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Three Environmental Probabilistic
Risk Problems
David R. Brillinger

Abstract. Risk analysis may be defined as the problem of estimating the
probabilities of rare events and the magnitudes of associated damages.
The topic unifies the environmental sciences. This paper considers risk
analyses for earthquakes, wildfires and floods. The computation of insurance
premiums is used to motivate and unite the work.
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1. INTRODUCTION

1.1 The Problem

Tremendous financial losses occur from environ-
mental disasters such as floods, tropical storms,
droughts, tornadoes, forest fires and earthquakes. To
add to societal concern, the number and costs of these
seem to be increasing; see Figure 1, adapted from [29].
One can speculate on the cause. Global warming and
population movement to hazardous areas have both
been suggested.

Risk management and insurance purchase seek to
ameliorate the impacts of disasters. To determine insur-
ance premiums actuaries need estimates both of proba-
bilities of occurrence and of distributions of damages.
Further, government regulators are concerned with sol-
vency of insurance companies, and civil engineers
need estimates of probabilities for design purposes and
building codes. The field of statistics becomes involved
for a variety of reasons, including large data sets, small
data sets and uncertain inferences. Novel analytic prob-
lems arise.

1.2 Risk

Risk may be defined as the probability of some haz-
ardous event or catastrophe, the chance that something
bad will occur. The occurrence becomes a catastrophe
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when the losses sustained are severe. In many cases
huge amounts of money are involved [30]. A princi-
pal concern therefore is low probability–high conse-
quence events, occurrences that lead to damage, loss,
injury, death and/or substantial environmental impair-
ment. Often the work is done as an aid to decision mak-
ing. In consequence risk models and risk management
pervade modern technical life.

A common tool of workers in the field is a catastro-
phe model. These models have been defined as sets of
databases and computer programs designed to analyze
the impact of different scenarios on hazard-prone ar-
eas [30]. In practice these models combine scientific
risk assessments of hazard with historical records in or-
der to estimate the probabilities of disasters of different
magnitudes and the resulting damages. The informa-
tion may be presented in the form of expected annual
losses and/or the probability that in a given year the
claims will exceed a certain amount.

Risk analyses may be required by government agen-
cies. To mention a specific example, in nuclear accident
prevention a “core damage frequency” rate maximum
of 10−4 events per reactor year is required by the U.S.
Nuclear Regulatory Commission [33].

A formal risk analysis may include (i) estimation of
probabilities, (ii) determination of the distribution of
damage and (iii) preparation of products such as for-
mulas, graphics and hazard risk maps. Typically there
is extensive use of computer science, systems analysis,
substantive subject matter and statistical methods. Im-
portant analytic tools include box-and-arrow diagrams,
software packages, simulation, decision tools, GIS, vi-
sualization and database management.
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FIG. 1. Counts and losses of worldwide great catastrophes.
The figures are adapted from [29].

A pair of nice examples of statistical work in risk
analysis is provided by Fairley [17] and Miller and
Leslie [27]. The Fairley work is concerned with the
probability of a spill of liquified natural gas during
its importation at U.S. ports. In particular the paper
makes the case for describing risks by probabilities,
not by their reciprocals, the return periods. The Miller–
Leslie paper concerns the probability of a ship hitting
the Tasman Bridge at Hobart, Australia. In both these
papers there is careful evaluation of the probabilities of
component events.

1.3 Insurance and Some Historical Background

Insurance measures are often taken to manage cata-
strophic phenomena, for the events of concern typi-
cally have substantial financial implications. Insurance
against loss has been around for many years. One can
mention the code of Hammurabi around (1780 BC),
which involved so-called bottomry, a form of marine
insurance [30]. The catastrophes such as the Great Fire
of London 1666 and the U.S. floods of the late 1800s
led to the development of insurance as a major busi-
ness [11, 37].

An insurance premium paid is meant to reflect
the risk potential [15]. A tentative premium may
be computed making use of probability and damage
estimates for possible events. In practice it will be
“loaded” to cover the costs of doing business and
adding a profit. The pure risk or net premium for
damage L in a single instance is given by

P = E{L}
and is often usefully written as

Prob{L �= 0}E{L|L �= 0}.

This second form separates the probability and the
consequence.

Insurers are not generally concerned with single
events or short time periods. They maintain stabil-
ity by pooling many risks over time and type to deal
with random fluctuations. Formulae for loaded premi-
ums include

P = (1 + α)µL, µL + βσL,

µL + γ σ 2
L, αµL + βσL + γ σ 2

L,

where

µL = E{L}, σ 2
L = var{L}

and α,β, γ are parameters to be given numerical
values [3].

