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ABSTRACT: Fourier inference is a collection of analytic technigues
and philosophic attitudes, for the analysis of data, wherein essential
use is made of empirical Fourier transforms. This paper sets down
some basic results concerning the finite Fourier transforms of sta-
tionary process data and then, to illustrate the approach, uses those
results to develop procedures for: 1) estimating cloud and storm
motion, 2) passive sonar and 3) fitting finite parameter models to
nonGaussian time series via bispectral fitting. This last procedure
is illustrated by an analysis of a stretch of Mississippi River runoff
data. Examples 1), 2) refer to data having the form Y(xj,yj,t) for
j=1,...,Jandt=0,..., T-1 say, and view that data as part of
a realization of a spatial-temporal process. Such data has become
common in geophysics generallty and in hydrology particularly. The
goal of this paper is to present some new statistical procedures per-
tinent to problems in the water sciences, equally it is to illustrate
the genesis of those procedures and how their properties may be ap-
proximated.

(KEY TERMS: array data; bispectral fitting; Chernoff faces; cloud
motion; Fourier inference; Gaussian fitting; power spectrum; nonlinear
regression; runoff; time series.)

INTRODUCTION AND SUMMARY

Statistical inference is concemed with making statements
going beyond the data at hand. Fourier inference is the part
that proceeds in this connection making essential use of
Fourier transforms. Making use of such transforms is often
found to simplify the study of a scientific problem, both
philosophically and analytically. The latter results in part
from the nice mathematical, statistical and computational
properties of the Fourier transform. The Fourier transform
isolates effects and often allows a problem to be replaced
by one involving independent identically distributed observa-
tions, i.e., those with which the vast majority of statistical
techniques are concerned.

Fourier inference is one concern of this paper. A second

is the statistical analysis of array, or network, data. The
data take the form

forj=1,...Jand t=0, ... ,T-1 with the index t viewed
as “time” and the points (x]-, +) viewed as the (planar) loca-
tions of an array (or networL) of sensors. For fixed j,
Y(Xj,Yj,t) t=0,...,T-1 is a stretch of time series data. For
fixed t, Y(Xj,yj,t) j=1,....,J is a sampling of a spatial
field. Examples to be expanded upon later in the paper in-
clude: the contemporaneous rates at which rain is falling as
recorded at a network of gauges, the fluctuating pressure
levels being measured by an array of sonar sensors and the
measured runoff rate at a station on a river. The particular
scientific problems to be considered in connection with these
examples are, respectively: estimation of direction and velo-
city of storm movement from data at two time points, esti-
mation of the direction of an energy source from data at a
few sensors, and the fitting of a finite parameter model to
the runoff. The procedure presented for this last is novel,
making use of both second- and third-order information.

Array data are essential to the study of phenomena moving
and varying in time and space. Study of such data, and
corresponding processes, adds insight to the marginal space
and time cases. Array data allow estimation of parameters
important to other scientific problems, such as frequency-
wavenumber spectra which appear in expressions for ex-
ceedance probabilities (see for example Forristall, ez al., 1978).
Array data have become common in geophysics generally
and in hydrology particularly.

Section 2 of the paper sets down basic notations, defini-
tions and statistical propertiés of the Fourier iransforms of
(large) segments of stationary processes. Section 3 illustrates
how these properties may be invoked to build analyses and
to suggest techniques for making statistical inferences. The
cases of model fitting and estimation will be concentrated
upon. Section 4 is concerned with the estimation of cloud
and storm motion, Section 5 with passive sonar and Section 6
with improved fitting of a model for river runoff by making
use of both the power spectrum and bispectrum. This last
case is illustrated with a preliminary analysis.of monthly

1Paper No. 85098 of the Water Resources Bulletin. Discussions are open until June 1, 1986.

2Statistics Department, University of California, Berkeley, California 94720.
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observations of Mississippi River runoff. The paper concludes
with a Discussion.

The work edited by Brillinger and Krishnaiah (1983) con-
tains papers surveying a broad vanety of aspects of Fourier
inference.

