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Abstract

Rooftop units fault detection and diagnostics is studied in this project. A rooftop unit is a
packaged self-contained air conditioning unit which has the role of mixing the air and
controlling the temperature and humidity of the air going to the building. It is the most
common source of heating, cooling, and ventilation in small and medium commercial
buildings, including retail stores, supermarkets, and restaurants. It is shown how the
correlation among measuring parameters can be used to detect and isolate abnormalities
in the system. The main challenge in rooftop unit diagnostics is to deal with measurement
constraints coming from practical limitations. It is shown how such restrictions can be
addressed systematically by intelligently using other measurements and filtering the
effect of irrelevant components. The initial results seem to be promising in analyzing the

rooftop unit performance without the need of detailed configuration data.

Introduction

Over the past two decades, there has been a growing interest on fault detection and
diagnosis in Heating, Ventilation, and Air Conditioning (HVAC) systems. HVAC
systems are a major consumer of energy in building. However, it has become apparent
that only in a small percentage of facilities, HVAC systems are working efficiently or in
accordance with the design intent [1]. The high proportion of inefficiently operating
HVAC systems has led to both increased energy consumption and a large number of
complaints by occupants. Studies have shown that operational faults in HVAC systems

are one of the main reasons for inefficient performance of these systems [1].

A well known device in HVAC systems, Rooftop Unit (RTU), has the role of mixing the
air and controlling the temperature and humidity of the air going to the building. A
rooftop unit is a packaged self-contained air conditioning unit, typically mounted on the
roof. It is the most common source of heating, cooling, and ventilation in small and
medium commercial buildings, including retail stores, supermarkets, and restaurants. The

U.S. Department of Energy estimates that rooftop and unitary air-conditioning equipment



accounts for 62% of the annual energy consumption used for cooling of the current

building stock of commercial buildings in the United States [1].

The focus of this pl‘OJ ect is on rooftop unit diagnostics. The questions of interest include:
i E’% AR % >§v ,%ﬂ”’"
D How does the correlation among measuring parameters change when the

system operates in a faulty mode?

1) Is there a logical pattern in parameter changes that can be used to isolate the fault
source?

The data used in this project is from Target retail stores. Target and other retail chains are
interested in automated diagnostics of the rooftop unit due to the extensive use of rooftop
unit packages in their retail stores. In summer 2008, the performance of a few units

located in Texas and California stores were gathered for diagnostic purposes.

A Brief Introduction to Rooftop Units (RTU)

Figure 1 shows the schematic diagram of a rooftop unit. Functionally, a rooftop air-
conditioning unit (RTU) has the task of mixing and controlling the temperature and
humidity of the air supplied to the building. It usually contains a fan, two dampers, a gas-
fired heating system, and/or a direct expansion (DX) cooling system. The dampers
control the mixing process of the return and outside air streams, and the heating and

cooling systems control the temperature and humidity of the air going to the building.

The heating/cooling system may contain several stages: cooling stage 1, 2..., heating
stage 1, 2... Each stage can be thought as an independent source of cooling or heating
armed with an on-off controller. When it is on, certain amount of heating/ cooling energy
is provided. The heating / cooling stages are activated by the rooftop unit controller

sequentially. More information about the rooftop unit control system can be found at [2].

For convenience, the following abbreviations are used in this report:
RTU: rooftop unit
RAT: return air temperature, the temperature of the air coming out from the building

OAT: outside air temperature



DAT: discharge air temperature, the temperature of the air going to the building

MAT: mixed air temperature, the temperature of the mixed air between the outside and

#

-

-

return air
CL1, CL2 ...: cooling stage 1, 2 ...
HTI1, HT2 ...: heating stage 1, 2 ...

The main challenge in RTU diagnostics is to deal with constraints coming from practical
limitations. In real applications, there are limited measurements available to monitor
RTU performance. For instance, there is usually no reliable measurement for the mixed
air temperature (MAT)', which forces us to rely on DAT sensor to analyze the

performance of both dampers and cooling/ heating systems. In such a scenario, when the

sensor output is contaminated, it could be due to the mal-functionality of either any

involving components, and it may not be straightforward to isolate.
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Figure 1. Rooftop unit schematic diagram

' This is a well known issue in RTU operation. Due to practical limitations, usually the mixed air
temperature sensors are mounted where the mixing process between the return and outside air are not
complete yet. Therefore, the sensor readings have bias.




The goal of this project is to develop diagnostic solutions within the boundaries defined
by practical limitations. In other words, the aim is to make the best use of available

measurements for diagnostic purposes.

