Notes on the Dutch Book Argument
by D. A. Freedman, Statistics Department, U. C. Berkeley, CA 94720

The object here is to sketch the mathematics behind de Finetti’'s (1931, 1937)
argument for the Bayesian position. Suppose a bookie sets odds on all subsets of
a set, accepting bets in any amount (positive or negative) on any combination of
subsets. Unless the odds are computed from a prior probability, dutch book can
be made: for some system of bets, the clever gambler wins a dollar or more, no
matter what the outcome may be. The extension by Freedman and Purves (1969)
to statistical inference is also considered. Finally, there is a dutch-book argument
for countable additivity.

1. De Finetti’'s argument

Let © be a finite set with car(f2) > 1. A bookie posts odds, on A, for
every proped C 2; odds are positive and finite. If you kiet on A, andA occurs,
then you winb4 /A 4; if A does not occur, then you wiab 4. Your net payoff is

bA 1‘|‘)\A AA
1 _ 1,24 _ 1—1>b iy (1— )
D da A)\A ( A )ba A » A 1T

The stake® 4 are finite, but may be positive, 0, or negative. Corresponding to each
set of stakes there is a payoff function,

©) > ba,
A

whereA runs over the proper subsetst@f For now, we take the odds as fixed, and
consider various gamblers who bet against the bookie: each gambler generates a
payoff function.

If x4 =7 (A)/[1 — 7 (A)] for some probabilityr on <, i.e.,

m(A) =ia/(1+24),

we say the bookie is a Bayesian with prior Obviously, all payoff functions then
have expectation O relative to. In particular,

Proposition 1. Dutch book cannot be made against a Bayesian bookie.
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Let V be the set of all real-valued functions €n soV is a linear space of
dimension card<?).

Theorem 1. For each bookie, there are only two possibilitig} the set of
payoff functions coincides withi; or (ii) the bookie is a Bayesian with prior,
wherer is a probability onQ2 assigning positive mass to evesye 2.

Proof. If case (i) does not obtain, there is a non-trivial functtoon 2 such
that for allg4,

Y m(@)da(@) =0,

wes2

which is to say, by (1),
7 (A) = w(2)Aa/(A+ 1),

where

forall B ¢ Q. If 7(2) = 0 thenn(w) = 0 for all w, as one sees by taking
A = {w}. This is a contradiction, s®(2) # 0. Renormalizer so thatr (2) = 1,
l.e., replacer by 7/7(2). Noww(A) = 24/(1+ Aa), SO > 0 and case (ii)
obtains.

Theorem 2. For the Bayesian bookie with priar, the set of payoff functions
coincides with the set of functions having expectafioelative tor.

Proof. Otherwise, there is a non-trivia] not a multiple ofz, such that all
payoff functions are orthogonal ioas well ast. Arguing as before, we find that
v(2) # 0. We renormalize so(2) = 1, and thernv(A) = 14 /(14 Aa) = 1 (A),

a contradiction.

Corollary 1. The following are equivalent.

() The payoff functions are all df.
(i) The bookie is not a Bayesian.
(i) Dutch book can be made against the bookie.

Proof. (i)= (iii): obvious. (iii) = (ii): Proposition 1. (ii)= (i): if the
payoff functions were not all o¥, the bookie would be a Bayesian (Theorem 1).



Corollary 2. The following are equivalent.

(i) The payoff functions are not all &f.
(i) The bookie is a Bayesian.
(i) Dutch book cannot be made against the bookie.

In this case, the payoff functions consist of all functions with expectafiahative
to the bookie’s prior.

Proof. (i)= (ii): Theorem 1. (ii)= (iii): Proposition 1. (iii)= (i): obvious.
The final assertion follows from Theorem 2.

Example 1. Negative stakes are needed for the theorems. SupRose
{0, 1}, the bookie puts 2:1 on 0 and 3:1 on 1, but accepts only positive bets on
events. If you putkk > 0 on O andy > 0 on 1, the payoff isx/2 — y on 0 and
y/3 — x on 1. If both are positivex/2 > y > 3x, sox > 6x, a contradiction.
This bookie — although not a Bayesian — is immune from dutch book, being clever
enough to set favorable odds and require positive stakes.

2. The extension to statistical inference

In this section, we discuss the principal result in Freedman and Purves (1969).
In essence, a bookie has to post odds on subsets of a parameteGspéiee
seeing an observationdrawn fromp(-|0): dutch book can be made against the
non-Bayesian bookie. In view of the previous section, the bookie will use an
‘estimating probabilityy (- |x) on ® to set the odds. The only question is, how do
these probabilities fit together?