The premiums may also be based on considerations
of the following type. Suppose that the reserve avail-
able to the insurer in the time period t is Rt . Then the
insurer becomes insolvent in period t if Lt > Rt + Pt

with Lt denoting the total of claims and Pt the total of
the premiums in period t . It now makes sense to con-
sider the probability of ruin,

Prob{Lt > Rt + Pt for some t in a
(1)

specified time period}.
This is a crossing probability for Lt − Rt − Pt . Var-
ious models and approximations have been proposed
for (1). For example, there is the Cramér–Lundberg
model [14, 18], based on a Poisson process for the
times of the claims included in Lt .

In determining premiums insurers have to deal with
the following difficulties: (i) ambiguity of risk; that
is, the event or its probability is not well defined;
(ii) adverse selection; that is, those most at risk are
more likely to purchase insurance; (iii) moral hazard;
that is, an increase in probability of loss caused by
some type of behavior on the part of the policy holder;
and (iv) correlated risk; that is, the simultaneous
occurrence of losses from a single event [23].

There are various practical details to be dealt with,
including taxes, reinsurance, exposure, inflation,
investment return, lags, interest rates and the tax au-
thority’s treatment of surpluses. There are other ap-
proaches. For example, an extreme value approach is
taken in [16] and there is a market-driven approach [4].
The latter is adaptive and evolutionary and uses time
series data on income and expenses to compute a pre-
mium from predicted future expenses. It is interesting
to read in [11] of the empirical efforts of companies in
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the 18th century to find effective premium rates on the
basis of experienced gains and loses.

In summary, probabilities of occurrence need to be
estimated as well as distributions of losses. One finds
oneself dealing with probabilities and distributions
associated with phenomena in space and time. Modern
actuarial science deals with some other aspects as well,
for example, the relationship between a particular risk
and claims in the whole market, the attitude toward risk
in the market and the total assets of all insurers [1, 2].

In the sections that follow we restrict ourselves to
the details of examples from the fields of seismology,
forest science and hydrology.

2. EXAMPLES OF RISK ANALYSIS

EXAMPLE 1 (Earthquake damage). (a) Back-
ground. Cornell [13] is the seminal paper on seismic
risk assessment. His definition of the subject is a vari-
ant of the following:

• Seismic risk assessment—the process of estimating
the probability that certain performance variates at a
site of interest exceed relevant critical levels within
a specified time period as a result of nearby seismic
events.

The approach presented here is one of breaking
the problem down conceptually into manageable parts,
including (i) damage, (ii) site, (iii) attenuation and
(iv) event locations, times and sizes. These parts are
illustrated in Figure 2. The figure contains both series
and parallel structures and shows two possible events.
The “?” between “Site” and “Structure” in the figure
refers to the possibility of feedback between the two
being present.

The presentation flows backward from a structure at
the site of interest to the locations, times and sizes of
earthquakes. This has the advantage of better anticipat-
ing the requirements at each stage of the analysis.

(b) Damage. There are a variety of ways to de-
scribe and estimate earthquake damage. An old and el-
ementary one, yet an important one, uses the modified
Mercalli intensity (MMI). One reason for this scale’s
importance is that sometimes values may be derived
from historic accounts. A second is that it refers to
damage directly.

MMI values are given by roman numerals I to XII
(and sometimes 0 referring to nothing felt or noticed).
The scale is ordinal increasing with growing severity
of damage. For example, the definition of MMI VIII in-
cludes “Damage slight in specially designed structures;

FIG. 2. Box-and-arrow diagram highlighting components of
seismic risk analysis. The symbol A_j refers to the level of some
performance variate associated with the j th event; A is a threshold
level.

considerable in ordinary substantial buildings; . . .”
while that of MMI IV includes “Dishes, windows,
doors disturbed; walls make creaking sound; . . .” [10].

There are functions that have been proposed to
convert MMI values into damage percentages for
different types of structures. Table 1 is an example,
a so-called damageability matrix, taken from [28].
The entries are loss ratios per risk category in present.

Figure 3 shows some of the MMI values observed
following the Northridge event of 17 January 1994.
The event occured 30 km NW of Los Angeles, Califor-
nia. Its size, as measured by magnitude, was 6.7. There
were 57 deaths, 1,500 serious injuries and 12,500
structures moderately to severely damaged. The dam-
age was estimated as US $12.5 billion. There are 554
observations to be used in the analyses. The highest

TABLE 1
Loss ratios per risk category in percentage damaged

MMI VI VII VIII IX X

Residential 0.4 1.7 6 17 42
Commercial 0.8 3 11 27 60
Industrial 0.1 0.7 3 11 30
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FIG. 3. A sampling of the MMI values observed for the North-
ridge earthquake of 1994. The black circle represents the epicenter
of the event.

intensity recorded was IX. The 5 = MMI V of the fig-
ure, apparently in the ocean, is actually an observation
made on Catalina Island. More details of the event may
be found in the February 1996 issue of the Bulletin of
the Seismological Society of America.