Rooftop Unit Diagnostics

Figure 2 shows the performance of a rooftop unit from a Target store in Texas. The data

_ contains 24 hr operation of the unit starting at 12:00 07/31/2008 with 1 minute sampling

G
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rate. The first graph shows the variations of OAT, DAT, and RAT while the second,
third, and forth graphs show the variations of CL1, CL2, CL3, and damper (outside air
damper?). The damper position has been divided by 100. So, when it shows the damper
position at 0.3, it means the damper is 0.3*100 = 30% open. Also, as it was a hot summer

day in Texas, naturally the heating system was off,
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Figure 2. RTU performance from a Target store in Texas, from 07/31
07/31/2008 23:55, 1 minute sampling rate <+
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* The outside air and réturn air dampers are manipulated by the same actuator reversely; when one is
opening, the other one is closing. For example, when the outside air damper is at 30% open, the return air
damper is at 70% open.
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Figure 3. DAT and OAT and the autocorrelation functions after filtering
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cxample, Figure 3 shows the filtered version of DAT and OAT and the corresponding
PLY;TEN
autocorrelations. You see that the ﬁlteree}ilata is close to a stationary process. For the rest
i \é' AT kfﬂ';\(\ Caxioal . .
of this report, it is assumed that the filtered data is stationary.
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Now, as the first step, let’s focus on the functionality of heating/ cooling systems. The
question to ask is: how the mal-functionality of heating/ cooling systems can be detected
through monitoring DAT variations? A very common fault in RTU operation is to have
different stages of heating/ cooling systems broken®, and the aim here is to detect such

mal-functionality automatically.

The proposed approach is to analyze the linear correlation between the cooling/ heating
command and DAT variations. This inherently assumes that the effect of heating/ cooling
systems on DAT variations is linear. In reality, the relationship has some non-linear

el
aﬁPESES/ as well, but we are hoping that such simplification is acceptable for diagnostic

5

o
? A broken heating / cooling stage means that it does not turn on when it is commanded by the RTU
controller. i

b



purposcs4. In order to incorporate all stages of cooling and heating, a set of new

parameters C,,C,,C,,H,,H,,H, are defined as:

-1 if HT(t), is On

Con - +1 if CL (@) is On
(1) = 0 if HT(®), is Off

. H(t) =
0 if CL((t) is Off

Same for C,,Cs3, Hy and Hi. Now, CT is defined as:

CT=C +C,+C,+H, +H,+H, )]

, which is the arithmetic summation of all heating/cooling stages. In Figure 4, you can see
the calculated CT (before applying the difference operator) for the data shown in Figure
2.
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Figure 4
Now, the linear dependency between CT and DAT can be evaluated through the
coherency and phase functions which are shown in the third and forth graphs of Figure 5.

* The basic equation of thermal interaction between a heating/cooling coil and the air (two objects with
different temperature) can be expressed as [3]
q=hAT, -T,)

AT, ,andT : ‘
72401455 @ are heat transfer rate, surface area, heat transfer coefficient, coil surface temperature,
and the temperature of the air respectively. This is a very simplified expression of thermal interaction
process happening inside RTU. Now, if it is assumed that ¢, h, A, and Ts are constant (which may not be

necessarily true all the time), you see that the relation between the air temperature (7a) and heating/heating
command (g) is linear.




Note how these two variables are highly correlated in low frequencies as expected: the

frequency of on-off commands can not pass certain threshold as there is usually a

minimum delay (changing from case to case) between two successive turn on commands. 2
%

Also, note how the phase diagram shows a lead for CT over DAT in low frequencies.
This is coming from the fact that when a cooling / heating stage is turned on, it will take a

few minutes (3-5 minutes) until DAT fully respond to that because of warm up period.

The level of dependency is expected to decay when one or more cooling stages are
broken. This will be shown through another example later A question that one might ask
at this point is how the broken cooling/heating stage can be isolated. In other words, after
the detection of a problem in the cooling/heating system, the next step is to locate the

source of the problem (the broken stage).

The proposed solution is to compare the correlation between DAT and a set of CT’s, in
which, each CT is developed based on the assumption that one or more cooling/heating
stages are broken. When a cooling stage is assumed to be broken, the corresponding C in
Equation 1 is set to zero regardless of the CL values. The CT set should contain all
possible combinations of the cooling/ heating system faults. The CT with strongest
correlation with DAT will be considered as the winner and the corresponding hypothesis

<, et Ty

will be concluded as the health status of the heating/ cooling system.

For instance, in Figure 7, the graphs on the left side (first, third, and fifth ones) show a set
of CT’s (before applying the difference operator) --- the first graph assumes there is n(f‘)'[;
fault in the system, the second graph assumes CL2 is broken, and the third graph assume
CL1 and CL2 are broken® --- and the graphs on the right side show the corresponding

coherency. As you see shows the strongest correlation with DAT as expected.