SOME BASIC CONCEPTS AND RESULTS

This section serves to introduce the notation, the assump-
tions and the properties of the Fourier transform as a tool in
the analysis of random process data.

By time series data will be meant a succession of values
Y(0), Y(1), . . . ,Y(T-1) with T the length. The series may
be vector-valued, in which case boldface notation will be em-
ployed, Y(t) t = 0 . ,-T—1. The Fourier transform of this
last will be denoted by

ao = 1501 Y(t) exp{—iAt} , —oo<A<oo )

Tt will typically be computed for a set of discrete frequencies
by some fast algorithm (see Heideman, et al (1984), for a
review and references).

In many circumstances time series data may be usefully
viewed as part of a realization Y(t,w)t = 0£1,%2,...0fa
stochastic process. (Here w is a random variable and Y(.,w)
measurable in w.) This allows parameters to be defined
through which analysis and discussion may be carried out.
Parameters that are of particular importance for this paper
arise when the process Y(¢) is stationary (that is joint prob-
ability distributions are unchanged by time translation) and
include the (matrix-valued) covariance function

yy@® = cov {Y(tru), YO} ®
t,u=0,z1,. .. and the spectral density matrix
fyy® = Q1 u=z;_ _ Syy(w) exp {—iAu} 4)

for —eo<d<eo, In the case that the process Y(-) has mean
Q, this last may be connected to the statistic (2) via

e {ado iy G

fyy® = lim a7y
T—oo
(“7” denoting matrix transpose, “—” complex conjugate).
When the process is real-valued, one has the power spectrum.
Letting fjkO\) denote the entry in row j, column k of f5~(3),
one can define the coherence of the j-th and k-th compo-
nents of Y(*) at frequency A as

Ry MB = 16500 P/, Nfige ) ©
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It is a useful descriptive parameter and also appears in many
expressions for sampling variability.

There are corresponding definitions in the case of a spatial
process, Y(x,y,w) X,y = 0,41, Here x,y are the coot-
dinates of location and for example in the stationary case
one has the covariance function

< YY(u,v) = cov{Y(x+tuy+v),Y(u,v)} @)

uyv,x,y =0,*1,...and the power spectrum

Eyy(@B) = @m 2T gyyluy) exp{-i(u+Bv)} (8)
uv

—eoLq, <o with (a,B) referred to as the wavenumber.

A spatial-temporal process has coordinates of both space
and time. Its Fourier transform has coordinates of both
wavenumber and frequency. In a variety of applications, a
spatial-temporal process will be observed only at irregularly
spaced positions L= (Xj,yj) ,i=1,... .

The development of the techniques/analyses presented in
this paper will make substantial use of central limit theorems
for empirical Fourier transforms. The distribution of a
statistic like (2) will be approximated by a (complex) normat
distribution. In the case that the process Y(*) is Gaussian,
the distribution is exactly Gaussian. In the general case the
result holds for processes that are stationary and mixing.
Mixing here means that values of the process that are far
apart in time (or space) are statistically independent or nearly
so. Precise formulations of mixing conditions leading to the
desired central limit theorems may be found in Hannan (1970)
and Brillinger (1983), for example.

Quoting from the last reference, the sort of results one
has include:

1) For 0 <A< 7, Q;r((?\) is asymptotically normal with
(M), as T—oo;

mean Q and covariance matrix 27T f
, 4305

2) For 0 <Ay <... <X <m dy(Ay), ...
are asymptotically mdependent and

3) For )\T 21rs /T with 0 < 7\k < and the sT distinct
YO\P{) dY(7\K) are asymptoti-
cally mdependent complex normals with mean 0 and co-
variance matrix 27T fyy(2). Usually one takes 7\k—>)\ as T oo,