As indicated, MMI values are ordinal. Such data are
conveniently handled by postulating the existence of a
latent variable ζ and cut points ai such that the MMI
value at location (x, y) is given by

Ix,y = i if ai < ζx,y ≤ ai+1.

Suppose further that

ζx,y = fx,y + εx,y(2)

with fx,y deterministic and smooth and further sup-
pose that the εx,y have independent extreme value dis-
tributions. The use of the extreme value distribution
is plausible given that the concern is damage. It and
the corresponding complimentary log–log link mean
that the R/S-PLUS function glm(·) may be used for the
computations (see [26], Chapter 5). In the related pa-
per [7], fx,y is estimated using the R/S-PLUS smoother
loess(·) of Cleveland [12] and the R/S-PLUS func-
tion gam(·) of Hastie and Tibshirani [19], with data
from the 1989 Loma Prieta event employed. Other
smoothers are investigated in [8].

FIG. 4. The estimate of the function fx,y of (2). The smaller the
contour level, the greater the damage.

Figure 4 provides the estimate of f obtained for
the Northridge event. One can see a general dying off
of the estimated values as one moves away from the
epicenter of the event. Referring to the contour levels
indicated, because of the way things have been set up,
the more negative f the greater the damage.

(c) Site. In practice further details concerning the
observations may be available such as the geology of
the site. Such information, and other covariates, could
be included directly with fx,y in the linear predictor.

(d) Attenuation. Next a relationship describing the
falloff in energy with distance from the earthquake
origin is needed. This falloff is apparent in Figure 4.
Following Joyner and Boore [21, 7], one can use the
attenuation form

log
(− log(1 − Prob{I = i}))

(3)
= αi + βd + γ log(d) + δM,

i = 0, I, II, . . . ,XII, where d is the distance of the
observation point to the hypercenter of the event and M

is the event’s magnitude. This relationship was fitted to
the Loma Prieta data in [5]. For the Northridge data
results are presented in Figure 5. It gives the fitted
value of Prob{I = i}, i = 0,V, IX, as functions of d .
One sees a very rapid falloff with distance in the case
of MMI IX. The curve for MMI V peaks at a distance
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FIG. 5. Fitted probabilities of the indicated MMIs for a site
located at a distance d from the epicenter.

of about 125 km, while the curve for MMI 0 rises
steadily to 1 as d increases.

(e) Event locations and times. To complete the
analysis one needs probabilities for occurrences in time
and space and associated magnitudes. One can define a
marked spatial–temporal point process of earthquake
locations, times and sizes. In California many faults
have been located and found to be sources of earth-
quakes. These can be used. One might take d to be
the distance to the nearest point on the fault from the
site. The faults have been modelled as line segments
and patches of planes. An event’s magnitude can be re-
lated to its fault size. In Figure 2 just two sources have
been hypothesized, but there could be many. Com-
monly renewal processes have been employed to model
the sequence of times. The intervals between events
may be assumed exponential, Weibull or lognormal.
Basic references to earthquake statistics and seismic
risk analysis include [34, 40].

(f) An example. As an example of a fair premium
computation, consider a commercial building 25 km
from the epicenter of an event like Northridge. For this
case the estimated expected loss is

0.8 × 0.178 + 3 × 0.266

+ 11 × 0.416 + 27 × 0.097 = 8.15%

assuming the highest MMI possible is IX, using the
values of Table 1 and employing the results of fitting
the model (3) to the Northridge data. The standard
error of the estimate is 1.09%. It was obtained via the
jackknife, splitting the data randomly into 10 groups.

Papers [5] and [8] contain details for a related
example, namely the Loma Prieta event of 1989.

EXAMPLE 2 (Forest fires). (a) Background.
There are tens of thousands of wildfires in North
America each year destroying millions of acres of
forests. For the years 1981 through 2002 a National
Interagency Fire Control (NIFC) report [31] lists the
annual counts of U.S. wildfires as ranging from 81,043
to 249,370. The acres burned ranged from 2,237,714
to 8,422,237. Another NIFC report [32] indicates that
for the years 1994–2002 the yearly suppression costs
for federal agencies ranged from 256 million to 1.661
billion U.S. dollars. That report further lists an aver-
age annual count of 13,879 fires caused by lightning
and 102,694 caused by humans. Wildfires are clearly a
serious problem.