Let’s test the developed diagnostic mechanism with another dataset Figure 7 shows 24 hr

performance of another rooftop unit this time located in a Cahforma store. Again the data

not respond accordingly to coolmg stage 1 (CL1) command

> Due to the space limitation, only few hypotheses are shown here.
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Figure 5. The power spectrum and coherency of the data shown in Figure 2

This gives the idea that CL1 might be broken. Figure 8 shows different CT’s and the
corresponding coherency graphs. As you see, the second graph, the one that corresponds
to the assumption of broken CL1, clearly has the strongest correlation which confirms the

idea of broken cooling stage 1.

After analyzing the functionality of cooling/ heating systems, the next step is to evaluate
the performance of the dampers. In other words, the next question is how the mal-
functionality of a mixing box® can be detected and isolated. The common faults here are:

reverse damper (damper closes when it supposed to open) stuck (damper is stuck at a

position), leakage (damper does not fully close), etc "

As explained earlier, the challenge here is the lack of a reliable measurement for the
mixed air temperature (MAT). The only available measurement getting affected by the
mixing box operation is DAT sensor. But DAT is also affected by the heating/cooling

system which makes it difficult to discriminate between these two.

% Mixing box is a component of RTU in which the mixing process happens. It contains the outside air and
return air dampers, and the space where mixing occurs.
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Figure 7. RTU performance from a Target store in California, from 08/15/08 0:32 to
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One solution is to evaluate the performance of the mixing box when the heating / cooling
system is off and has no effect on DAT. The problem this solution is that such a scenario

may rarely happen --- especially if it is a hot or cold season. Another approach, the

approach proposed here, is to take out the effect of the heating/ cooling system from >

B 4

DAT, and then use the filtered DAT to evaluate the mixing box performance.

With the assumption of linear correlation between the heating/cooling system and DAT,

this can be achieved by estimating the function {/,}which minimizes the following

St

equation:

© 2
MSE = E[DATt - > BCT, )

—F
p=—00 o,
’;\_ e

L4
)

DAT, is the value of DAT at time t and CT was defined in equation 1. As it is shown in
[5], the Fourier transform of {f, } can be found by:

10



}DA T,CT (W)

Blwy) = Lparcrt) (4)

Serer(w)

, and then S, can be estimated through the inverse Fourier transformation of B(w) . The

first graph of Figure 9 shows the estimated ,23 , for the data shown in Figure 2. A possible
model for this system could be: C N

DAT =-0.93xCT-098xCT, —2.09xCT, ~1.23xCT_, —0.95x CT , +0.83x CT

1+

5)

.« and it is consistent with the functionality of the cooling system functionality: you see

_that DAT not only depends on the current value of CT but past values as well (3-4 lags).

“As mentioned earlier, when a cooling stage is turned on, it normally takes three to five

minutes (3-4 lag) to fully affect DAT. You also see that DAT depends on future values of

CT in opposite direction, which is coming from the fact that when a cooling stage is

turned off, DAT will be increasing for a few minutes as the cooling effect is diminishing,
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The second and third graphs in Figure 9, show the residual, w,, and autocorrelation of the

residual:
w, = DAT, - Z'Bsngt-, <

Figure 10 shows similar results for the data shown in Figure 6. Based on the first graph of
Figure 9, the possible model can be:

DAT ==3.12xCT=23xCT_, —~143xCT_, =1.1xCT ; +1.29x CT,, +0.70x CT,,, +0.86xCT,,
(6)

and again you can have the same interpretations as for Equation 5.

Looking at autocorrelation functions in figures 9 and 10, you notice that the residual is
not a white noise. This should not be a surprise. The residual is expected to be a rough
estimation of the mixed air temperature (MAT), and its characteristics depend on OAT,

RAT, and the damper position.

Now, the question is how the estimated residual can be used to evaluate the functionality
of the mixing box. Logically, the correlation among MAT and OAT/ RAT should change
accordingly as the damper position changes. When this does not happen, it is an
indication of fault. Note that although in Figures 2 and 6 dampers seem to not changing
frequently, this is not necessarily true all the time. RTU controller may manipulate the

damper as frequent as the cooling/ heating system.

Again, the proposed approach is to compare the correlation between the residual and a set
of set of MAT’s, in which each MAT is generated based on the assumption of one or
more faults in damper operations. As before, the MAT that shows the strongest
correlation with the residual (which is an estimation of the true MAT) will be chosen as
the winner and the corresponding assumption will be considered as the dampers

functionality.