These results suggest many procedures pertinent to the
analysis of time series data. One great simplification that
they suggest follows from 3), namely, to treat the g%(ki{)
as if they were a sample from a normal distribution. As a
preliminary example, one is led to estimate fy~/()) by

integer, k=1,

hyo = k71 2 emlafod dfod) ©)

and to approximate the distribution of this statistic by a
complex Wishart with parameters K and f< ().
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From the standpoint of developing empirical procedures
and understanding their properties, the Skorokhod represen-
tation is an exceedingly valuable tool. It allows one to write
the result 3) above as

dboD = by + 0@V k=1, K (10)

where the hy are independent complex normals with mean
Q and covariance matrix 27T fyy(A). It allows one to ob-
tain approximating distributions of functions of Fourier trans-
forms by elementary manipulations. The abstract theorem is
in Skorokhod (1956). (Here T—1/2 0,...(T1/2) tends to 0
with probability 1.)

The above are first- and second-order results. In the bi-
spectral estimation procedure to be presented, third-order re-

sults are employed. Suppose the real-valued series Y(t) has
mean cy and third-order moment function

cyyy@V)=E [Y(t+uw) —cy] [Y(t+v)—cy] [Y(D)—cyl F(11)

tuyv = 0,1, . Then the bispectrum of the process Y(*)
at bifrequency (A W) is given by

fyyy() = 2072 £ cyyy(u) expl—iQuun)} (12)
uv

— o0 <A, < oo In the case that Y(+) has mean 0, analo-
gously to expression (5),

fYYY(A,u)—hm a2t Efad oy alw dY()\+u)}
(13)

Fourier transforms at frequencies A,up such that Autv =0
are seen to be statistically dependent in a special way. The
quantity

Ly = 202171 aby dlw) alovw (14)
is the third-order periodogram. Some of its statistical pro-
perties are developed in Brillinger and Rosenblatt (1967); in
particular one has

E vy (M) ~ fyyy(om) (15)

var IyyyO\,u) ~ = fyyO\) fyy (W) fyy(Atu) (16)

provided that 0 < u <X <A +2u< 7. Further the asympto-
tic covariance of third-order periodograms at distinct bi-
frequencies is negligible and the periodogram may be smoothed
to estimate the bispectrum, with the estimate asymptotically
normal, Details may be found in Brillinger and Rosenblatt
(1967). Bispectral analysis is useful in dealing with non-
Gaussian processes and with nonlinear systems.
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The specific procedures discussed later in this paper are
concerned with the estimation of a finite dimensional param-
eter. The estimate is generally normal and an expression may
be set down for the covariance matrix of its asymptotic dis-
tribution. The rigorous development of such results generally
proceeds in the following two step fashion: (1) an empirical
loss function Qp(0) is recognized. The estimate 8 is the
value of 6 minimizing Qp(f). As T — o, Qp(0) tends in
probability to the function Q(f) having a unique ml}\nmum
at 6 = 6,. Then, under some regularity conditions, 0 tends
in probablhty to the “true” value 8; (2) it follows that one
can act as if 0 is near 0, and set down the following Taylor
series expansion

Q) = Qo)+ - 8,) - Ap6) a7
for 84 between 8 and 6. So one can write
66, = — Q8 Qo (18)

Often it is the case that /T Qir(ﬂo) is asymptotically normal
with mean Q and covariance matrix A and the case that
Q6+) ~ B~1. One can then conclude that /T (B — ) is
asymptotically normal with mean Q and covariance matrix
B AB.

The loss function may be a sum of squares, it may be a
negative log likelihood function, or it may be a negative log
likelihood function corresponding to a multivariate normal
with parameterized mean and covariance functions. In a
broad variety of situations the computation of 8 , for given
Qr, may be carried out by iteratively reweighted least squares
— a technique that has much to be said in its favor (see Green,
1984).

The above two-step procedure, of first showing consistency
then making a Taylor expansion, is what was employed to
formally develop the approximate distributions suggested for
the examples presented in Sections 4, 5 and 6 of this paper.

