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Jerzy Neyman’s life history and some of his contributions to ap-
plied statistics are reviewed. In a 1960 article he wrote: “Currently
in the period of dynamic indeterminism in science, there is hardly a
serious piece of research which, if treated realistically, does not in-
volve operations on stochastic processes. The time has arrived for the
theory of stochastic processes to become an item of usual equipment of
every applied statistician.” The emphasis in this article is on stochas-
tic processes and on stochastic process data analysis. A number of
data sets and corresponding substantive questions are addressed. The
data sets concern sardine depletion, blowfly dynamics, weather mod-
ification, elk movement, and seal journeying. Three of the examples
are from Neyman’s work and four from the author’s joint work with
collaborators.

1. INTRODUCTION. This paper is meant to be a tribute to Jerzy
Neyman’s substantive work with data sets. There is an emphasis on scientific
questions, statistical modeling, and inference for stochastic processes.

The title of this work comes from of Neyman (1960) where one finds,

“The essence of dynamic indeterminism in science consists in an effort to
invent a hypothetical chance mechanism, called a ‘stochastic model’, operat-
ing on various clearly defined hypothetical entities, such that the resulting
frequencies of various possible outcomes correspond approximately to those
actually observed.”

Here and elsewhere Neyman appeared to use the adjective “indeterministic”
where others would use “stochastic”, “statistical”, and “nondeterministic”,
see for example Neyman and Scott (1959). Perhaps Neyman had some deeper
or historical context in mind, but that isn’t clear. In this paper the emphasis
is on the word “dynamic”.

Jerzy Neyman (JN) led a full life. Reid (1998) contains many details and
anecdotes, a lot of them in Neyman’s own words. Other sources include the
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papers: Neyman (1970), Le Cam and Lehmann (1974), Kendall et al. (1982),
Scott (1985), Lehmann (1994), Le Cam (1995).

The article has six sections: 1. Introduction, 2. Jerzy Neyman, 3. Some
formal methods, 4. Three examples of JN’s applied statistics work, 5. Four
examples of random process data analysis, 6. Conclusion. The focus is on
applied work in the environmental sciences and phenomena. This last is a
word that Neyman often employed.

In particular the examples show how random process modeling can prove
both helpful and not all that difficult to impliment. The thought driving
this paper is that by examining a number of examples unifying methods
and principles may become apparent. One connecting thread is “synthetic”
data, in the language of Neyman et al (1953, 1956). Synthetic data, based
on simulations, are an exploratory tool for model validation that has the
advantage of suggesting how to create another model if the resemblance of
the simulation to the actual data is not good.

There are quotes throughout to create a flavor of JN’s statistical ap-
proaches.

2. JERZY NEYMAN.

“His devotion to Poland and its culture and traditions was very marked, and
when his influence on statistics and statisticians had become world wide it
was fashionable ... to say that ‘we have all learned to speak statistics with a
Polish accent’ ...” D.G. Kendall et al. (1982)

The life of Neyman is well-documented by JN and others, see for example
Reid (1998), LeCam and Lehmann (1974), and Scott (1985). Other sources
are cited later. Neyman was of Polish ancestry and as the above quote makes
clear he was very Polish! Table 1 records some of the basic events of his life.
One sees a flow from Poland to London to Berkeley with many sidetrips
intermingled throughout his life. These details are from Scott (1985), and
Reid (1998).

Neyman’s education involved a lot of formal mathematics (integration,
analysis, ...) and probability. He often mentioned the book, The Grammar
of Science, Pearson (1900), as having been very important for his scientific
and statistical work. He described Lebesgue’s Leçons sur l’intégration as,
“the most beautiful monograph that I ever read.”

The Author’s Note to the Early Statistical Papers, Neyman (1967), com-
ments on the famous and influential teachers he had at Kharkov. They
included S. Bernstein (“my teacher in probability”), C. K. Russyan, and A.
Przeborski. Others he mentions as influential include E. Borel, R. von Mises,
A. N. Kolmogorov, E. S. Pearson, and R. A. Fisher.
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Date event

1894 Born, Bendery, Monrovia
1916 Candidate in Mathematics, University of Kharkov
1917-1921 Lecturer, Institute of Technology, Kharkov
1921-1923 Statistician, Agricultural Research Institute, Bydgoszcz, Poland
1923 Ph.D. in Mathematics, University of Warsaw
1923-1934 Lecturer, University of Warsaw

Head, Biometric Laboratory, Nencki Institute
1934-1938 Lecturer, then Reader, University College, London
1938-1961 Professor, University of California, Berkeley
1955 Berkeley Statistics Department formed
1961-1981 Professor Emeritus, University of California, Berkeley
1981 Died, Oakland, California

Table 1

A timeline of Jerzy Neyman’s life.