A simplified model of the mixing box operation is: Lo

MAT = (DMP/100)* OAT +(1- DMP/100)* RAT

12
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In reality, there are other factors involved but hard to measure. It is assumed that this
level of simplicity is acceptable for diagnostic purposes. This equation can be
manipulated to calculate MAT in different fault modes. The forth graph of Figures 9 and
10 shows the calculated MAT in different fault modes for the data of Figures 2 and 6

respectively.

Figure 11 shows the coherency and phase between the residual and calculated MAT’s
based on the data in Figure 2. As you see, the first row, which corresponds to no fault
condition, shows the higher correlation and almost zero phase in low frequencies. Note
that the variations of OAT, RAT, and DMP usually happen in low frequencies, and the
high frequencies normally correspond to noise in the system. Figure 12 shows the cross-
correlation function of the same pairs after prewhitening. Again you see that the case of
no fault, first graph, has the highest correlation at lag zero which confirms the idea of no

fault in dampers operation. Figure 13 shows the same analysis for the data in Figure 6.

13
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Conclusion

The assumption of linear correlation between the heating/ cooling system and the
discharge air temperature, and also the simplifications made in the mixing box operation
seem to be Justf’f\i‘able for RTU d1agnostlcs It was shown that the mal-functionality of the
cooling system can be detectedi and isolated by monitoring the linear correlation between

the cooling stages and DAT variations.

On the issue of the mixing box, the constraint of mixed air temperature measurement was
addressed by using a filtered version of the discharge air temperature in which the effect
of heating/ cooling system was removed, and the residual was used as a rough estimation
of the mixed air temperature. It was shown that the estimated mixed air temperature can
be used to analyze the mixing box performance, although due to simplifications and

el was lower comparing to the case of the heating/ cooling

filtering, the confidence

system.

I5



Reference

[1] S. Katipamula, M. R. Brambley, “Methods for fault detection, diagnostics, and prognostics for building
systems — a review part I, HVAC&R Research, 2005, vol. 11, nl.

[2] P. Haves, M. Kim, M. Najafi, P. Xu, “A Semi-automated Commissioning Tool for VAV Air Handling
Units: Functional Test Analyzer” ASHRAE Transactions. 113, Pt 1. 2007

[3] F. P. Incropera, D. P. DeWitt, T. L. Bergman, A. S. Lavine “Introduction to Heat Transfer”, fifth
edition, Wiley 2007

[4] R. H. Shumway, D. S. Stoffer, “Time Series Analysis and its Applications with R Examples”, second
edition, Springer 2005

[5] D. R. Brillinger, “Time Series Data Analysis and Theory”, SIAM 2001.

16



C:\Documents and Settings\mnajafi\My Documents\Course\Advanced Time Series Analysis\project report\project4-102.R Wednesday, May 06, 2009 6:39 PM

rm(list = 1ls{())
setwd ("C:/Documents and Settings/Matt/Desktop/Massieh/Courses/stat248/project")

#datal = read.table("Machine 1638_2008831 2.csv", sep = ",", header = TRUE)
#data = data.frame(datall(,3], datall,4], datall,5], datall,6], datall,7], datall, 8],
datall[,9], datall([,10], datalf(,11]1)

#rm(datal)

#names (data) = c("rat","dat", "oat", "dmp", "dmpf", " fan", "cl", "c2v, "c3")
#dat2 = ts(datal,'dat'])

#oat2 = ts(datal, 'ocat'])

#rat2 = ts(datal, 'rat'])

#cl2 = ts(datal, 'cl'])

#c22 = ts(datal,'c2'])

#c32 = ts(datal,'c3'])

#dmp2 = ts(datal, 'dmp'l)
#fan2 = ts(datal, 'fan'l)

datal = read.table("Machine 56.csv", sep = ",", header = TRUE)
rat2 = datall, 3]
dat2 = datall,4]
oat2 = datall, 5]
dmp2 = datall, 7]

cl2 = datall, 8]
c22 = datall(, 9]
fan2 = datall, 15]
c32 = datall, 16]

J o= 0;
datB:O;oat3=0;rat3=0;cl3=0;023=0;dmp3=0;fan3=0; c33=0
for(k in 1:length(fan2))

{
if (fan2 [k] == 1)
{ ,
J = j+1; dat3[jl=dat2(k]; oat3[j]=ocat2[k]; rat3 [jl=rat2[k]; <¢l13[jl=cl2 [k]
c23[jl=c22[k]; c33[jl=c32[k]; dmp3[j]=dmp2 (k] ; fan3 [j] =fan2 [k]
}
}

clns=cl3;c2ns=c23; c3ns=c33; dmp=dmp3; fan=fan3s
datns=dat3; oatns=oat3; ratns=rat3;

str=1
end = 820
#end = 636

hh = 1:length(datns)
windows ()
par (mfrow=c(2,2))