To end this section of technical results, it may be men-
tioned that the Fourier transforms basic property of convert-
ing convolution into multiplication holds in an approximate
sense 1n the finite case In particular if Y(t) = Z a(u)X(t—u),
then dYO‘) = A(}\)dXO\) with AQ\) = T a(u) exp {—iAu}.
(This approximation is made explicit in Brillinger (1975a)
Lemma 3.4.1, Theorems 4.5.2, 4.5.3 for example.)

SOME PARTICULAR TECHNIQUES

This section presents details concerning the implementa-
tion of regression analyses, Gaussian fitting and bispectral
fitting by Fourier means. There is also brief mention of
some variants in the computations.

Regression

To begin consider the case of a linear time invariant model
such as
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follows: given the estimate at the previous iteration, (non-
linear) regress IST on f; employing weight f_ 2 evaluated at
the estimate of the prev10us iteration. Iterate until conver-
gence.

Standard error estimates are a by product of this iterative
procedure. They are appropriate in the case that fourth-
order spectra of the series are negligible; otherwise formulas
like those of Section VII of Brillinger (1974) need to be em-
ployed.

An example of Gaussian fitting of runoff data is given in
Section 6 of this paper.

Bispectral Fitting

Gaussian fitting makes use of second-order information and
statistics. When a process is nonGaussian, such a fitting pro-
cedure cannot be expected to be efficient. The procedure
about to be described seeks to obtain improved estimates by
incorporating third-order information. Suppose the series Y(*)
has bispectrum fYYYO\,ulB) also depending on §. Write

5 =m T d{{(lTﬂ) d@(z?”s) ali J—“’TT“S ) (30

2m 27 | 31
(T’T ) (3D

frs=fyyy

Bispectral estimates formed by smoothing the third-order
periodograms (30) are asymptotically normal and independent
of corresponding second-order quantities (see Brillinger and
Rosenblatt, 1967). This suggests setting down Qp(6) that is
the sum of the second-order term (30) and a term resulting
from acting as if the third-order spectral estimates Gaussian.
When this Qp(6) is differentiated, with respect to 6, the fol-
lowing system of estimating equations is obtained,

of
T S 162
20519 5515

2ral -t TG 6

The first term on the left here is the second-order one (29).
The weights occurring in the second term correspond to the
variance of the third-order periodogram as given by (16).
Examination of these equations indicates that, once again,
the estimates may be computed by iteratively reweighted least
The regression formulation involves both the IST and

squares.
the IT . Handle the IT as before. Now at the same time
regress the IT onf, employmgwelght /f S r+sevalu.ated at

the estimate of the previous iteration. ('Preparmg a computer
program to do this for the example presented in Section 6
below did not prove enormously difficult.)
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It is important to validate models and fits. In the present
case the third-order fit may be examined by the standardized
quantities

2m T _% £EF (33)

T 1S 18 rsrts

where /f\f = fYY(g%ll IIB\) and %\l' s = fYYY(—zrfﬂl ,2—%2 |,0\) An
example is presented in Section 6.

The asymptotic distribution of the estimates of bispectral
fitting may be worked out by the technique described in
Section 2. Their asymptotic variance is found to involve
spectra of order up to 6. Hence the standard error estimates
coming from iteratively reweighted least squares will not be
appropriate generally. They will be appropriate when the
higher-order spectra are negligible relative to those of order 2.
The standard errors presented in Section 6 are those from
iteratively reweighted least squares.

Some Elementary Modifications

It would be remiss not to point out that practical applica-
tion of Fourier techniques often requires elementary pre-
processing of the data. In the case that the spectrum of a
process contains neighboring peaks or has a substantial dy-
namic fall-off, it can be crucial to zaper the data prior to
evaluating its Fourier transform. All that this involves is
multiplying the (mean-corrected) data by a function that
tapers smoothly to O at the boundaries of the region for
which data are available and is near 1 elsewhere.

A second potent modification is prewhitening. Here there
is preliminary model fitting or data processing in order to
make the spectral functions more nearly constant in A. This
can lead to estimates that are substantially less biased. In the
case of a bivariate process, rephasing (also known as align-
ment) can be crucial and it is an entirely elementary pre-
whitening operation. One simply shifts the time argument of
one series to make the two series more nearly coherent.

