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Abstract

Differential equations have long been used to describe the motion of
particles. Stochastic differential equations (SDE)s have been employed
for situations where randomness is included. This present work is mo-
tivated in part by seeking to describe the motion of mammals moving
in a constrained region. Interesting questions that arise include: how to
write down a pertinent (bivariate) SDE, how to include explanatories, and
boundaries and how to simulate realizations of a process?

1 Introduction

Differential equations have long been used to describe the motion of par-
ticles and stochastic differential equations (SDE)s have been employed for
situations where there is randomness. Our work is motivated in part by
the case of ringed-seals, elephant seals, cows, elk and deer. The last three
are moving about together in an experimental forest in Oregon.

The study was influenced by emerging data sets in wildlife biology.
Biologists and managers wish to use these data sets to address questions
such as: how to allocate resources, can different species share a habitat,
are changes taking place? One large experiment, Starkey, is described in
[6] and [23].

There are technical questions arising of interest to both probabilists
and statisticians. Useful tools include: differential equations (DE)s, stochas-
tic differential equations (SDE)s, reflecting stochastic differential equa-
tions (RSDE)s, and potential functions

The paper includes review and the results of some elementary simu-
lations, particularly for the case of constrained motion having in mind
future data analyses. The work is preparatory to employing simulated
realizations of SDE models.

The sections of the paper are: Introduction, Some wildlife examples,
Equations of motion, Stochastic differental equations, The constrained
case, Results of some simulations, Several particles, and Discussion.

2 Some wildlife examples

The work of the paper, particularly the need to consider bounded domains,
may be motivated by some examples from wildlife biology.
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Figure 1: A ringed seal swimming about in an ice-covered lake. The dot indi-
cates the starting location.

Figure 1 shows the motion of a ringed seal as recorded in the Barrow
Strait, North West Territories. The animal is constrained within an ice-
covered lake that has several air holes. The trip starts at the dot. The
animal dives to the bottom, swims around then returns to the air hole. It
also looks at another air hole. The locations are available at irregular time
intervals. The researchers were concerned with the animal’s navigation,
foraging and use of its underwater habitat. To study its navigational sense
the eyes of the animal were covered during the dive graphed. The ecology
of ringed seals is described in [14].

Figure 2 shows the noonday positions of an elephant seal that started
out from and returned to an island off Santa Barbara [9]. The dots are
the estimated noonday positions. The outward and the inward journeys
are shown. Also shown for comparison is a great circle path. The animal’s
path fluctuates about it. The natural characteristics of the elephant seals
are described in [28].

Figure 3 shows the estimated locations of an elk moving about in the
Starkey Reserve in Eastern Oregon. There is a high benign fence about
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Figure 2: An elephant seal’s migration path. The dots are the midday positions.

the reserve. The animal’s track is estimated by the curve of broken line
segments, the brokedness reflecting the sampling at disparite times. The
positions are estimated about every 1.5 hours. The animal keeps moving
towards the fence on the southwestern side of Starkey. Details of the
experiment may be found in [6].

3 Equations of motion

Differential equations have long been used to describe the motion of par-
ticles, see for example [12]. To begin consider one particle moving in the
plane. Denote its location at time t by r(t) = (x(t), y(t)). Suppose that
there is a potential field, H(r, t). Such an H controls the direction and
speed of the particle. In particular it may be used to describe both at-
traction and repulsion, for example H(r) = |r− a|2, leads to attraction
of the particle to the point a while 1/|r− a|2, leads to repulsion from a.
Figure 4 includes a perspective plot of an attractive potential in the top
left panel.

Nelson, [19], Section 10 discusses the description of such motion. Let-
ting v denote velocity the equations he sets down are:

dr(t) = v(t)dt

dv(t) = − βv(t)dt − β∇H(r(t), t)dt

Here ∇ is the gradient ∇ = (∂/∂x, ∂/∂y). The quantity −β∇H is
the external force, and β the coefficient of friction. In the case that the
friction β is large the equation is approximately

dr(t) = −∇H(r(t), t)dt
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Figure 3: An elk roaming about the fenced Starkey Reserve. The white blobs
are fenced-off areas.
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This leads to the usual form taken in the study of SDEs, see (2) below.
If H is given, the force field F is −∇H . If there exists an H such that

F = −∇H then the field F is called conservative. Writing F = (Fx, Fy)
a necessary condition for F to be conservative is

∂

∂y
Fx =

∂

∂x
Fy (1)

If the domain is simply connected, this is also also sufficient and one has

H(x, y) =

∫ (x,y)

(a,b)

F · dr

see [29]. The “·” here indicates a line integral.
But, does an H exist? One may use (1) as a check. The Starkey

Reserve is not simply connected, see the blobs in Figure 3. Ignoring this,
(the scientists said that the fences around the blobs had fallen down), one
data analysis, [6], did not rule out the possibility of the existence of a
conservative potential field.