-1-
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plot(hh[str:end],datns[str:end],type = "1",col="red",ylab="Deg. F", xlab="Time",lwd = 1,
9lim=c(min(datns),max(oatns)))
lines(hh[str:end],catns[str:end], col="blue", pch=1, lty=1, type = "1v)
lines (hh(str:end], ratns[str:end], col="green", pch=1, lty=1, type = "1")
legend (x="topright",c("DAT", "OAT", “RAT"), col=c("red", "blue", "green"), lty=1,
lwd = 2, x.intersp = 0.6, y.intersp = 0.7, cex = 0.8, ncol = 1)
plot (hh(str:end],clns([str:end], type = "1, col="red",ylab="0n-0ff", xlab="Time", lwd = 1,

ylim=c(0,1.15))
legend (x="topright",c("CL1"), col=c("red"), 1lty=1,

lwd = 2, x.intersp = 0.7, y.intersp = 0.7, cex = 0.6, ncol 1)
plot(hh[str:end],c2ns(str:end], col="blue", pch=1, lty=1, type = "1", lwd = 1,
ylab="0n-0ff", xlab="Time", ylim=c(0,1.15))
legend (x="topright",c("CL2"), col=c("blue"), lty=1,

i

lwd = 2, x.intersp = 0.7, y.intersp = 0.7, cex = 0.6, ncol = 1)
plot (hh{str:end],c3ns[str:end], col="black", pch=1, lty=1, type = "1", , ylab="On-Off &
%Open", xlab="Time",lwd =1, ylim=c(0,1.15))
lines{(hh[str:end] ,dmp[str:end] /100, col="green", pch=1, lty=1l, type = "1", lwd = 2)
legend (x="topright",c("CL3", "Damper"), col=c{("black", "green"), lty=1,

lwd = 2, x.intersp = 0.7, y.intersp = 0.7, cex = 0.6, ncol = 1)

str=1

end = 1600

hh = 1:length(datns)
windows ()

par (mfrow=c(2,1))

plot(hh[str:end],datns[str:end],type = "1",col="red",ylab="F", xlab="Time",lwd = 1,

ylim=c (min(datns) ,max (ocatns)))

lines (hh(str:end],ocatns|[str:end], col="blue", pch=1, lty=1, type = "1")

lines (hh(str:end] ,ratns[str:end], col="green", pch=1, lty=1, type = "1")

legend (x="topright", c ("DAT", "OAT", "RAT"), col=c("red", "blue", "green"), lty=1,
lwd = 2, x.intersp = 0.6, y.intersp = 0.7, cex = 0.75, ncol = 1)

plot(hh[str:end],clns[str:end],type = "1",col="red",ylab="0n-0ff", xlab="Time", lwd = 3,

ylim=c(0,1.4))

lines (hh([str:end],c2ns[str:end], col="blue", pch=1, 1lty=1, type = "1", 1lwd = 1)

lines(hh([str:end],c3ns(str:end], col="black", pch=1, lty=1l, type = "1", lwd =2)

legend (x="topright",c("CL1", "CL2", "CL3"), col=c("red", "blue", "black"), 1lty=1,

lwd = 2, x.intersp = 0.7, y.intersp = 0.7, cex = 0.6, ncol = 1)

ctns = clns+c2ns+c3ns
str=1
end = 820

hh = 1:length(datns)
windows ()
par (mfrow=c(2,1))

plot (hh(str:end],datns [str:end], type = "1l",col="red",ylab="Deg. F", xlab = "Time", lwd =
1, ylim=c(min(datns),max(ocatns)))

lines(hhistr:end] ,ocatns [str:end], col="blue", pch=1, 1lty=1l, type .= "1n)

lines (hh[str:end], ratns[str:end], col="green", pch=1, lty=1, type = "1%)

legend (x="topright", c ("DAT", "OAT", "RAT"), col=c("red", "blue", "green"), lty=1,

-
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‘lwd = 2, X.intersp = 0.6, y.intersp = 0.7, cex = 0.8, ncol = 1)
blot(hh[str:end],ctns[str:end},type = "l",col="blue",ylab="0n-0Off", xlab = "Time", lwd =
2, ylim=c(0,3))
legend (x="topright",c("CT"), col=c("blue"), lty=1,

lwd = 2, x.intersp = 0.7, y.intersp = 0.7, cex = 0.6, ncol = 1)

cl2ns = clns+c2ns
cl3ns = clns+c3ns
c23ns = c2ns+c3ns

matns = (dmp/100) *ocatns+ (1 - (dmp/100) ) *ratns
matrns = (1 - (dmp/100))*oatns+ (dmp/100) *ratns
matstns = (70/100) *oatns+ (1 - (70/100)) *ratns

ct = diff(ctns, differences=2)
¢l = diff(clns, differences=2)

