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SOME RIVER WAVELETS
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SUMMARY

Wavelet gnalysis is described, and a Haar wavelet analysis is carried out, for time series data on the flow rate
of the Nile River at Aswan and also-on the stages of the Rio Negro at Manaus. A goal of the analysis is to

age. The results of the analyses are consistent with earlier ones.
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1. INTRODUCTION

Time series data are fundamental to discussions concerning the environment in fields like
climatology, ecology, hydrology and oceanography. Questions arise such as: Is there a smooth
trend? Has there been a change in mean level? Have there been several changes? The top panels of
Figures 1 and 2 give graphs, respectively, of the seasonally adjusted monthly stages of the Rio
Negro at Manaus, Brazil, from 1903 to 1992 and of the annual Nile River flow at Aswan from
1871 to 1970. The work will be done with these examples. One can wonder whether there have
been noteworthy trends or changes in the mean levels of these series. The data are discussed in
MacNeill ez al.” in the case of the Nile and Sternberg’ in the case of the Rio Negro. Because the
terrain is flat, the Rio Negro values are a proxy for the Amazon River.

Sometimes, scientific queries may be related to analytic questions concerning the mean
function of a time series model. One goal of the paper is to bring out the simplicity of Haar
wavelet analysis in producing an estimate of a mean function and to show that the methodology
is in parallel with the common techniques of running means and kernel smoothers. Contribu-
tions of the paper include the suggestion of a wavelet estimate for the case of additive stationary
errors, the construction of uncertainty limits for the estimate and results from employing a
particular shrinker.

The paper begins with review of methods for estimating mean functions, including wavelet
analysis, then that technique is employed in an examination of the two river data sets. Consistent
with early studies, there is evidence for a change in the mean level of the Nile discharge after 1900,
but little evidence of a change in the Rio Negro. In conclusion, it is found that the wavelet
technique has favourable prospects in the field of environmental time series analysis and that it
can take simple plausible form. '
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Figure 1. The top panel is obtained from daily Rio Negro stages by computing the monthly averages, then removing the

overall monthly means to get a seasonally adjusted monthly series. The middle panel is the naive Haar estimate (15) with

J = 3. The bottom panel provides the wavelet estimate (19) employing the multiplier function (17). The dashed lines give
approximate + 2 standard error limits about the overall mean level

2. MODELLING MEAN FUNCTIONS

Consider the model

Y(1)=8() + E(1) (1)
t=0, 1, £2, ... with S(-) a deterministic signal and E(-) a stationary noise, that is
E{Y(t)} = S(¢) is the mean level of the series Y(:) at time . Quite a variety of different
procedures have been proposed for estimating S(f) given data Y (#), t=0, ..., T — 1. These
methods can be linear or non-linear and parametric or non-parametric. Some of the procedures
are described next.
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2.1. Parametric procedures
To begin, consider the case of a finite parameter linear model, such as

E{Y()} = S(tla) = a1 81 (1) + - + a5,(1) )
with J known and the g, () ..., gs(+) given functions (they could be polynomial or trigonometric).
Questions of trend and change might be formulated as a hypothesis that some of the a; are 0. The

parameter o may be estimated, for example, by ordinary least squares.
Supposing that the data are available for t=0, ..., T—1 and that the gi(t) satisfy
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Figure 2. The top panel graphs the annual discharge of the Nile at Aswan for the period 1871 to 1970. The middle pape! is
the naive Haar estimate (15) with J = 3. The bottom panel provides the wavelet estimate (19) employing the multiplier
function (17). The dashed lines give approximate + 2 standard error limits
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Grenander’s conditions such as, for some Ny
] Il
Th-l.lgoN_T;gf(t + u)gi(1) = my ()

the large sample distribution of the ordinary and of best linear unbiased least squares estimates
may be determined (see Grenander and Rosenblatt,3 Hannan,4 Anderson,’ Brillinger.ls The
ordinary least squares estimate is asymptotically efficient in important cases. Confidence limits
about a fitted level

8(1) = S(1l6) = 6,8,(8) + -+ + 6,85 ()

may be set down making use of the asymptotic distribution.

Hannan”? further considers the case of ng(t), where the regressors depend on 7, with
analogues of Grenander’s conditions holding. Results are also available for the case of non-
linear regression, the function S(|6) being known up to a parameter 6. Exponential trends and
hidden periodicities are included within these latter models. Limits of Grenander type,

oI .
Jlim TZ% S(t + u|6")S(116%)

are taken to exist. Asymptotic distributions may be derived, questions of efficiency addressed and
hypotheses that specified components of 8 are 0 may be examined, see Hannan,” Robinson,'
Gallant and Goebel.!!