In the next sections specific examples of the uses of the
above tools to build analyses are presented. As part of the
constructjon of these analyses, one seeks out stationary mix-
ing noise processes in the situation to drive the stochastic
analysis of the data.

THE ESTIMATION OF CLOUD AND STORM MOTION

Leese, et al. (1970, 1971), were concerned with the deter-
mination of cloud motion from sequential pictures obtained
via a geosynchronous satellite. Estimates of speeds and di-
rections of movement were obtained by cross-correlating a
picture, at various translations, with a picture taken 24
minutes earlier. If Y(x,y,t) denotes the grey level of the
picture element at location (x,y) at time t, then the average
correlation of Y(x+u,y+v,s) with Y(x,y,0) across the picture
(really part of the picture), is estimated and the translation
(0,9) at which this is maximized is determined. The speed
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An expression for the variance of the estimate constructed
from (39) may be set down directly. One has ¢ (a,B) ax
+ By with an asymptotic variance [IRjg(a,8)1™ -2 _ 1}/2K, K
being the number of periodogram values averaged in forming
the spectral estimates. This gives the asymptotic covariance
matrix of (x,¥), by generalized least squares,as TA™ IBA” /KP
where

A= [[[aB]l" [af] (B dadf

B = S [aB]” [af] w(@B)? [Ryp@B) ™2 1] dadp )
(41

from which results for the Leese, et al., procedure and the
“efficient” procedure may be obtained by choice of w(+).

The development just provided is a direct extension to the
spatial case of results developed by Hannan and Thomson
(1973) and Hamon and Hannan (1974),- using results de-
veloped for spatial series in Brillinger (1970, 1974). Related
work by Hannan for the time series case may be found in
Hannan (1975), Cameron and Hannan (1978, 1979), and
Hannan (1983). A point that has been emphasized by Hannan
in the time series case is that, in the Fourier approach, it can
be essential to rephase the series; that is, realign them to put
them approximately in phase, before commencing spectral
computations. Such a “prewhitening” operation is called
for in the present case as well. One means of estimating
the realignment translation is via the values maximizing the
cross-correlation of the two pictures.

In connection with the processes for which the above esti-
mation procedure may prove useful, note that expression (36)
was basic. It involves replacement of the Fourier transform
of the translated signal, S(+), by a simple multiple of the
untranslated signal’s Fourier transformation. This replace-
ment may be expected to be reasonable for a broad class of
processes, including transients, and was noted in Section 2.

Turn now to the case of an irregular array, and proceed
by setting down an analog of expression (34). Let the coor-
dinates of the array sensors be denoted r; = (Xj,}’j). Let
translations be denoted by p = (u,v) and let A be small. Now
the nearness of a translation, g, of the second image to the
first may be measured by

El

42

z lY Y, l
'Lj_ik_EK 1(f) Q(Tk) /

with the summation over the available data. The unknown
translation may be estimated by minimizing (42) with respect
to p, for a given A. Expression (42) might be generalized to
the form

E w (r _rk_E.) IYl(r ) — Yo(rk)l /EW (1; —rk——,g)
(43)
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with wI(+) a weight function concentrated near 0. (Masry
(1983) considers a related time series covariance function
estimate.)

The estimates obtained in this fashion are ordinary least
squares, and hence may not be expected to be efficient
generally. In the estimation of the covariance function, at
lag v, of an ordinary time series one issue that arises is
whether to divide the sum of lagged sample products by
T—lul or by T. It seems to be the case that the latter choice
is better in a variety of situations, particularly when the
population covariance function is tending to O as lubseo, In
the present situation, this leads to consideration of expres-
sions (42), (43) multiplied by say (1 — lpIT) with T mea-
suring the extent of the array. For larger g, the sum (42)
has fewer terms and hence greater variability. The multiplier
reduces the variability.