¢2 = diff(c2ns, differences=2)

¢3 = diff(c3ns, differences=2)

cl2 = diff(cl2ns, differences=2)
¢l3 = diff(cl3ns, differences=2)
¢23 = diff(c23ns, differencesg=2)
dat = diff(datns, differences=2)
oat = diff(ocatns, differences=2)

rat=diff (ratns, differences=2)

mat = diff(matns, differences=2)
matr = diff(matrns, differences=2)
matst = diff (matstns, differences=2)

datzm = dat - mean(dat)
ratzm = rat - mean(rat)
oatzm = oat - mean(oat)

clzm = ¢l - mean(cl)

c2zm = c2 - mean(c2)
c3zm = ¢3 - mean(c3)
ctzm = ct - mean(ct)

cl2zm = cl2 - mean(cl2)

cl3zm = cl3 - mean(cl3)
c23zm = c23 - mean(c23)
str=1

#end = 820

end = 636

hh = 1:length(datns)
windows ()
par (mfrow=c(2,2))

plot(hh[str:end],dat[str:end],type = "l",col:"blue",ylab:"Deg. F", xlab = "Time",
lwd = 1, ylim=c(min(dat) ,max(dat)), main='DAT difference!')

#lines(hh[str:end],oatns[str:end], col="blue", pch=1, 1lty=1, type = "1m)

#lines (hh[str:end], ratns[str:end], col="green", pch=1, lty=1, type = "1n)

legend (x="topright", c("DAT"), col=c("blue"), lty=1,
lwd = 2, x.intersp = 0.6, y.intersp = 0.7, cex = 0.8, ncol = 1)

-3-
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acf(dat, main = "DAT difference, Autocorrelation")

bLot(hh[str:end],oat[str:end],type = "1",col="blue",ylab="0n-0ff", xlab = "Time",
lwd = 2, ylim=c(min(oat),max(ocat)), main="OAT difference")

legend (x="topright",c("OAT"), col=c("blue"), lty=1,

lwd = 2, x.intersp = 0.7, y.intersp = 0.7, cex = 0.6, ncol = 1)
acf (ocat, main = 'OAT difference, Autocorrelation')

dat ct = ts(cbind(datzm,ctzm))
dat cl12 = ts(cbind(datzm,cl2zm))
dat_c13 ts(cbind(datzm,cl3zm))
dat c23 ts(cbind(datzm, c23zm))
dat_c¢3 = ts(cbind(datzm,c3zm))

#k = kernel ("modified.daniell",c(17,17))
k = kernel("modified.daniell",c(11,11))
windows ()

str=1

end = 820

#end = 637

hh = 1:length(dat)

par (mfrow=c(3,2))

plot (hh[str:end], ctns[str:end],type = "1",col="red", lwd = 2, main = 'Graph 1: No
Fault', xlab = 'Time’,
ylab = 'CT', ylim = ¢(0,3))

st = spec.pgram{(dat_ct, k, taper=0.2, detrend = FALSE, demean = FALSE, plot.type="coh",
main='Graph 2: Coherency')
alfal=0.01
f=gf(l-alfal,2,st3df-2)
c=f/(2*kSm+1-1+F)
abline (h=c,lty=2)
plot (hh([str:end], cl3ns[str:end],type = "1",col="red", lwd = 2, main='Graph 3: CL2
Broken', xlab = 'Time’,
ylab = 'CT', ylim = c(0,3))

s23 = spec.pgram{dat c3, k, taper=0.2, detrend FALSE, demean = FALSE, plot.type="coh",

[

main='Graph 4: Coherency')
alfal=0.01
f=gf (1-alfal,2,s23$df-2)
c=f/(2*kSm+1-1+f)
abline (h=c,1ty=2)
plot (hh(str:end], c¢3ns(str:end],type = "1",col="red", lwd = 2, main='Graph 5: CLl & CL2
Broken', xlab = 'Time’',

ylab = 'CT', ylim = c(0,3))
s13 = spec.pgram(dat c3, k, taper=0.2, detrend

FALSE, demean = FALSE, plot.type="coh",
main='Graph 6: Coherency’)

alfal=0.01

f=gf(1-alfal,2,s138df-2)

c=f/ (2*k$m+1-1+f)

abline (h=c, 1lty=2)

#M = 90 # Number of estimates
M = 48 # Number of estimates
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. #k = kernel ("daniell™, (L-1)/2)

#x = kernel ("modified.daniell",c(18,18))

#k = kernel("modified.daniell",c(18,18))

