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We’re in the OLS model Y = Xβ + ε, the εi being IID, with mean 0 and finite variance σ 2.
Take the n× p matrix X as fixed; or assume the errors are independent of X and condition on X.
We impose the following regularity conditions: n → ∞, p is fixed, X′X/n → V positive definite
p × p, and the largest element of X is o(

√
n).

Theorem 1. Under the foregoing regularity conditions, n1/2(β̂ − β) is asymptotically normal,
with covariance matrix V −1.

Theorem 2. Under the foregoing regularity conditions, when the null hypothesis restricts p0
components of β to vanish, the asymptotic distribution of F is χ2

p0
/p0.

Argument for Theorem 1. Let Xi be the ith row of X. Fix c, a p × 1 vector. Now

c′X′ε =
n∑

i=1

Ti with Ti = (Xic)εi .

The Ti are independent with mean 0. AndXic = o(
√
n). Furthermore, var (c′X′ε) = σ 2c′X′Xc is

of order n. Now we can appeal to a central limit theorem for independent non-identically distributed
components, each being small relative to the total (e.g., Lindeberg’s theorem, Feller Vol. II 1971
p. 518). Finally, β̂ − β = (X′X)−1X′ε.

All would seem to go through if the εi are independent, mean 0, constant variance σ 2, not
identically distributed, although some uniform integrability is needed; triangular arrays are probably
ok too. If e.g. there is an a priori bound on E(|εi |3), we can presumably get a Berry-Esseen type
of error bound on the difference between scaled β̂ and the approximating normal distribution.
Probably p = o(

√
n) is ok too.

Argument for Theorem 2. The error variance is a consistent estimator for σ 2, so the denom-
inator of F goes to σ 2. In a little more detail, let H = X(X′X)−1X′ be the hat matrix. The
residuals are e = (I − H)Y = (I − H)ε. The denominator of the F -statistic is ‖e‖2/(n − p).
Now E(‖Hε‖2) = σ 2p = o(n). Thus, E(‖e − ε‖2) = o(n). That’s all we need for convergence
in distribution.

For the numerator, letXu be the p−p0 columns ofX whose coefficients are unconstrained by
the null hypothesis (u for unconstrained). Let β̂u be the OLS estimator for those coefficients, i.e., in
the small model with thep0 constraints imposed. We have to get our hands on ‖Xβ̂‖2 and ‖Xuβ̂u‖2,
and then the difference. Let Xc be the p0 columns of X whose coefficients are constrained to 0 by
the null hypothesis (c for constrained). Let β̂c be the OLS estimator for those coefficients, i.e., in
the full model with no constraints.

1) F depends only on Y and the column spaces of Xu and X: indeed, Xβ̂ is the projection of
Y ontoX, whilstXuβ̂u is the projection of Y ontoXu. AWLOG thatXu consists of the first p−p0
columns of X; the null hypothesis constrains the last p0 entries of β to be 0.

2) LetW = X′X.
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3) In the leading special case,X has orthogonal columns with squared length n, soW = nIp×p;
the elements ofX are uniformly o(

√
n). The numerator of F is n‖β̂c‖2/p0 and Theorem 1 applies.

Pause to verify the numerator of F . First, Xcβ̂c ⊥ Xuβ̂u. So ‖Xβ̂‖2 = ‖Xcβ̂c‖2 + ‖Xuβ̂u‖2 and
the numerator of F is ‖Xcβ̂c‖2/p0. (See, e.g., section 4.8 in Freedman 2005.) But ‖Xcβ̂c‖2 =
β̂ ′
cX

′
cXcβ̂c = n‖β̂c‖2. Under the null, E(β̂c) = 0p0×1, and cov(β̂c) = Ip0×p0/n. That is where

the χ2
p0

comes from.

4) Reduce the general case to the special case by doing Gram-Schmidt on X; normalize the
output columns to have squared length n. If A is p × p non-singular, the column space of XA
coincides with the column space of X; for Gram-Schmidt, A is upper triangular. Call the output
matrix X̃. By construction, X̃′X̃ = nIp×p. The column space of X coincides with the column
space of X̃. Likewise, the linear space L spanned by the first p− p0 columns of X coincides with
the linear space spanned by the first p−p0 columns of X̃. The null hypothesis says thatE(Y ) ∈ L.

5) In order to use Theorem 1, we need to check that the maximum element of X̃ is o(
√
n).

This can be done by induction on p. The case p = 1 is obvious. Let’s go from p − 1 to p. Recall
that W = X′X, so W = nV + o(n). Let W0 denote the top left (p − 1) × (p − 1) corner of W ,
and let W1 = (Wp,1, . . . ,Wp,p−1)

′, so W1 is (p − 1) × 1. Define V0 and V1 in a similar way.
Let Xp be column p in X and X(p−1) the first p − 1 columns. The projection of Xp onto X(p−1)

is X(p−1)W
−1
0 W1, whose elements are o(

√
n)—because W−1

0 W1 → V −1
0 V1 and the elements of

X(p−1) are o(
√
n). A similar conclusion must therefore apply to Xp −X(p−1)W

−1
0 W1.

6) We must also check that Xp − X(p−1)W
−1
0 W1 has length of order

√
n; otherwise, renor-

malizing length could make trouble. The squared length of the projection is W ′
1W

−1
0 W1. The

squared length of the original vector is Wpp. The difference is n(Vpp − V ′
1V

−1
0 V1) + o(n) and

� = Vpp − V ′
1V

−1
0 V1 > 0 because V is positive definite. In more detail, V can be realized as the

inner products of pairs of a set of p linearly independent vectors of dimension p×1. The difference
� is the squared length of the pth vector net of the first p − 1 vectors. (A weird argument, but I
don’t see a direct calculation; more below.)

A more elegant set of conditions might be—

Let W = X′X. Let s be the smallest eigenvalue of W , and B the biggest. We require
s → ∞, B = O(s), and the largest element of X is o(

√
s). Argument seems to be the same, not

checked though. Presumably, normalize Gram-Schmidt so squared length is s. We should get that
W−1/2(β̂ − β) tends in law to N(0p×1, Ip×1). Check also that W/s is precompact in the set of
positive definite matrices (see below). Confirm that

s = min
x
x′Wx, B = max

x
x′Wx, s = min

x
‖Wx‖, B = max

x
‖Wx‖,

the min and max being taken over x with "2-norm equal to 1. In particular, the eigenvalues of W0
are between s and B. (In fact, although irrelevant here, the eigenvalues of the two matrices are
interlaced.) Also, B is the L2 norm of W , so any row (or column) of W has "2-norm at most B.
Especially,W1 has "2-norm which is O(s), so ‖W−1

0 W1‖ = O(1).
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Precompactness ofW/s

If 0 < α < β < ∞, the set of p×p symmetric matrices with α ≤ x′Wx ≤ β for all x having
‖x‖ = 1 is a closed bounded set.

The argument for Vpp

We can realize V above as Z′Z, where VR = RD with R orthogonal and D diagonal, and
e.g. Z = √

DR′. The difference Vpp − V ′
1V

−1
0 V1 is the squared length of the pth column of Z,

net of the projection into the first p − 1 columns. This length has to be positive: Z is nonsingular
because R is nonsingular.
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