It is to be noted that this last procedure has not made use
of a Fourier transform. There has been some study of the
Fourier transforms of irregularly distributed observations (see
Brillinger, 1972, and Dunsmuir and Robinson, 1981), but
setting down a Fourier procedure here would be premature.

Two further hydrology references are Johnson and Bras
(1979) and Amorocho (1981).

PASSIVE SONAR

Turn now to a class of situations exemplified by passive
sonar. Let the data available by Y(x ¥j 1), =1, ,J and
t =0, ,I—1. In contrast with the assumptlons of the
prev1ous sectlon, in the present case J will be assumed
moderate and T large. Suppose that a “wave’ is moving across
the array from the far field and that it is desired to estimate
the velocity of the wave and the direction from which it is
coming. If the wave may be viewed as plane, then a model
for the situation might be

Y(x,y,t) = p cos(ax+fy+yt+d) + e(x,y,t) (44)
with the direction of travel specified by a = Ik lcos ¢, 8 =
Ik kin ¢, where k = (a,B) is the wavenumber, and with the
(phase) velocity given by /Il In what follows y will be
though of as known. This comes about either from the col-
lected data having been narrow-band temporally filtered at
frequency v, or from v having been precisely estimated, T
being large. The principal unknowns are (a,f8).

A traditional means of estimating (o) is beamforming.
Here one determines (o,8) to maximize

. 2
| .Jz 2 Y0gv;.0) exph-iCootby;ryot | (45)

(see, for example, Knight, et al, 1981). Now we investigate
this problem by the method of Fourier inference; in particu-
lar we determine the large sample distribution of the beam-

formed (or least squares) estimate and the maximum likeli-
hood estimate.
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The details of the results may be found in Brillinger
(1985). The point of presenting it here is to: 1) set down
some results of practical importance and 2) to show how
those results follow directly via Fourier inference.

Let Y(t), €(t) denote the J vectors [Y(xj,yj 01, [e(x]-,yj D1,
respectively. Let

Y, =171 Tzo Y(t) exp {—i2mkt/T} (46)

with a similar definition for €y, k being an integer. Suppose
that the temporal frequency vy has the form 27k'/T, k' an
integer # 0. From (44) one sees that

Y. eid

J @7

. P :
K= exp -[1(ocxj+ﬁyj)]- te K

while for k # k', Y X X Supposing one takes K fre-
quencies of the form 27rk/"l“ near v, from the discussion in
Section 2, the corresponding €y are approximately inde-
pendent complex normal variates with mean Q and covariance
matrix —'—l‘_ Lee(¥). Now ordinary least squares estimates of

o, § are seen to correspond to minimizing

s |
J

Yj K g ¢id exp {i(axj+ﬁyj)} 2 (48)

with respect to o, 8, §, p or, asymptotically, to maximizing

I3 Yy oxp{-iteoytiyp) 12 (49)

with respect to «, 8. Let B denote the J vector [exp—[1(ax
+Byj)}] and

S =

~

z

T
L Y Xk

(50)

(This last is proportional to an estimate of %Iz‘[ feem- Then

the generalized least squares estimate corresponds to mini-
mizing.
Bp 15)TS l(Y,_BZ 8)

Xy - (51)

After some algebra (see Brillinger, 1985), this last is seen to
correspond to chosing (a,8) to maximize

EF S Y PIE SR (52)
and bears a direct relationship to the Capon (1969) high reso-

lution spectral estimate. In practice it is convenient to pre-
pare contour plots of the quantity (52) as a function of

().
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The large sample distributions of the ordinary and
generalized least squares estimates may be derived directly
from expression (47) and the asymptotic normality of the

€k Let Vj denote the principal value of log Yj k’. “Then
(47) leads to
V, = log2 +i8 +iax, +ify; + L b, (53)
] 2 1 I p ]

where h = [h 1is asymptotlcally complex normal with mean
0, covariance matrix -2

of the €x, k # k'. Let V = [Vi] and let X denote the J x 3
matrix [1 X y]] Then the ordinary least squares and the

T f 66(7) asymptotically independent

maximum hkehhood estimates of (log 5+ i6, ia, if) in the

model obtained from the above by replacing the ¢y and h by
normal variates (as is possible through the Skorokhod represen-
tation) are given by (KE)_I}V(TX and (§T§_1§)_1§T S —12,
respectively. Their covariance matrices may be estimated by
7)\—2(§TX —lzT%(zT@—l and ﬁ—z(zTg—lz)—-l(K_2)/
(K—J—1), respectively. For this last to be reasonable, one
needs K > J+1.