2.2. Non-parametric procedures

In the case that the mean function S(r) is smooth, one can consider its estimation by a running
mean (or kernel smoother), i.e. an expression of the form

$(t) =3 w(t—9)Y(s)/ 3 w(t~s) ®3)

where the kernel, w;(-), has binwidth b. (In the case of a running mean, w() would correspond to
a uniform density.) This type of estimate has been computed for decades, see for example
Macaulay.'? In the case of known b, the estimate (3) is linear so various approximate distribution
results may be developed directly. See Brillinger,!* Bloomfield and Nychka!* for applications.
Hirdle and Tuan'’ present results including robust procedures. The problem of estimating »
is considered in Chiu,'® Hart,'” Altman."® The optimal b is determined in Truong," Truong
and Stone.?

The just described procedures employ uniform binwidth for all 7. Variable binwidth smoothers
have been proposed on occasion, see Hastie and Tibshirani.?! The wavelet estimates have this
variable character. .

Further approaches to the estimation of the function S(-) include: orthogonal series
expansions;?2?3 smoothness priors;4-26 regression;?” splines.2®2° There is general discussion of
smoothers in Hastie and Tibshirani.?!

3. WAVELETS

Wavelets are a contemporary tool for function approximation. They are competitors/
collaborators with traditional Fourier analysis and other orthogonal function expansions as
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above. In particular they are useful for handling localized behaviour, discontinuities, and scale
and shift transformations.

3.1 Introduction

Wavelet analyses correspond to particular orthonormal series expansions. One starts with a
function ¢(-) satisfying a so-called scaling identity

$(x) = cxp(2x — k)
k
such that the ¢;(x) = ¢(x — k), k=—o00, ..., 00 are orthogonal. Then one obtains

Y(x) = Y (=1)c_ti19(2x — k)
k
and an associated orthonormal family

Y(x) = 212y(2x — k). @
For a square-integrable function h(x), one has the orthogonal series expansion

oC

=3 3 B (5)

J=-oc0k=-00

with

By = j Ye(x)h(x)dx. (6)

General references include Daubechies,* Walter,3!32 Strichartz,** Benedetto and Frazier. 3
Expression (5) may be usefully written

W(x) = ho(x) + f;kf Bitu(x) )
where T
ho()= 3 ad(x) ®)
with o
o = [Be(h(x)ax. )

In the case of a function with discontinuities, a naive wavelet analysis may be suitable, namely
Haar analysis. This is based on the particular functions

I 0<x<1
(x) = 0 otherwise
satisfying ¢(x) = ¢(2x) + #(2x — 1) and
. 1 0<x<1/2
P(x)= -1 1/2<x<1 (10)
0 otherwise
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satisfying 9¥(x) = ¢(2x) — ¢(2x — 1). Expressions (6) and (9) take particularly simple form in
this case.

3.2. Some specifics

General motivation and discussion may be found in Bock.> Suppose that data, Y(1),t=0,...,
T —1 are available. In developing estimates and approximations it is convenient to write
S(f) = h(t/T) with h(x) =0 outside (0,1). An elementary estimate of S(f) suggested by (8)
and (9) is

) J 0

S(= 3 adlt/T)+>. S Bau(t/T) (11)

k=-x J=0k=-x

with J representing the finest scale of interest and with

& =33 B/ T)Y () (12)
Br =72 /T ¥ (). (13)

(Note that, despite its appearance, (11) involves but a finite number of terms.)
In the case of the Haar wavelet, things simplify. The only é is &; and it is the mean of the ¥’s.
The form of Gy is
Jj/2

Bu=2r [Zj’r(x) —Z;”me (14

where 3" is over 0<2/t/T —k <4 and 3" is over } <2/t/T — k < 1. Computing such local
means, in either a smoothing or a search for change-points, seems intuitively reasonable. The
estimate (11) is simply

271

J
St) =do+Y Y B2 (2 5~ k) (15)
j=0k=0

k=
i.e. a linear combination of step functions.

The statistics (11), (12) and (13) are linear in the ¥’s, hence sampling properties are directly
available, e.g. large sample variances and distributions. In the case of (13) for example

o 1
varf = [ WO feeVA 1 || w(xdx2nfee(0) (16
-7

with fgg(A) the power spectrum of the noise E(-) at frequency A and

T-1
WTO) =23 (/).
t=0

An estimate of (16) will be needed to form the estimates of the next section. It and an estimate of
the variance of (15) will be developed in the Appendix.

3.3 Shrinkage estimates
Shrinkage is basic to the computation of wavelet estimates, see Donoho and Johnstone,
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Donoho®” and Hall and Patil 3# The suggestion to use shrinkers or multipliers to ‘improve’
estimates has been around in statistics for many years, see Lemmer.* There is an early harmonic
synthesis application in Blow and Crick,* concerned with crystal imaging.