4 Stochastic differential equations

Let {B(t)} denote a bivariate Brownian motion. Given the functional
parameters µµ and ΣΣ consider the equation

dr(t) = µµ(r(t), t)dt + ΣΣ(r(t), t)dB(t) (2)

Conditions for the existence and uniqueness of solutions may be found in
Bhattacharya and Waymire [4], Stroock and Varadhan [30] and Ikeda and
Watanabe [13] for example. To tie in with the material of the previous
section it may be the case that

µµ(r, t) = −∇H(r, t)

for some H .
The motion of {r(t)} may be periodic, for example when there is a

seasonal or circadian effect. The motion may be bounded. The parameters
µµ and ΣΣ may include explanatories, e.g. time of day, distance to nearest
road.

4.1 Interpretations

Consider the model (2). Let Ht = {r(u),t, u ≤ t} denote the history of
the process up to and including, t, then one has the expressions

E{dr(t)|Ht} ≈ µµ(r(t), t)dt

var{dr(t)|Ht} ≈ ΣΣ(r(t), t)dt

As well as providing interpretations these relations suggest how µµ and ΣΣ
might be estimated given data. Examples are developed in [8].
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4.2 Solutions and their simulation.

By a solution of the SDE is meant an r(t) existing given the Brown-
ian process {B(t)}, see [4]. Often the way the existence of a solution is
demonstrated suggests an algorithm for simulating the process.

Let {r̂(t)} denote an approximation sequence and consider the so-
called Euler scheme. It is

r̂(tk+1)

= r̂(tk) + µµ(r̂(tk), tk)(tk+1 − tk) + ΣΣ(r̂(tk), tk)(B(tk+1)−B(tk)) (3)

with an initial value r(t0), a discretization {tk} of the interval and k =
0, 1, 2, .... Perhaps the tk will be equi-spaced. The points may be con-
nected by line segments. This and other schemes are investigated in [15].

Next we consider the case where the motion of the particle is con-
strained.

5 The constrained case

The motion of an animal may be restricted to a region. The ringed seal
was in a lake, the elephant seal in a layer at the Earth’s surface, and the
elk’s domain had a high fence about it.

In what follows: a domain D will be given, with boundary ∂D. The
constraint may be formalized as requiring r(t) to be in the closure D̄ for
all t

5.1 An example: diffusion on a sphere

Figure 2 shows the path of an elephant seal. Here the motion is confined
to the surface of the Earth, really to a layer at the surface.

The problem may be formalized as follows: suppose that a particle on
the sphere is migrating towards a target at an average speed δ and that
the particle is subject to Brownian disturbances of variance σ2.

In the case that δ = 0 this is the so-called spherical Brownian motion
that was studied by Perrin [20].

In [5] the following equations were set down letting θ and φ be the
colatitude and longitude relative to the target with 0 ≤ θ ≤ π and 0 ≤
φ < 2π. With (Ut, Vt) 2 dimensional Brownian motion, consider the
process

dθt = (−δ +
σ2

2 tan θt
)dt + σdUt

dφt =
σ

sin θt
dVt

Estimates of the parameters, including the variance of measurement noise,
are given in [9] for one data set. In the computations the likelihood
function is estimated by simulation.

5.2 Some simulation methods

.
There are a number of papers developing the existence and properties

of vector diffusions in restricted domains and there are a few that develop
simulation methods. References are given below.
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Sometimes the parametrization does the constraining. A simple uni-
variate example might involve the path being positive. This could be im-
plimented by writing the process as the exponential of an unconstrained
process. In the case of the elephant seal the variables employed did the
constraining to the surface of a sphere.

To handle the constrained circumstance researchers often write

dr(t) = µµ(r(t), t)dt + ΣΣ(r(t), t)dB(t) − dA(r(t), t) (4)

where A is an adapted process of bounded variation that only increases
when r(t) is on the boundary ∂D. Its purpose is to reflect the particle
back to the interior of D̄.

Looking for a solution to (4) with appropriate conditions is the so-
called Skorohod’s problem. Various results have been obtained concerning
the existence of solutions, references include: [30], [17], [1], [10], [24], [31],
and [25].

Simulations are useful for: program checking, likelihood computation,
bootstrapping, and estimating H amongst other things. Three methods
are described next. These methods are illustrated in Section 6.

A basic point is that one cannot simply use (3) and throw away a
point if it goes outside the boundary for doing so would bias against
certain types of behavior.