A ‘finite estimation problem’ consists of (i) a finite s&t, and (ii) a finite set
of parametric model§p(-|0) : 6 € ®} specifying probability distributions ofx.
Allowing p(x|0) = 0 creates one technical nuisance after another, so we assume

3) p(x]6) > Oforallx € X andf € ©.

An ‘estimating probability’q(-|x) is a probability on® for eachx € X.
Consider subseiS;, ..., C, of ®. After x is observed, allow the gambler to pay
b;i(x)q(C;|x) in order to geb; (x) dollars ifé € C;. The gambler is allowed to use
any bounded;. Bets are settled separately, and then summed.

The net payoff to a gambler who uses the $€is . . ., C¢} and the functions
{bi :i=1,...,k}Iis

k
4 ¢(x,0) = bi(x)[Ic,(0) — q(Cilx)].

i=1



Any such¢ is called a ‘payoff function’. Nothing requireg to be positive: if
q(Ci|x) = 0, the gambler pays 0 to géf(x) if 6 € C;. Similarly, C; may bef
or ®. In these respects, payoff functions work more smoothly than odds.

Corresponding to each payoff functignon X x ®, there is an ‘expected
payoff function’ on®:

(5) Eolp) = Y ¢(x.0)p(x]0).

xeX

Definition 1. Dutch bookcan be made against the estimating probability
q(+]|x) if there is a gambling system that provides a uniformly positive expected
payoff to the gambler: in other words, there exists a payoff fungieras defined
by (4) —and ane > 0 such that

(6) Eg{p} > € forallf € O.

To paraphrase Freedman and Purves (1969),

Imagine a Master of Ceremonies who chooses séme® and then picks

x € X at random fromp(-|0). The value ofx is revealed and the bookie

announces the estimating probabilit¢ |x). The gambler then constructs a
system with payoff functioip. When (6) holds, the gambler expects to win
at least no matter what the value éf

Of course, if (6) holds for some positigg any other positive can be obtained by
rescaling the payoff function.

If 7 is a probability on®, we will say that the bookie is a Bayesian with
prior & provided

@) m (x)q(0]x) = 7(6) p(x|6)

where

® ma(x) =Y 7(0)p(x]0).
0e®

Here,m  (x) is the ‘marginal’ probability ofc, integrated over thé’s.

Lemma 1. For the Bayesian bookie with prior, any expected payoff func-
tion — as a function of — integrates td) against .
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Proof. In (4), takeék = 1; write b for b1 andC for C1. Then)_, Eo{y}7(0)

IS
D) bW[1c®) — q(Clx) | px|)m(©) = o — B
0e® xeX
where
o= bx)1c(0)p(x|0)m(6)
0e® xeX
and

B=>"> bx)q(Clx)pxIO)m®) = o

0e® xeX
by ‘the law of total probability’. In more detalil,

B=Y > bx)q(Clx)p(x|)m(®)

e® xeX

— Z Zb(x)q(C|x)p(x|9)7T(9)

xeX 6e®

— Z b(x)q(C|x)myz(x)

xeX

— Z Zb(x)n(@)p(xl@) by (7)

xeX 0eC

=Y S b@)1e®) pxl0)7(0) = .

0e® xeX

Remark. Another way to say Lemma 1: the payoff functiahm (4) all have
expected value 0, relative to the probabilityXnk © that assigns magsx|0) 7w (6)
to the pair(x, 60).

Corollary 3. Dutch book cannot be made against a Bayesian bookie.

Let V be the set of all real-valued functions 6n soV is a linear space of
dimension card®).

Theorem 3. For each bookie, there are only two possibilitig$} the set of
expected payoff functions coincides withor (ii) the bookie is a Bayesian with
prior r, wherer is a probability on®.

Proof. If case (i) does not hold, there is a non-trivial functiolon ®, or-
thogonal to all expected payoff functions. For the momenty fex X andé € ©.
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Specializep in (4), choosingt = 1, b1 = 1 atx andb; = 0 elsewhere(C1 = {6}.
ThenE.{¢} L 7 unpacks to

9) my (x)q(01x) = 7 (8) p(x]0).

Equation (9) holds for alt andd. Inview of (3), itis not possible fat to be strictly
positive atd1 and strictly negative ato. Nor cansr vanish identically. Hence, we
can renormalizer to be a probability or®: then (9) says that the bookie is a
Bayesian with priotr.

Theorem 4. For the Bayesian bookie with prior, the set of payoff functions
coincides with the set of functions having expectafioelative tor.

Proof. Otherwise, we find a non-trivial functienon ®, not a multiple ofr,
orthogonal to all expected payoff functions. Arguing as before, we show that (9)
holds withv in place ofr. Hence,v can be renormalized to a probability. Let
uw=(@@+v)/2,ande, ={#:0 €O & u@) > 0}. If 0 € O, by (9),

(10) v(0)/u(8) = my(x)/my(x).