Neyman came to Berkeley in 1938. That appointment had been preceded
by a triumphant US tour in 1937. The book Neyman (1938) resulted from
the tour. After Neyman’s arrival internationally renowned probabilists and
statisticians began to visit Berkeley regularly and contributed much to its
research atmosphere and work ethic.

In Neyman’s time the lunch room used to play an important role in the
Berkeley Department. JN, Betty Scott (ELS) and Lucien le Cam enthralled
students, colleagues, visitors and the like with their conversation. They in-
volved everyone in the stories and discussions.

Neyman had a seminar Wednesday afternoons. It began with coffee and
cakes. Then there was a talk, often by a substantive scientist, but theoretical
talks did occur from time to time. The talk’s discussion was followed by
drinks at the Faculty Club including the famous Neyman toasts. (“To the
speaker. To the international intellectual community. To the ladies present
and some ladies absent.” Up until perhaps the mid-seventies there was a
dinner to end the event.

Neyman’s work ethic was very strong. It typically included Saturdays in
the Department, and for those who came to work also there were cakes at
3pm.

3. SOME FORMAL METHODS.

“Every attempt at a mathematical treatment of phenomena must begin by
building a simplified mathematical model of the phenomena.” Neyman (1947)

This section provides a few of the technical ideas and methods that are
basic to the examples presented. The examples involve: dynamics, time, spa-
tial movement, Markov processes, state space models, stochastic differential
equations (SDEs) and phenomena.
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3.1. Random process methods.

“..., modern science and technology provide statistical problems with observ-
able random variables taking their values in functional spaces.” Neyman (1966)

By a random process is meant a random function. Their importance has
already referred to in Section 1. In particular Neyman was concerned with
“phenomena developing in time and space” Neyman (1960). The random
processes describing these are the backbone of much of modern science.

3.2. Markov processes. Neyman was taken with Markov processes. Reid
(1998) quotes hin as saying,

“So what Markov did - he considered changes from one position to another
position. A simple example. You consider a particle. It’s maybe human. And
it can be in any number of states. And this set of states may be finite, may
be infinite. Now when it’s Markov - Markov is when the probability of going
- let’s say - between today and tomorrow, whatever, depends only on where
you are today. That’s Markovian. If it depends on something that happened
yesterday, or before yesterday, that is a generalization of Markovian.”

Time and Markovs play key roles in Fix and Neyman (1951). An advan-
tage of working with a Markov process is that when there is a parameter
one can set down a likelihood function directly.

3.3. Stochastic differential equations (SDEs).

”It seems to me that the proper way of approaching economic problems math-
ematically is by equations of the above type, in finite or infinitesimal differ-
ences, with coefficients that are not constants, but random variables; or what
is called random or stochastic equations. ... The theory of random differen-
tial and other equations, and the theory of random curves, are just starting.”
Neyman(1938)

To give an example let r(t) refer to the location of a particle at time t in
Rp space. The path that it maps out as t increases is called the trajectory.
(Trajectory is an old word used for a stochastic process.) Its vector-valued
velocity will be denoted

µ(t) = dr(t)/dt

Rewriting this equation in terms of increments and adding a random distur-
bance leads to a so-called stochastic differential equation

dr(t) = µ(r(t), t)dt + σ(r(t), t)dB(t) (1)

or in integrated form,

r(t) = r(0) +

∫ t

0

µ(r(s), s)ds +

∫ t

0

σ(r, s)dB(s) (2)
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If for example the process B is Brownian, i.e. the increments B(ti+1) −
B(ti) are IN(O, (ti+1 − ti)I) then, under conditions on µ and σ, a solution
of the equation exists and is a Markov process. The function µ is called the
drift rate and σ the diffusion coefficient.

A particular case of an SDE is the Ornstein-Uhlenbeck process given by

dr(t) = α(a − r(t))dt + σdB(t)

with α > 0 and σ a scalar. This models a particle being attracted to the
point a with the motion disturbed randomly.