BISPECTRAL FITTING OF MISSISSIPPI
RIVER RUNOFF, 1861-1880

The bispectral fitting procedure introduced in Section 3
was employed in a preliminary study of river runoff, such
data being often described as nonGaussian (e.g., Lawrance
and Kottegoda, 1977). The data available was monthly run-
off at Eads Bridge, St. Louis, from January 1861 to Septem-
ber 1961. In the present study only the first 20 years of
data were used. Figure 1 presents the data in the form of
Chernoff faces (Chernoff, 1973). In this display the respective
monthly values correspond to different features of the faces,
e.g., July corresponds to separation of the eyes (see the figure
caption for the other correspondences). Displays such as
this are proving useful in throwing up surprising aspects of
data. In the present case one notes that large year to year
variation is present. Figure 2 is the traditional plot of the
data. Examination of this figure suggests that the series is
neither time reversible (that is Y(—t) has the same distribu-
tion as Y(t)), nor symmetrically distributed. These are both
necessary properties of Gaussian processes.

Seasonal variation is a pronounced feature of runoff data.
Its nature is reasonably well understood. In the present
study seasonal variation was ‘“‘removed” by subtracting from
individual monthly values, the average level for that month
across the whole data set. Figure 3 presents an estimate of
the density function of the first 20 years data, monthly
means removed. (The estimate was computed via the proce-
dure “density” of Becker and Chambers (1984).) Figure 4
is a normal probability plot for the same data. There are
substantial indications of nonGaussianity. Figure 5 is a plot
of a month’s value versus the previous month’s.  Again,
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nonGaussianity is suggested. In summary, these data seem

plausible candidates for bispectral fitting.

® @
o

1861 1862 1863 1864
@ G
1866 1867
1869 1870 1871 1872
. . @ v
1873 1874 1875 1876
]
I
TN
1877 1878 1879 1880

Figure 1. January — Area of Face; February — Shape of Face;
March — Length of Nose; April — Location of Mouth; May —
Curve of Smile; June — Width of Mouth; July -- Separation of
Eyes; August — Angle of Eyes; September — Shape of Eyes;
October — Width of Eyes; November — Location of Eyes;
December — Location of Pupil (see Becker and Chambers, 1984).

Let Y(t) denote the seasonally adjusted value at time t,
where t indexes the monthly values from 1861 through 1880.
An autoregressive of order 2 was fit to these data by the
method of Gaussian estimation, as described in Section 3.
This process is described by

Y(t) + alY(t—l) +ayY(t-2) = e(t) (54)
where e(+) is a white noise series with mean 0 and variance
02. The power spectrum of this process is given by

2
fyy ) = g; 11 +agexp{—iA} + ayexp{—2A} 72 . (55)
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The estimates of the parameters, and corresponding standard
error estimates, are given in Table 1. The value of ay appears
negligible, but it will be retained for the analyses, as doing
so causes no difficulty. Figure 6 is a plot of the second-order
periodogram (27) and the corresponding fitted power spec-
trum as determined from expression (55). In order to assess
the goodness of fit more formally an exponential probability
plot of the I /f values was prepared. This is given as Fig-
ure 7. There is no suggestion of substantial departure from
fit.
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15000
7

thousands of acre-feet

5000
T

g NI N U U S O N S Y SO

Ties1 1863 1865 1867 1869 1871 1873 1875 1877 1879 1881

year

Figure 2. Mississippi River Runoff, 1861-1980,
Monthly Means Removed.