#cc = ctzm

cc = c23zm

#s = spec.pgram(ts(cbind(datzm,ctzm)), k, taper=0.2, plot = FALSE, detrend = FALSE,
demean = FALSE)

s = spec.pgram(ts(cbind(datzm,cc)), k, taper=0.2, plot = FALSE, detrend = FALSE, demean =
FALSE)

fr = s$freq

N= 2%length(fr)
dat.spec = s$spec [, 1]
c.spec = s$spec(, 2]
coh = sScoh

phase = sSphase

par (mfrow=c(2,2))

spec.pgram(ts(datzm), k, taper=0.2, detrend = FALSE, demean = FALSE, col = 'blue’, 1wd=2,
main="DAT -- Soothed periodgram™)

spec.pgram(ts(ctzm), k, taper=0.2, detrend = FALSE, demean = FALSE, col = 'blue’', lwd=2,
main="CT -- Soothed pPeriodgram")

alfal=.01

f:qf(l~alfa1,2,s$df—2)
c=f/(2*kém+1-1+f)
spec.pgram(ts(cbind(datzm,cc)), k, taper=0.2, detrend = FALSE, demean
FALSE,plot.type:"coh“
, lwd=2, main="DAT & CT-- Squared Coherency")
abline (h=c,lty=2)
spec.pgram(ts(cbind(datzm,cc)), k, taper=0.2, detrend = FALSE, demean
FALSE,plot.type:"phase"
, lwd=2, main="DAT & CT-- Phase")
#ecf (datzm,cc, col = ‘blue', lwd =2, main="DAT & CT-- Cross-correlation™)

H

i

############################
#alfal=.001

#alfa2=.010

#alfal3=.1
#x:ts(cbind(t.one,t.ten))
#x.spec:spec.pgram(x,kl,taper=.2)
#f:qf(1-a1fa1,2,x.spec$df-2)
#e=Ff/ (2%k18m+l-1+f)
#plot(x.spec,plot.type:"coh")
#abline (h=c,1lty=2)

B R B33

sampled.indices = (N/M) * (1:(M/2))
fr.M = fr[sampled.indices]

coh.M = coh [sampled.indices]

5.
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phasé.M = phase[sampled. indices]
a&t.spec.M = dat.spec {gsampled.indices]
c.spec.M = c.spec[sampled. indices]

B = sqgrt(coh*dat.spec/c.spec) *exp (1li*phase)
B.M = sgrt(coh.M*dat.spec.M/c.spec.M)*exp (li*phase.M)

delta.M 1/M
Omega.M = seq(from = 1/M, to = .5, length = M/2)
bb.M = function(s) 2*delta.M*sum(exp (2i*pi*Omega.M*s)*B.M)

[

S.M = ((-M/2+1):(M/2-1))
b.M = vector(length = length(S.M))
for(k in 1l:length(S.M)) b.M[k] = bb.M(S.M[k])

windows ()

plot(S.M, Re(b.M), type = 'o', col = 'blue', main = 'estimated B for M')
abline (h=0.7, col = 'red')

abline(h=-0.7, col = 'red')

coef = Re(b.M)

alphal = (M-2)/2
alpha2 M-2)/2 +1
datgen2 = 0

for(i in 1l:length(cl))

{

coef3 = (abs(coef)>0.7) *coef
ser = (max(i-alphal,1)-i): (min(i+alphal,length(cc))-1i)
datgen2 [i] = sum(coef3 [alpha2-ser] *cc[i+ser])

}

matgen = datzm-datgen2

mm = 1
#pp = 820
Prp = 636

windows ()
par (mfrow=c(2,2))

plot(s.M, Re(b.M), type = 'o', col = 'blue', main = 'Graph 1: Estimated {B}', xlab='Lag"')
abline(h=0.7, col = 'red', lty=3)

abline (h=-0.7, col = 'red',K 1lty=3)

#plot ((mm:pp) ,datzm[mm:pp],type = "1",col="blue", lwd = 1, main='Graph2’

# , ylab="Deg. F", xlab="Time")

#lines ( (mm:pp),datgen2 [mm:pp], col="red", pch=1l, lty=1, type = "1")

#legend (x="topright",c("DAT Original", "DAT Constructed"), col=c("blue”, "red"), lty=1,

# lwd = 2, x.intersp = 0.6, y.intersp = 0.7, cex = 0.7, ncol = 1)

plot ( (mm:pp) ,matgen [mm:ppl,type = "1",col="blue", lwd = 1, ylim=c(-20,20), main="Graph 2:
Residual®

, ylab="Deg. F", xlab="Time")
legend (x="topright",c("Residual”), col=c("blue"), lty=1,

lwd = 2, x.intersp = 0.6, y.intersp = 0.7, cex = 0.7, ncol = 1)
acf (matgen, main="Graph 3: Autocorrelation of residual")
Yy = range (matns,matrns,matstns)