An approximate solution to the equation (1) is given, recursively, by

r(ti+1) − r(ti) ≈ µ(r(ti), ti)(ti+1 − ti) + σ(r(ti), ti)Zi

√

ti+1 − ti (3)

with the ti an increasing sequence of time points filling in the time domain
of the problem, see Kloeden and Platen (1995). The Zi are independent
p-variate standard normals. This solution procedure to the equation (1) is
known as the Euler method. In fact Ito (1951) used an expression like (3) to
demonstrate that, under conditions, the equation (1) had a unique solution.

There has been a substantial amount of work on statistical inference for
SDEs, references include Heyde (1994) and Sorensen (1997). There are para-
metric and nonparametric fitting methods. Inferential work may be moti-
vated by setting down the above approximation and taking the ti to be the
times of observation of the process.

Assuming that µ(r, t) = µ(r), that σ(r(t), t) = σI, σ scalar, and that
r is p vector-valued one can consider as an estimate of σ2

σ̂2 =
1

pI

∑

i

||r(ti+1 − r(ti) − µ̂(r(ti))(ti+1 − ti)||
2/(ti+1 − ti) (4)

i = 1, ..., I, having determined an estimate of µ.
If the region of motion, say D, is bounded with boundary ∂D, one can

proceed via the SDE,

dr(t) = µ(r(t), t)dt + σ(r(t), t)dB(t) + dA(t)

with the support of A on the boundary ∂D. This construction pushes the
particle into D.

3.4. A potential function approach. The choice of the function µ in (1)
may be motivated by Newtonian dynamics. Suppose there is a scalar-valued
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potential function, H(r(t), t), see Taylor (2005). Such a function H can con-
trol a particle’s direction and velocity.

In a particular physical situation the Newtonian equations of motion may
take the form

dr(t) = v(t)dt

dv(t) = − βv(t)dt − β∇H(r(t), t)dt (5)

with r(t) the particle’s location at time t, v(t) the particle’s velocity and
−β∇H the external force field acting on the particle. The parameter β
represents the coefficient of friction. Here ∇ = (∂/∂x, ∂/∂y)τ is the gradient
operator. For example Nelson (1967) makes use of the form (5).

In the case that the relaxation time, β−1, is small (or in other words, the
friction is high), the equations (5) are approximately

dr(t) = −∇H(r(t), t)dt = µ(r, t)dt

Writing the velocity v(t) = µ(r, t) one is led to a stochastic gradient system

dr(t) = −∇H(r(t), t)dt + σdB(t)

The function H might be: a linear combination of elementary known
functions, a combination of thin plate splines placed around a regular grid
or based on a kernel function. Example 7 below will indicate the method.
The method is further elaborated in Brillinger (2007ab).

4. THREE EXAMPLES OF JN’S APPLIED STATISTICS WORK.

“... the delight I experience in trying to fathom the chance mechanisms of
phenomena in the empirical world.” Neyman (1970)

Neyman was both an exceptional mathematical statistician and an excep-
tional applied statistician. The applied work commenced right at the begin-
ning of his career and continued until the very end. This section presents ex-
amples from astronomy, fisheries and weather modification. These examples
were chosen as they are interesting and they blend into the later examples
in the paper.

Neyman’s work was special in applied statistics in that he set down specific
“postulates” or assumptions. Tools of his applied work included: sampling,
Best Asympotically Normal (BAN) estimators, C(α) tests, chi-squared, ran-
domization, and synthetic data. His work was further characterized by the
very careful preparation of the data by his Statistical Laboratory workers.

JN’s applied papers typically include substantial introductions to the sci-
entific field of concern. Topics include farfield effects of cloud seeding, esti-
mation of the dispersion of the redshift of galaxies, higher-order clustering
of galaxies, and sardine depletion.
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Given Neyman’s concern with the scientific method one can wonder how
he validated or appraised his models. On reading his papers hypothesis test-
ing seems to include assessment. There were lots of data, and fit compo-
nents (observed - expected) and chi-squared (residuals). There was smooth
chi-squared to get alternative hypotheses. There was often the remark, “ap-
pears reasonable”.