Method 1. Build a sloping steep wall. That is have a potential term H
rising rapidly at the boundary ∂D, when moving from the interior. This
leads to the SDE

dr(t) = µµ(r(t), t)dt + ΣΣ(r(t), t)dB − ∇H(r(t), t)dt (5)

The time sequence {tk} will be increasing and B(tk+1)−B(tk) written√
tk+1 − tk Zk+1 where the Zks and their entries are independent standard

normals. As above the approximant to the value at time tk will be denoted
r̂(tk). It is seen that Euler’s method given at (3) may be used directly to
obtain an approximate solution as in,

r̂λ(tk+1) =

r̂λ(tk) + µµ(r̂λ(tk), tk)(tk+1 − tk)

+ ΣΣ(r̂λ(tk), tk)
√

tk+1 − tk Zk+1 − ∇H(r̂(tk), tk)(tk+1 − tk)

with e.g. H(r) = αd(r, ∂D)β for d distance and scalars α, β.
In the description of the next two methods ΠD̄ will denote the projec-

tion operator taking an r to the nearest point of D̄.

Method 2. Penalization scheme. With λ ↓ 0 let βλ(r) = {r −
ΠD̄(r)}/λ. An approximate solution is now generated via,

r̂λ(tk+1) =

r̂λ(tk) + µµ(r̂λ(tk), tk)(tk+1 − tk)

+ ΣΣ(r̂λ(tk), tk)
√

tk+1 − tk Zk+1 − βλ(r̂(tk))(tk+1 − tk)

Some points may lie outside of D̄, but small λ brings them close.

Method 3. Projection method. In this case the sequence of approxi-
mations to the solution is

r̂(tk+1) =

7



ΠD̄

(
r̂(tk) + µµ(r̂(tk), tk)(tk+1 − tk) + ΣΣ(r̂(tk), tk)

√
tk+1 − tk Zk+1

)

These values do lie in D̄. The function A of (4) may be approximated by

∑
tk≤t

(r̂(tk) −ΠD̄(r̂(tk)))

By a special construction for the case of hyperplane boundaries Lépingle
[16] gets faster rates of convergence. He remarks that the constructed pro-
cess might go outside D̄ during some interval tk to tk+1 and provides a
construction to avoid this.

Some comparisons
From equation (4)

dr = µµdt + ΣΣdB − dA

while from (5)
dr = µµdt + ΣΣdB − ∇Hdt

so one has the connection

dA ≈ ∇Hdt

A crucial difference however is that the support of dA is on the boundary
∂D while the added term ∇H may be nonzero inside D̄.

References for specific methods of simulation are: [18], [21], [22], [26].
Asmussen et al. [2] find that the sampling has to be suprisingly fine in the
one-dimnsional case if the Euler method is used. They suggest improved
schemes.

One can speculate on how the animals behave when they get to the
boundary. They may walk along it for a while. They may run at it and
bounce back. They may stand there for a while. This relates to the
character of the reflections implicit in the simulation method employed.
Dupuis and Ishii [10] allow different types of reflections, including oblique.
Ikeda and Watanabe [13] allow “sticky” and “non-sticky” behavior at the
boundary.

6 Some simulations

To get practical experience, some elementary simulations were carried
out. A naive boundary, namely a circle was employed to make obtaining
the result of a projection easy.

Figure 4 shows results for the three methods. There were n = 1000
equi-spaced time points and in each case the same starting point and
random numbers were employed. The potential function, µµ, used is shown
on the top left panel of the figure. Its functional form is a standard normal
density rotated about the origin. The boundary is taken to be a circle of
radius 1.

The top right panel shows the result of Method 1. The term added to
the potential function to force the particle to remain in D is proportional
to

1/(1−
√

(x2 + y2))−3
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Figure 4: Simulation of a region of attraction at (0,0) and a circular boundary.
The top left hand figure is the potential function employed, H . The top right
is a simulated trajectory using Method 1. The bottom left used Method 2 and
the bottom right Method 3.
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This function rises to ∞ on ∂D. The path certainly stays within D and
is attracted towards the center. Since the term added is not zero in the
region D one is obtaining an approximate solution. When the point moves
near the boundary it is repulsed. The bottom left panel shows the result
of employing Method 2. The penalization parameter λ was taken to be
tk+1− tk. In this case the trajectory goes outside of the circle making the
method’s approximate nature clear. Of course, by choice of parameters
one can make the excursions smaller. The bottom left panel shows the
result of employing Method 3, i.e. projection back onto the perimeter of
points falling outside. The path stays in the circle.

We learned that the methods were not that hard to program and
Method 1 was perhaps the easiest. The running times of the three meth-
ods were comparable. Methods 1 and 3 lead to paths in D̄. The paths
generated by the three methods are surprisingly different despite the ran-
dom number generator having the same starting point in each case. The
presence of the boundary is having an important effect. The path behav-
ior is reminiscent of the sensitivity to initial conditions of certain dynamic
systems.

