
Lurking variable.

   A variable that has an important effect
and yet is not included amongst the
predictor variables under consideration.

Perhaps its existence is unknown or its
effect unsuspected.

Mosteller and Tukey’s World War II example

Simpson’s Paradox.

Medical treatment and outcome

outcome

success failure

1 100 100
treatment

2 110 80

success rate under 1: 100/200 = .50

success rate under 2: 110/190 = .579

treatment 2 looks the better



Actually the data were aggregated
(collapsed) over gender

male

outcome success failure

1 60 20
treatment

2 100 50

success rate under 1: 60/80 = .75

success rate under 2: 100/150 = .67

treatment 1 looks the better

female

success failure

1 40 80
treatment

2 10 30

success rate under 1: 40/120 = .33

success rate under 2: 10/40  = .25

treatment 1 looks the better



The conclusion of the study has been
reversed.

The two sexes were weighted differently with
treatment 1 going to 80 males and 120
females, while treatment 2 went to 150
males and 40 females.

Gender is a lurking variable

Difficulty results from a lurking variable
and combination of unequal group sizes.

If all groups of same size, circumstance
doesn’t arise.

Solutions for lurking variables – eliminate
them, hold them constant, or make them part
of the study.

Smoking and 20yr survival rate for 1314
English women. ( started 1972-4)

outcome

dead alive

yes 139 443
smoker

no 230 502

24% (139/582) of the smokers died and 31%
(230/732) of the nonsmokers.



Better to be a smoker?

Paradox goes away if the data are broken
down by age.

Smokers are more likely to die in all but
one age group.
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Exploratory time series analysis

Time series decomposition à la Cleveland.

Data y t  , t=1,2,…,T, with t time

Decomposition

   response = fit + residual

Assuming the fit “smooth”, it can be
estimated by loess(), polynomials, splines,
…, by smoothers



Example. Monthly water usage for London,
Ontario using log transform

   data, fit 1, residual 1

A pattern remains!

   data 2 = data – fit 1

   data 2, fi t 2, residual 2

   stem-and-leaf(residual 2)

Smoothing and reroughing.

smooth( x,twice=T)

Robustly smooths a time series by means of
running medians.

Running median can produce a jagged
sequence.



Twicing. The process of smoothing, computing
the residuals from the smooth, smoothing
these and adding the two smoothed series
together.

Hanning.

   y t  = (y t - 1 + 2y t  + y t+ 1)/4
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Exploratory time series analysis.

Differencing.

   ∆y t  = y t  – y t-1

Can lead to less of a pattern if the series
is meandering or has a trend



Example. Closing prices of IBM

hist()

Phase portrait

   plot y t  versus y t-1

Autoregresion.

Approx y t  by linear function of y t-1 ,…, y t -p

Example 1. For IBM via OLS

   y t  ≈ 1.286 + .982 y t-1

r 2 = .983

suggesting consideration of difference



   ∆yt ≈ -0.273 + 0.084 ∆yt-1

r2 = .007

Example 2. London, Ontario water usage

autoregression with 1 lag

   yt ≈ .383 + .920 yt-1

r2 = .854

residual plot

structure remains

autoregression with lags 1 and 12

yt ≈ .030 + .347 yt-1 + .651 yt-12



R2 = .919

Could use robust least squares

The form of the matrix XTX is worth noting in
the time series case.

The problem is to minimize

   ∑t [yt - α - β1yt-1 - ... - βpyt-p]2

a is such that

   ∑t [yt - a - b1yt-1 - ... - bpyt-p]
 = 0

The normal equations for b contain

   ∑t [yt-i - y][yt-j - y]/T



in row i, column j of XTX.

This is a Toeplitz matrix.

The normal equations are sometimes called
the Yule-Walker equations.