4.1. Example 1. ASTRONOMY.

“By far the strongest and most sustained effort expended for us in studying
natural phenomena through appropriately selected aspects of the process of
clustering referred to astronomy, specifically to galaxies. ..., the stimulus came
from the substantive scientists, that is from astronomers.” Neyman and Scott
(1972)

The work of Neyman, and his collaborators in this case is a model for ap-
plied statistics. The question is made clear. Substantive science is involved.
Statistical theory is employed and developed as necessary. Empirical analy-
ses are carried out.

In a series of papers Neyman, Scott, Shane and Swanson addressed the
issue of galaxy clusterin. They applied mathematical models to the Lick
galaxy counts of Shane and Wirtanen. They were the first to compare the
observed galaxy distribution to synthetic images of the Universe. They as-
sumed that clusters occur around centers distributed as a spatial Poisson
process. Each center was assigned a random number of galaxies and the lat-
ter placed independently at random distances from the center. This model,
the so-called Neyman-Scott model, seemed to fit reasonably. However when
Neyman and Scott produced a simulated realization, or synthetic plate, of
the sky from their model they were surprised. The actual pictures of the sky
were a lot more lumpy than those their simulation had produced.

“When the calculated scheme of distribution was compared with the actual
distribution of galaxies ..., it became apparent that the simple mechanism pos-
tulated could not produce a distribution resembling the one we see.” Neyman
and Scott (1956)

More clustering was needed in the model. Neyman and Scott proceeded to
introduce it. With a two stage clustering process the simulated appearance
of the sky looked much more realistic. Figure 1, taken from Scott et al.
(1954) presents an example.

In summary,

“... it was shown that the visual appearance of a ‘synthetic’ photographic
plate, obtained by means of a large-scale sampling experiment, conforming
exactly with the assumptions of the theory, is very similar to that of an actual
plate.” Neyman, Scott, Shane (1954)
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Fig 1. Lefthand panel is an image of an actual photographic plate. The righthand panel is
a synthetic plate. See Scott et al (1954)

4.2. Example 2: SARDINE DEPLETION.

“Biometry is an interdisciplinary domain aimed at the understanding of bio-
logical phenomena in terms of chance mechanisms.” Neyman (1976)

In 1947-8 Neyman was called upon by the California Council of the
Congress of Industrial Organizations to study the decrease in sardine catches.
The decrease was of great concern and strongly affected the canneries and
commerce of the workers along the west coast of the United States.

In particular JN was consulted re the natural and fishing mortality of
the sardines. A specific purpose of his work was “... to study the methods of
estimating the death rates of the sardines.” JN wrote three reports on sardine
fishery. They are collected in Neyman (1948) and titled, 1. Evaluations and
Observations of Material and Data Available on the Sardine Fishery, 2.
Natural and Fishing Mortality of the Sardines, and 3. Contribution to the
Problem of Estimating Populations of Fish with Particular Reference to Fish
Caught in Schools, Such as Sardines. A revision of the third report appeared
as Neyman (1949).

At the outset of Neyman (1949), he provides Table 2. From it he infers a
“rapid decline ... observed in spite of a reported increase in fishing effort, ...”
A second table, Table 3, gives the amount (in arbitrary units) of sardines
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Year Seasonal catch

1943-44 579
1944-45 614
1945-46 440
1946-47 248
1947-48 110

Table 2

Seasonal catch of California sardines 1943-1948 in 1000 tons.

Season 41-2 42-3 43-4 44-5 45-6

age = 1 926.0 718.0 1030.0 951.0 493.0
2 6206.0 2512.0 1308.0 2481.0 1634.0
3 3207.0 4496.0 2245.0 1457.0 1529.0
4 868.0 1792.0 2688.0 1298.0 799.0
5 361.0 478.0 929.0 1368.0 407.0
6 95.1 169.4 327.0 498.5 299.2
7 47.2 36.0 98.4 148.0 111.2

Table 3

Numbers, mt,a, of sardines caught by age and year.

landed on the West Coast in the seasons 1941-6, classified by age and season.
Figure 2 graphs the amounts with lines joining the values for the same
sardine age. One sees the high numbers in the early forties followed by
decline. The interpretation is tricky because the numbers reflect both the
fish available and the effort put into catching them. Neyman (1948) discussed
the effect of migration and concluded that it was unimportant for his then
purposes.

