, Q has either one real root or three.
We claim that for sufficiently small a2 and b2, e.g., a2 ≤ 0.01 and b2 ≤ 0.01, there are

three real roots. Indeed, the limiting polynomial

Q0(µ) = −2µ3 + 3µ2 − µ = −µ(µ − 1)(2µ − 1)

has roots 0, 1/2, 1; between 0 and 1/2, this polynomial is negative, with a minimum of
about −0.1; between 1/2 and 1, the polynomial is positive, with a maximum of about 0.1.
Moreover,

(9) Q(µ) ≥ 6 for µ ≤ −1 and Q(µ) ≤ −6 + a2 for µ ≥ 2.

Hence, if a2 > 0 and b2 > 0 are small, Q will have three real roots; necessarily, Q changes
sign at each root. The corresponding changes of sign in M ′ imply that M has two local
maxima, separated by a local minimum. There are two local maxima in the log likelihood
function L, and a third critical point which corresponds to a saddle point in L.

In the other direction, Q′(µ) = −6µ2 + 6µ − (1 + a2 + b2), which is negative for all µ
provided

62 − 4× 6× (1 + a2 + b2) < 0,

i.e., 12− 24(a2 + b2) < 0, or a2 + b2 > 1/2. In original units, this means

(10) s2
1 + s2

2 >
1
2
|y1 − y2|.

If so, Q in (8) has only one real root, i.e., the likelihood equation has only one real root,
and the likelihood is unimodal, which proves

(11) If (10) holds, the likelihood equation has only one real root.

Clearly, the chance that (10) obtains is bounded below by 1−Aρn where 0 < A < ∞ and
0 < ρ < 1 depend on the true α, σ2

i but not on n, the number of observations in each sub-
sample; nor do A and ρ depend on the arguments of the likelihood function—otherwise,
insanity prevails.
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For feasible GLS, if σ1 and σ2 are fixed, the log likelihood function (3) is strictly
concave in α, with its maximum at

(12) α =
σ−2

1 y1 + σ−2
2 y2

σ−2
1 + σ−2

2

.

On the other hand, if α is fixed, maximization in σi is governed by (4). We iterate by
alternating these maximizations, starting for instance with α = α0. The σi computed from
α0 via (4) will be denoted σi,0, and so forth. The log likelihood increases monotonically;
let L∞ be the limit.

Suppose by way of contradiction that L∞ < maxL. Then (αn, σ1,n, σ2,n) are trapped
in the compact set

(13) C = {(α, σ1, σ2) : L(α0, σ1,0, σ2,0) ≤ L(α, σ1, σ2) ≤ L∞}.

By (11), we have ‖L′‖ ≥ δ > 0 uniformly on C. Fix h0 > 0. Let M0 be the max of ‖M ′′‖
over points within h0 of C. Now, consider a maximization step. Suppose for instance we
have just maximized on α, so we are at a point where ∂L/∂α = 0. Then

(14)
( ∂L

∂σ1

)2

+
( ∂L

∂σ2

)2

≥ δ2.

We can make an h-step in the (σ1, σ2) direction, with 0 < h ≤ h0, increasing the log
likelihood by at least

(15) hδ − 1
2
h2M0 =

δ2

2M0
> 0

when h = δ/M0, provided δ/M0 ≤ h0; or

(16) h0δ − 1
2
h2

0M0 > 0

when h = h0, provided δ/M0 > h0. The maximization has to increase the log likelihood
by even more. Thus, the log likelihood increases by some minimal positive amount

(17) η = min
{ δ2

2M0
, h0δ − 1

2
h2

0M0

}
> 0

at each iteration. This is a contradiction, i.e, the log likelihood converges under iteration
to its global maximum. Since the function is unimodal, the iterates must converge too.
This completes the proof of Proposition 1.

We consider also convergence of the GLS algorithm when L is bimodal, under the
side condition that the two modes differ. (Presumably, that excludes only a null set of
samples.) If we exclude small open disks around the three critical points, and require
L ≥ L0, the iteration can visit the resulting compact set only finitely often: otherwise the
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log likelihood function would have an infinite maximum, as argued above. If the iteration
comes arbitrarily close to the global maximum, convergence to that maximum is assured,
since the log likelihood cannot decrease. Set that case aside: then the same reasoning
applies to the second maximum, and finally to the saddle point. In short, the iterates
must converge to one of the three critical points. Can the iterates converge to the saddle
point? That depends on the local geometry, which we have not assessed.

Proposition 2. The log likelihood function L is concave for no sample that satisfies
condition (2).

Argument. We rewrite (3) with λi = 1/σ2
i . Let L be the log likelihood function (3)

in this new parameterization. Then

(18) − 2
n

L′(α, λ1, λ2) =


 2(λ1 + λ2)α − 2λ1y1 − 2λ2y2

s2
1 + (y1 − α)2 − 1/λ1

s2
2 + (y2 − α)2 − 1/λ2


.

(19) − 2
n

L′′(α, λ1, λ2) =


 2(λ1 + λ2) 2(α − y1) 2(α − y2)

2(α − y1) 1/λ2
1 0

2(α − y2) 0 1/λ2
2


.