In expression (28) s ran from 1 to T/2. The autoregres-
sive of order 2 was taken to begin. As indicated, it fit rea-
sonably well so no higher orders were studied. The exponen-
tial distribution of the periodogram follows from the complex
normality of the Fourier values (see Theorem 5.2.6, Brillinger
(1975a)).

Next bispectral fitting of the model (54), with the addi-
tional assumption that E e(t)3 = 403, was carried out. The
bispectrum of the process is given by
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Figure 3. Density Estimate, Mississippi River Runoff,
1861-1880, Monthly Means Removed.
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fyyyOw) = — (56)
2m)~ AQ) Ap) AQtu)

where AQN) = 1 + o exp{—iA} + ap exp]{—i2A}. The esti-
mates of the parameters, and corresponding standard error
estimates, are given in Table 2. It is to be noted that the
standard errors have become smaller with the addition of the
third-order information in the cases of aj and ay. That the
estimate of o and its s.e. are essentially the same for both
fits probably results from the fact that ¢ is a second-order
parameter, the new third-order information appears in y. It
is noteworthy, also, that the estimate of v is 6.9 times its
standard error, confirming evidence of nonGaussianity. Fig-
ure 8 is a contour plot of the modulus of the estimated bi-
spectrum (estimate formed by averaging 15 periodograms).
Figure 9 is the corresponding fitted form, evaluated from
(56). Figures 10 and 11 are corresponding perspective plots.
There is real agreement between the estimate and fit. In
order to examine the goodness-of-fit in a more sensitive man-
ner, standardized residuals were computed. Figures 12 and
13 are contour and perspective plots of the log quantities
(33). If the model is reasonable, then the distribution of
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Figure 4. Normal Probability Plot, Data of Figure 2.

these will be approximately exponential with mean 1. There
is no strong evidence of departures.

In summary, one can say that the bispectral fitting proce-
dure has proved itself feasible, but that the estimates of
second-order parameters were not dramatically improved, al-
though a further parameter has been able to be estimated.
The validations of the model provided by the contour and
perspective plots do seem important.

DISCUSSION

The intent of this paper has been to set out some fund-
amental properties of the empirical Fourier transform and to
illustrate how those properties could be used to build sta-
tistical analyses of some specific data sets. The processes
involved may concern time functions, space functions or
spatial-temporal functions (or even point processes). The
statistics computed may be linear, quadratic, cubic or more
complicated. The analyses may be linear or nonlinear. The
situation may be modeled via a finite dimensional param-
eter or not. Use of the Fourier transform transcends these
issues. It converts convolution (filtering) into multiplication
and it converts serial and spatial dependence into approximate
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independence and it does this latter in a fashion that tradi-
tional statistical procedures can often then be invoked. It is
useful for both fitting and validation problems.
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Figure 5. Scatter Diagram of Successive
Monthly Values, Data of Figure 2.

TABLE 1. Second-Order Fit Only.
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Parameter oy o, g
Estimate -.61743 —.00551 3561.3
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Figure 6. Log Periodogram and Fitted Autoregressive
of Order 2, Data of Figure 2.
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Figure 7. Exponential Probability Plot of Standardized
Periodogram Values, Data of Figure 2.
TABLE 2. Second- and Third-Order Fit.
Parameter o o, g Y
Estimate —.63408 -.01181 3563.4 1.2443
s.e. .05388 .04982 163.3 .1802
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Figure 8. Log Modulus of Estimated Bispectrum,
Data of Figure 2.
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There are a host of other problems that can be approached
via Fourier inference. These include: kriging, detection of
change, analysis of extremes, fitting state space models and
extrapolation/forecasting. There are many statistical proce-
dures that have useful Fourier implementations. These in-
clude: discriminant analysis, principal components, empirical
Bayes, Stein estimation and penalized likelihood fitting. The
properties of Fourier procedures may be studied when there
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is long range dependence present in the process and when
the model is false. There is insufficient space to do these
things here but, hopefully, the way forward to doing them is
clear. Shumway (1984) is one reference that may be men-
tioned.
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