Consider the task of predicting the average number
of fires each day as a function of place and day for a
region of interest to foresters. Specifically suppose that
one is interested in base values. Dynamic predictions
will be considered in later work.

(b) A model. Let occurrences be denoted by (xj ,

yj , tj ), j = 1,2,3, . . . , with (x, y) location and t oc-
currence time. These values can be viewed as a realiza-
tion of a spatial–temporal point process. To illustrate
the idea consider Figure 6. The right panel shows the
locations of forest fires in a large rectangular region
containing the state of Oregon. Fires are indicated that
occurred in federal lands during the period 1989–1996.
These lands are indicated in the left panel of the figure
and are seen to make up much of the state. To proceed
to an analysis let space–time be broken up into voxels
labelled by (x, y, t) and let

Nx,y,t =
{

1, if a fire in the (x, y, t) voxel,

0, otherwise.

(In the computations the voxels have sizes of 1 km
by 1 km by 1 day.) Next write

Prob{Nx,y,t = 1} = px,y,t

and consider the model

logitpx,y,t = g1(x, y) + g2(d) + ζ

with d the day of the year, and ζ a year effect.
The g functions are assumed to be smooth and in
the computations are represented by spline functions.
The spatial term g1 involved is a thin-plate spline,

g1(x, y) =
J∑

j=1

δj r
2
j log rj ,

where for nodes (xj , yj ) the variable r2
j = (x − xj )

2 +
(y − yj )

2 [35]. The day term g2 is a spline with
period 1 year.
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FIG. 6. The left panel shows the Federal lands in a region containing Oregon. The right panel provides locations of fires in the region
during the years 1989–1996.

The data set for Oregon was very large, 578,192,400
voxels and 15,786 fires. To be able to carry out
exploratory data analyses, a sample of the locations
where no fires occurred was selected, while all the
voxels with fires were employed. The chosen sampling
fraction of the voxels with no fires was π = 0.00012.
This lead to a total of 58,094 cases.

With the logit link, conditional on the sample, one
had a generalized linear model (glm) with an offset
of log 1/π . It was a suprise that the new logit was
simply logit p′ = logitp + log(1/π), that is, an offset.
This meant that standard generalized linear model
computer programs could be used for the analysis.
Logit models have been used previously in estimating
fire risk; see, for example, [25].

(c) Results. The basic results are provided in Fig-
ure 7. One has estimates of the functions g1, g2 and
the effects ζ . (The ζ are assumed fixed here but in
work in progress they are random.) Examining the top
panels one sees fewer fires in SE Oregon, as could
have been anticipated from the right panel of Figure 6.
From the bottom left panel of Figure 7 one notes a
definite day effect—more fires in the summer. From
the bottom right panel there appears to be a definite
year effect. The year effect values are relative to 1996,
which is taken to be level 0. The horizontal line is
at 0. Also included in the bottom panels of the fig-
ure are ±2 s.e. bounds. In the thin-plate computations
60 nodes were employed and they were taken to be
10 km apart throughout the region.

One can estimate the mean fire count for a nominated
region and given time period by adding estimated prob-

abilities for individual voxels. This is done for each day
of the year for the Umatilla Forest. The results are pre-
sented in Figure 8 assuming that the year effect is 0.
(The Umatilla Forest is approximately the rectangle
with 450 < x < 500 and 360 < y < 410.) One obtains
a Gaussian shaped curve peaking around day 220. The
dashed lines provide approximate marginal 95% confi-
dence limits.

If one desires statements concerning the count of
fires, not just their average number, one can use
the Hodges–Le Cam result [20] and approximate the
distribution of the count by a Poisson.

Other results are presented in [9, 36]. Currently
the work involves various explanatories such as fire
danger indices, random year effects and extensions to
other regions and states.

Turning to damage and insurance issues, standard
homeowner policies cover wildfire damage. Kovacs
[22], referring to an Insurance Services Office report,
indicates insurance payments of $3 billion in the 1990s
following several large wildfires in California. For
the Oregon data set there is information concerning
the sizes of the fires. For example, one can study
the probability of a fire becoming a large fire once it
has started.

EXAMPLE 3 (Amazon floods). (a) Background.
One can segue from studies of earthquake risk into
studies of flooding risk by noting that earthquakes
can cause dams to fail and thereby lead to flooding.
The next example concerns the risk of floods on the
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FIG. 7. The top panels provide the estimated location effect ĝ1 in perspective and contour form. The bottom left panel provides the estimated
day effect ĝ2. The bottom right panel shows the estimated year effect ζ̂ . Approximate 95% error bounds are indicated in the bottom panels.