A shrinkage regression estimate involves regression coefficients 3 being multiplied by factors
between 0 and 1 depending on their individual uncertainty. For example, 3 may be shrunk to

w(B/s)B

where s is an estimate of its standard error and w(-) is a function such that w(u) = 1 for large |u|
and = 0 for small [u]. Tukey,*' for example, proposes

w(u) = (1 - 1/u?),. 17)

It may be noted that this multiplier weights to 0 all terms where | 3] is less than its standard error.
Saleh and Han*? take w(+) to be a function of a test statistic for the hypothesis that 3 is 0.
In the wavelet case, one can consider the shrinkage estimator

A

. 00 J 00 . .
S(z)=k2 Gde(t/T)+ 3" >~ wlbi/su)Buwu(t/T) (18)

=—00 J=0k=-00

» where sfk is an estimate of the variance of Bjk. Donoho and Johnstone* and Hall and Patil®®
suggest some multipliers, of the form w( B/scr) with, e.g. cp = /(2 log T).
In the Haar case, (18) becomes

5(1) = G0+ 5= 5= 5 920y (o1 1
S0 =d0+ 33 B2 y(2 =1 (19)

J=0k=0

TR R T

writing wy, for the multiplier. The construction of an estimate of the standard error of (19) is
indicated in the Appendix.

TR

¢ 4. EXAMPLES

The first example is based on the stages of the Amazon River at Manaus, 1903-1992. Monthly
values are employed, having reduced the seasonal effect by removing overall monthly means. (In
the case that a trend is present, the seasonal will not be removed completely.) The length of the
series is 7 = 1080. The first panel of Figure 1 plots the seasonally adjusted values. The second
gives the Haar fit (15), taking the finest level of detail to be J = 3. This graph shows how the
estimate corresponds to the series being divided into 16 contiguous segments, then the mean level
being estimated throughout a segment by the average value of the data in the segment, see
e Brillinger.*® The final panel provides the shrunken estimate (19), with the multiplier
3 w(u) = (1 - 1/u?),. One sees that a number of the steps of the middle panel are gone and
that the values have been shrunk towards the middle. The dashed lines of the figure, whose
computation is described in the Appendix, give approximate marginal + 2 standard error limits
about the overall mean level, computed using (20). An increase in average level in the years
around 1970 stands out.

The second example concerns Nile River discharge at Aswan, Egypt. This series has been a
testbed for change-point techniques in the past. The data themselves are listed in Cobb.* They
are annual July—June flows from 1871 to 1970. The T = 100 values are graphed in Figure 2. The
simple Haar estimate (15), is graphed in the middle panel taking J = 2. The estimate (19) is
1 graphed in the bottom panel, again using the multiplier (17). The dashed curve gives approximate

eia
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marginal + 2 standard error limits about the overall mean level. One sees that the first quarter of
the fit is well outside the limits. This result is consistent with previous studies.! These authors note
that a dam was built at Aswan in the period 1899 to 1902.

6. DISCUSSION

Wavelets estimates have been found to take on a simple and natural form in the Haar case. The
detail of the estimate is seen to vary with ¢ in contrast with the usual running mean or kernel
estimates. The profile of the estimate in this Haar case is such as to highlight possible jumps in the
mean level. As set out in the Appendix, the analyses have involved both wavelet and Fourier
analyses, the former to obtain an estimate of the mean level, the latter to estimate its uncertainty.

The confidence bounds in the figures are marginal. Approximate simultaneous bounds could
be constructed in a2 manner extending Bjerve ef al.*’ and Eubank and Speckman. 4

Other approaches remain, Step functions of unknown step points might be fit. Donoho*’
presents a procedure that picks up general change-points, not those simply of the form k/2 as is
the case here. Finally, experience with different multipliers and the accuracies of the approxi-
mations made needs to be gained.

APPENDIX

To form the shrunken estimate (18) one needs estimates of the var 8 given by (16). The spectrum
value fgg(0) needs to be estimated. The method employed in the data analyses is to compute the
simple fit, Sy(z) of (15), then the residuals, E(1) = Y(f) - So(f) and then to average the
periodograms near 0 (see Brillinger®).

To determine a variance estimate for $(f) — &, of (15) one needs an expression for

COV{ Bjk’ ,Bj’k’}'

One such is
1
[ S0 Ve 0 = 1 [ e Cohts2nfe 0

giving (16) when (j,k) = (j',k’) and 0 otherwise, following the orthogonality of the v’s.

Inserting multipliers, as in (16), complicates the computation of standard errors, but it is hoped
that this effect is secondary, as is the case in some similar situations. In the computations the
multipliers are treated as constants, and the variance estimate taken to be

»N) (5) whop | vaeParnfeeco (20)
(2 \T) Wik |, Vi EE
with wye = w( B /si)-
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