The right hand side of (10) does not dependborThereforey = . Similarly,
7 = pu = v, a contradiction proving Theorem 4.

The corollaries follow, as in the previous section.

Corollary 4. The following are equivalent.

(i) The expected payoff functions are all\of
(i) The bookie is not a Bayesian.
(i) Dutch book can be made against the bookie.

Corollary 5. The following are equivalent.

() The expected payoff functions are not allaf
(i) The bookie is a Bayesian.
(i) Dutch book cannot be made against the bookie.

Inthis case, the expected payoff functions consist of all functions with expe€tation
relative to the bookie’s prior.



3. From finite to countable additivity

We modify de Finetti's argument (Section 1) to favor countable additivity
rather than finite additivity. Le{2, @) be a probability space, finite or infinite;
let  be a function from to [0, 1]. In general, we requir& to be ac-field. A
‘payoff function’is

(11) Y calla — ¥(A)]
A

whereA € @ andcy is a finite real number: the sum is over a finite number of
A’s. Let ¥ be the set of payoff functions. The normalization is a little different
from (1): when O< A4 < 00, Y (A) = Aa/(L+ ra) andca = ba(1+ Aa)/Aa.
The imagery is different too. Informally, the gambler palyg for a lottery ticket
14, whichyields $1 ifA occurs and 0 otherwise: the betis just enough to get$1 if
happens. This bet can be scaled:lyan arbitrary real number. Any finite number
of bets can be placed. When is large, i.e.yy(A) = 1, thencs = bs. Wheni 4
Is small, i.e.,y (A) = 0, thencs = bs/y¥(A). The advantage of (11) is that the
formula can be used evenmif(A) = 0 or 1, corresponding to4 = 0 or oco.

To avoid dutch bookyr must be a finitely additive probability ofi. When
Q is finite, this can be proved just as before: the new proposition is a little more
general, since the odds are unrestricted. As a matter of notation, the previous
argument generates a (finitely additive) probabifityand identifiesy with 7.
The result is easily extended to the case wiserg infinite but& finite — and from
there, to the general case.

Suppose next we allow the sumin (11) to be countably infinite, so long as there
Is uniformly bounded pointwise convergence. More exactljdet i = 1, 2, ...}
be a sequence of subsetstband{c;} a sequence of real numbers. Let

on =) cilla, — v (AN,
i=1
Suppose
() |¢n(w)] < Lforalln=1,2,... and allw € 22, whereL is a real number;
@) lim, ¢, (w) = ¢ (w) for eachw € 2.

Then¢ is also considered to be a payoff function. Said another way, the set of
payoff functions is enlarged by taking uniformly bounded pointwise limits. & et
denote this larger set of payoff functions.
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Now, unlessy is countably additive, a dutch book can be made. Indeed, let
A; € @ be pairwise disjoint andl = U; A;. Of courseyr(A) > > 72, Y (A)).
Suppose that the inequality is strict. Consider a payoff function that has a bet on
eachA;, and a bet against, to win $1 in each case:

[V(A) = 1a] + D[, — ¥ (AD] = lm {[¥(4) = 1a] + Y [La, — (4]

=Y (A)— ) ¥(A) >0,

i=1

In short, finite additivity exposes the odds-maker to a dutch book — if the gambler
can use payofffunctions ifi. Of course, if the odds are computed from a countably
additiverr, each payoff function has expectation O relativertdy the dominated
convergence theorem, and dutch book is impossible.

Theorem 5. Suppose the sét of payoff functions is initially defined l§g 1),
with A € &, ao-field of subsets d®; only finitely manyA’s are allowed. The set
of payoff functions is then enlargedfoby allowing uniformly bounded pointwise
limits. A gambler can make dutch book unless the odds are compatible with a
countably additive prior o2, &@).

Example 2. Supposey is a remote (finitely additive) probability on the
integers. The gambler pays 0 to win $1 if integematerializes, for all integers.
The odds-maker will in the end have to fork over $1.

A primer on odds

If the odds onA are 3:1, and we bet $1 ofx:
if A occurs we win $1/3;
if A does not occur, we lose our $1.

If the odds onA are 3:1, and we bet $1 against
if A occurs we lose our $1;
if A does not occur, we win $3.

If the odds againsB are 3:1, and we bet $1 aB:
if B occurs we win $3;
if B does not occur, we lose our $1.



If the odds againsB are 3:1, and we bet $1 agairt
if B occurs we lose our $1;
if B does not occur, we win $1/3.

If P(A) =3/4—
the odds oA are 3:1
the odds against are 1:3

the odds o€ are 1:3
the odds against© are 3:1
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