FIG. 8. Estimated average number of fires for each day of the
year for the Umatilla Forest region. The dashed lines provide
approximate marginal 95% confidence limits.

Amazon River at the city of Manaus. Data for the
years 1892–2002 are employed.

Manaus is a city well up the Amazon River in Cen-
tral Brazil. It is actually on the Rio Negro, but that
river becomes the Amazon not far downstream from
Manaus. At a dock in Manaus the Rio Negro’s height
has been recorded daily since 1903. Also there are
newspaper records and journals that may be consulted
to determine the dates of some earlier floods [38].
Of real concern is the question of whether the risk of
flooding is increasing. Increased flooding will eventu-
ally occur because of the deforestation taking place.
(See [38, 6].)

The top panel of Figure 9 provides the dates of
serious floods in the period 1892–2002. The definition
of a serious flood is that the water level exceeds 28.5 m
[39]. For the data set studied there were 29 such floods.
The lower panel of the figure displays the maximum
level achieved each of the years 1903 through 2002.
(These particular values were not available for the
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FIG. 9. The top panel is a step function counting the number of
floods since January 1892. The dashed line’s slope provides the
rate of events. The bottom provides the maximum height reached
each year. The horizontal line is at 28.5 m.

years before 1903.) The year 1924 is an outlier, there
having been many fires that year [38].

Of concern is a suggestion of an increase in the
number of floods and the maximum yearly height. To
assess the reasonableness of this possibility we first
examine the degree of serial correlation of the data.
We do this, using the periodogram, for the binary se-
ries that is 1 the year of a flood and 0 otherwise and also
for the results of annual maximum heights. The series
are indicated in Figures 9 and 10. In the periodogram
computation the outlier in the maximum height series
was replaced by the mean of the other values. Also in-
cluded in the figures are approximate 95% confidence
limits. The results suggest independence is a reason-
able working assumption. Not many points are outside
the bounds.

Figure 11 top panel provides an estimate of the
annual rate of serious floods and the bottom panel
provides a trend function. Also provided are error
bounds assuming independence. As with the earth-
quake data the computations employed the R/S-PLUS
functions gam(·) and lo(·) and the complementary
log–log link.

A form of damageability matrix is given in Table 2
[24]. It provides estimates of the numbers of persons
affected as a function of the maximum height flood
waters reach.

Both long-term and short-term prediction are impor-
tant in this case. Long term refers to the question of
whether there is a continuing trend. Short term can
refer to whether there is a change in recent years.

FIG. 10. The top panel is the periodogram of the 0–1 series of
Manaus floods. The bottom panel provides the periodogram of the
series of annual maxima given in Figure 9. The dashed lines give
approximate marginal 95% confidence limits. The solid curves are
the result of smoothing using loess.

FIG. 11. The top panel is a smooth estimate of the running rate
determined from the 0–1 series of Manaus floods. The bottom panel
provides a smooth estimate of the mean level. The dashed lines
provide approximate marginal 95% confidence limits.
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TABLE 2
The estimated number of persons affected when the river level

reaches the indicated height

Maximum
height (m)

Number affected when
height exceeded

27.00 1,000
27.50 2,000
28.00 6,000
28.50 15,000
29.00 30,000
29.50 50,000

Interestingly the authorities in Manaus have the follow-
ing short-term risk assessment procedure:

If at the end of March the height is greater
than or equal to 26 m, then the chance of
reaching 28.5 m is 92%. If, further, at the
end of April it reaches 27.55 m the chance
becomes 98%.

3. DISCUSSION AND CONCLUSIONS

The demand for risk analyses and insurance for envi-
ronmental catastrophes is growing, in part because the
costs of replacing destroyed structures are growing and
in part because of the steady increase in the number
of people living in hazardous areas. Statistical meth-
ods are basic to risk assessments and the computation
of insurance premiums. In part this is obvious because
probabilities and data are involved. It is also the case
because statistics adds important things to what actu-
aries, engineers and scientists tend to know and do on
their own. Statisticians offer things like efficiency re-
sults, extensions to different data types and uncertainty
analyses.

Three examples have been presented. What do they
have in common? Each is seeking probabilities and
distributions. What do the solutions have in common?
Data and subject matter are basic and the solutions each
made use of the generalized linear model in some form.
What has been learned from the examples presented?
There are difficulties and opportunities. There are
solutions and there are lots of open problems. The
stochastic approach is highly effective. Considering the
insurance problem has helped to focus the work.
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