7 Several particles

We begin by mentioning the work of Dyson, [11], [27]. For J particles
moving on the line Dyson considered the model

dxj(t) =
∑
i6=j

1

xj(t)− xi(t)
dt + σdBj(t) (6)

j = 1, 2, ...., J
This corresponds to the potential function

H(x) = − 1

2

∑
i6=j

log(xj − xi)
2

This function differs from the models considered previously in the paper
in being random. One notes that there is long range repulsion amongst
the particles and they will not pass each other with probability 1.

Spohn [27] considers the general process

dxj(t) = − 1

2

∑
i6=j

H ′(xj(t) − xi(t))dt + dBj(t)

where H is a potential function. He develops scaling results and considers
correlation functions and Gibbs measures.

Figure 5 presents a simulation of Dyson’s process for the case of 2
particles and σ = .1. In the figure one sees the particles moving towards
0 repeatedly, but consequently being repelled from each other.

Consider next a more general formulation. Consider particles moving
in the plane. Suppose there are J particles with motions described by
{rj(t)}, j = 1, ..., J . Collect the locations at time t into a 2 by J matrix,
s(t) = [rj(t)] and set down the system of equations

drj(t) = µµj(s(t), t)dt + ΣΣj(s(t), t)dBj(t), j = 1, 2, ... (7)

with the Bj independent bivariate Brownians. The Dyson model (6) is a
particular case, with special properties.

10



Simulation of Dyson model for 2 particles

sigma = 0.1

0 20 40 60 80 100

-4

-2

0

2

4

Figure 5: A simulation of Dyson’s model (6).

The components may all be required to stay in the same region D̄.
Questions of interest, e.g. the interactions, now become questions concern-
ing the entries of µµ and ΣΣ. Attraction and repulsion might be modelled,
e.g. attraction of the animals i and j via setting

µµij(s(t)) = −∇ |ri(t) − rj(t)|2

One may be able to express the strengths of connection. One might study
the properties of the distance |ri(t)−rj(t)| to learn about the dependence
properties amongst the particles. The µµ, ΣΣ might include distance to the
nearest other particle. There are phenomena to include - animals lagging,
clumps, repulsion, attraction, staying about the same distance, ... Lastly
there may be animals of several types.

The simulation methods already discussed may be employed here.
With data, parameters may be estimated and inferences drawn, e.g. one
can study differences of animal behavior. It does need to be remembered
that behavior may appear similar because both particles are moving under
the influence of the same explanatories rather than inherently connected
as in the model (6).

8 Discussion

The paper is principally a review in preparation for statistical work to
come. SDEs are the continuing element in the paper. They provide a
foundation for the work in particular they offer processes in continuous
time, there is an extensive literature, and they have been studied by both
probabilists and statisticians.
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To a substantial extent the concern of the paper has been with the
effect of boundaries. It turns out that there are a several methods for
(approximately) simulating processes that are constrained. A small sim-
ulation study was carried out to assess relative merits.

Certain practical difficulties arise. These include: choice of sampling
times, choice of parameter values, goodness of approximation, the possible
presence of lags in a natural model, and the finding of functional forms
with which to include explanatories

The regularity conditions have not been laid out. They may be found
in the references provided. One can argue that the results are still far
from best possible for there is a steady changing of assumptions e.g. re
boundedness, convexity and closure.

Many problems remain. There has been some discussion of the case of
interacting animals here and in [7]. This is a situation of current concern.
In practice it seems that often the process can be only approximately
Markov for once the animal has finished some activity it seems unlikely
to start it again immediately, e.g. drinking. This means one would like
equations including time lags. It is easy to set down such equations, but
not so easy to get at the properties of the motion. As an example one
might consider

dr1(t) = µ1(r2(t− τ))dt + noise

for some function µ1 and lag τ . The deer may be following the elk at a
distance. There are analytic questions such as the expected speeds. There
is some literature going under the key words “stochastic delay equation”
see [3].

Other interesting questions include:
1. Given the diffusion process (2), how does one tell from the form of µµ
and ΣΣ if there is a closed boundary that keeps the process inside once it
starts inside?

One could check to see if ΣΣ(r(t), t) vanishes on ∂D and that µµ(r(t), t)
does not point outside there.
2. How does one include in the model the possibility that the process may
follow along the boundary for a period? What are other important types
of boundary behavior?

Ikeda and Watanabe’s sticky and non-sticky behavior has already been
mentioned.

The focus has been on diffusion processes but Lévy processes, with
their jump possibilities, seem a pertinent model for some situations. Work
does not appear to have been done on the Skorhod problem for Lévy
processes.

We have taken an analytic approach in the work and in particular
have left for later questions of statistical inference. The tools of model
and simulation are basic in the paper and are needed when one turns
to the inference issues. Simulation was used to estimate the invariant
distribution of the elk in [6] and the likelihood function of an elephant
seals’s journey in [9].
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