The matrix in (19) is symmetric, so there are three real zeros in the characteristic polyno-
mial

(20)
[
2(λ1+λ2)−x

][ 1
λ2

1

−x
][ 1

λ2
2

−x
]
+4
[
(α−y1)2+(α−y2)2

]
x−4

(α − y1)2

λ2
2

−4
(α − y2)2

λ2
1

.

This cubic is by and large decreasing from ∞ at x = −∞ to −∞ at x = ∞, with a wiggle
after it crosses the horizontal axis. There is a negative root provided the polynomial is
negative at 0, i.e.,

(21) λ1 + λ2 < 2(α − y1)2λ2
1 + 2(α − y2)2λ2

2.

If the λ’s are held fast, (21) will be satisfied for large α; also, if α is fixed, (21) will be
satisfied for large λ’s. (If α = y1 or y2, a little care is needed in choosing the λ’s.) Hence
there is a negative eigenvalue for the matrix in (19). Thus, for any sample, there are
regions in parameter space where the log likelihood function L is not concave, i.e., the
matrix of second derivatives has a positive eigenvalue. Signs may be confusing: (19) gives
the second derivatives of −L. A negative eigenvalue for that matrix corresponds to a
positive eigenvalue for L itself, i.e., non-concavity. The argument for Proposition 2 is
complete.

Remark. Of course, there remains the possibility that the log likelihood function will
be everywhere concave in some other parameterization.
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Example 2. Suppose the Y1j are IID N(α, 1) and the Y2j are IID N(α, σ2) where
α, σ are unknown. Apparently, the log likelihood function is unimodal but not convex in
(α, 1/σ2). As before, the log likelihood function is L(α, λ) where λ = 1/σ2. Then

−2L = (α − y1)2 + λ[s2 + (α − y2)2]− log λ

and

−2L′ =
(
2(α − y1) + 2λ(α − y2)
s2 + (α − y2)2 − 1/λ

)
.

Fix α and minimize in λ to get

M(α) = (α − y1)2 + log [s2 + (α − y2)2]

with
1
2
M ′(α) = α − y1 +

α − y2

s2 + (α − y2)2

(The sign convention has reversed from the previous example.) By change of scale, put
y1 = 1 and y2 = 0. Then M ′(α) = 0 iff

α3 − α2 + α = s2(1− α)

The left hand side is a strictly increasing function of α, with a zero at 0; the right hand
side is strictly decreasing, with a zero at 1. Hence M ′(α) = 0 has exactly one root, and
M has a unique minimum. Finally,

−L′′ =

(
1 + λ α − y1

α − y1
1
2λ2

)

will not be positive definite if α is large, or λ is large.

Example 3. Suppose X ∼ N(α, 1) and Y ∼ N(β, 1). The two random variables are
independent. The parameters α, β are constrained to lie on a smooth curve C. Unless C

is a straight line, there will always be samples with a multimodal log likelihood function.
These samples may be rather remote from the true value or the global max.

Example 4. Suppose X ∼ N(α, 1) and Y ∼ N(β, 1). The two random variables
are independent. The parameters α, β are constrained to lie on a smooth curve C, to be
constructed next. For any δ > 0, for all samples (X, Y ) within a δ-neighborhood of truth,
the log likelihood function is multimodal. This hold for some large set of true values.

Construction. The curve is defined as follows: take the upper part of the vertical axis
{(α, β) : α = 0, β > 1}, together with the line segments joining (i) (0, 1) to (−1, 0), then
(ii) (−1, 0) to (1, 0), then (iii) (1, 0) to (0,−1), and finally the lower part of the vertical
axis {(α, β) : α = 0, β < −1}. This curve can be smoothed to be C∞ or even analytic,
although in the latter case the line segments become curves. For any truth in the upper or
lower vertical segments, for all (X, Y ) inside any small disk around truth, the likelihood is
multimodal. To smooth C, we could view α as a function of β, then smooth this function
using a tight gaussian kernel; the ambiguity at β = 0 in the definition of the unsmoothed
function is immaterial.
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Other examples. f is C∞ on the plane, bounded above, tends to −∞ at ∞.
(i) f is unimodal, but alternating maximization stagnates, and not at the maximum.
(ii) f has 3 critical values, with two modes and a saddlepoint. The two modes are of

equal value. Alternating maximization oscillates between the two.

Construction. (i) Cut an orange in half. Put it down on the plane. Stand under
the skin somewhere in the southwest quadrant, and push up the skin smoothly, without
changing the other three quadrants. Keep going till the maximum is higher than the old
central point, and make a smooth decline from the new max to the old max. If you start
the iteration from anywhere in the other three quadrants, you will stabilize at the old max.
Now deform the plane downward as you move away from the orange. With a little more
effort, you can make the old max completely stable, i.e., the deformed orange has a flat
spot there.

(ii) Cut a football in half, lengthwise. Put one half down centered at (−1, 0) and the
other half at (1, 0). These are the two maxima, of equal height. Orient the football halves
with the long axis at 45 degrees, towards the northeast. Thus, horizontal sections are
congruent. Start the iteration from e.g. (1.1, 0), assuming this is under the dome. Take
the max on y. Then max on x: there is one on your football, and a matching spot on
the other football: make a tiny pimple at the matching spot, so you go there. Proceed
iteratively, with pimples getting smaller by leaps and bounds, and heights always below
the old global maxima. Finally, deform the plane to go down as you move away from the
domes.
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