-6-
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N

. plot(kmm:pp),matns[mm:pp],type = "l“,col:"red",ylab:"Deg.F", lwd = 1, vlim = YY¥,

.+ " . main = "Graph 4: Mixed Air Temperature (MAT) ", xlab="Time")
1ines((mm:pp),matrns[mm:pp], col="blue", pch=1, lty=1, type = "1")
lines((mm:pp),matstns[mm:pp], col="black", pch=1, lty=1, type = nylw)
legend(x:"topright",c("No Fault", "Reverse", ngtuck"), col=c("red", "blue", "hlack"),
lty=1,

1wd = 1, x.intersp = 0.7, y.intersp = 0.7, cex = 0.7, ncol = 1)

matzm = mat - mean (mat)

matrzm = matr - mean (matr)

matstzm = matst - mean {(matst)

windows ()

par(mfrow:c(3,2))

#plot((mm:pp),matgen[mm:pp],type = “l“,col:"black“,ylab:"Deg.F", lwd = 1, ylim:c(~20,20),
# main = "Graphl: Mixed Air Temperature (MAT)", xlab="Time")
#1ines((mm:pp),matzm[mm:pp], col="red", pch=1l, lty=l, type = i)
#lines((mm:pp),matrzm[mm:pp], col="blue", pch=1, lty=1, type = w1im)
#lines((mm:pp),matstzm[mm:pp], col="green", pch=1, lty=1, type = niv)
#1egend(x="topright",c(“Estimated","No Fault", "Reverse", ngtuck"), col=c("black", "red",
wplue", "green"), ity=1,

# lwd = 1, x.intersp = 0.7, y.intersp = 0.7, cex = 0.7, ncol = 1)

#k = kernel("modified.daniell",c(25,25))

k = kernel("modified.daniell",c(12,12))

g2 = spec.pgram(ts(cbind(matgen,matzm)), k, taper=0.2, plot = FALSE, detrend = FALSE,
demean = FALSE)

#s2 = spec.pgram(ts(cbind(matgenfl,matszl)), k, plot = FALSE, detrend = FALSE, demean =
FALSE)

fr = s2%freqg

coh2 = s2%coh

alfal=.1

f=qf(1—alfa1,2,52$df~2)

c=f/ (2%xk$m+1-1+f)

plot(sz,plot.type="coh", main="Graph 2: Coherency, No Fault")
abline (h=c, lty=2, lwd=2)

plot(sz,plot.type="phase", main="Graph 2: Phase, NoO Fault")

#s3 = spec.pgram(ts(cbind(matgenfl,matrszl)), k, taper=0.2, plot = FALSE, detrend =
FALSE, demean = FALSE)

83 = spec.pgram(ts(cbind(matgen,matrzm)), k, taper=0.2, plot = FALSE, detrend = FALSE,
demean = FALSE)

coh3 = s3$coh

alfal=.1

f:qf(l~alfa1,2,s3$df~2)
7-
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SR B b RISt _‘_______,_,_‘______,___,_,_“_______,_‘_,_____._,___ —

. c=f/ (2*kSm+l-1+f)

: ilot(s3,plot.type="coh", main="Graph 3: Coherency, Reverse")
apline (h=c,lty=2, lwd=2)
plot(s3,plot.type:"phase”, main="Graph 4: Phase, Reverse")

#k = kernel("modified.daniell",c(12,12))

#s4 = spec.pgram(ts(cbind(matgenfl,matstszl)), k, taper=0.2, plot = FALSE, detrend =
FALSE, demean = FALSE)

s4 = spec.pgram(ts(cbind(matgen,matstzm)), k, taper=0.2, plot = FALSE, detrend = FALSE,
demean = FALSE)

coh4 = s4Scoh

alfal=.1

f:qf(l—alfal,2,s4$df-2)

c=f/ (2%kém+1-1+£)

plot(s4,plot.type="coh", main="Graph 4: Coherency, Stuck")
#plot(s4,plot.type="phase")

abline (h=c,lty=2, 1wd=2)

plot(s4,plot.type="phase", main="Graph 6: Phase, Stuck")

#library(TSA)

windows ()

par(mfrow:c(z,z))

prewhiten(matgen,matzm, ylim:c(—o.S,O.S), col="'blue’, main:"Cross~correlation, no fault™)
prewhiten(matgen,matrzm, ylim:c(—O.S,O.S), col="'blue’, main:“Cross~correlation, reverse")
prewhiten(matgen,matstzm, ylim:c(~0.5,0.5), col="blue’, main:"Cross~correlation, stuck")