Turning to analysis Neyman remarks,

“Certain publications dealing with the survival rates of the sardines begin with
the assumption that both the natural death rate and the fishing mortality are
independent of the age of the sardines, at least beginning with a certain initial
age.” Neyman (1948)

and goes on to say,

“In the present note a method is suggested whereby it is possible to a (sic)
test the hypothesis that the natural death rate is independent of the age of
the sardines.” Neyman (1949)

To address the independence issue, and possibly motivated by Table 3,
Neyman sets up a formal structure as follows. Let Nt,a be “the number of fish
available aged a at the beginning of season t and exposed to the risk of being
caught”. Here these numbers are collected into a vector, N(t) = [Nt,a]. Next
nt,a is set to be the expected number of sardines aged a caught during season
t, and Pt = 1 − Qt set to be the “fishing survival rate in the t-the year”.
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Fig 2. The data of Table 3 plotted versus year. The curve labels 1-7 index the age groups.

Continuing, pa = 1 − qa denotes the “natural survival rate at age a, and qa

the “rate of disappearance”. The rate of mass emigration during season t is
denoted by Mt.

The following null hypthesis may be set down concerning the mortality
rates,

H0 : qa0
= qa0+1 = ... = qa, a > a0

Specific assumptions Neyman considered were,
(i). Qt = nt,a/Nt,a, season t fishing mortality
(ii). Nt+1,a+1 = Nt,a(1 − Qt)(1 − qa)
(iii). Nt+1,a+1 = Nt,a(1 − Qt)(1 − Mt)(1 − qa)

Assumptions (ii) and (iii) involve separation of the age and season variables.
For identifiability of the model Neyman writes

nt+1,a+1 = nt,aRtpa = nt,artp
∗

a

with

Rt =
Pt(1 − Mt)

Qt
Qt+1 , rt = Rt/R1, p∗a = R1pa

One notes from these expressions that nt+1,a+1/nt,a separates into a function
of t and a function of a. This last led Neyman to work with logs of ratios in his
analyses (There will be more on this choice later.) He estimates p∗a = R1pa

which is proportional to pa under his definitions, from the data.
The p∗a estimates are provided in Table 4 and graphed in Figure 3. One

sees a steady decrease with age. Table 5 provides n̂t,a based on assumption
(i) and (ii) (or (i) and (iii).)

Neyman’s conclusions included,
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Fig 3. Estimates of the natural survival rate, p* as a function of age.

Season 41-2 42-3 43-4 44-5

p
∗

a .5944 .4854 .4629 .4056
rt 1.0 1.2252 1.0695 .6259

Table 4

Parameter estimates (These are the values obtained in calculations for this article.)

“While in certain instances the differences between Tables IV (here Table 3)
and VII (here Table 5) are considerable, it will be recognized that the gen-
eral character of variation in the figures of both tables is essentially similar.”
Neyman (1948), pages 14-15.

No formal test of H0 was set down, but Neyman concludes that,

“Since the estimates of the p
∗

a decrease rather regularly, it seems that the
true natural survival rates must decrease with the increase in age ...” Neyman
(1948)

Basic elements of this example include working with empirical data, not-
ing the age and season structure explicitly, and working with a Markov-like
setup. Interestingly Neyman talks of an expected value, but no full proba-
bility model is set down.

Season 1 2 3 4 5

age, 3 2810.0 3556.3 2117.9 1761.6
4 1059.3 1684.3 2611.7 1355.7 661.0
5 383.7 514.2 1001.7 1355.7 412.5
6 91.9 77.6 291.6 495.9 391.7
7 37.3 88.2 126.5 125.9

Table 5

Estimates of the nt,a, the expected numbers of sardines.



12 DAVID BRILLINGER

In part this example is meant to get the reader in the mood for an age-
structured population analysis to appear later in the paper.

The final example taken from Neyman’s work follows.

4.3. Example 3: WEATHER MODIFICATION.

“The meteorological aspects of planning an experiment with cloud seeding
depend upon the past experience, upon what the experimenter is prepared to
adopt as a working hypothesis and upon the questions that one wishes to have
answered by the experiment.” Neyman and Scott (1965-6)

Cloud seeding became an interest of Jerzy Neyman starting in the early
1950’s. He and his collaborators studied data from the Santa Barbara and
Arizona rainfall experiments. Neyman and Scott moved on to study data
from a Swiss weather modification experiment that had been designed to see
if cloud seeding could reduce hailfall. The experiment was carried out in the
Canton of Ticino during the period 1957-1963 and was called Grossversuch
III .

The experimental design involved each day deciding whether conditions
were suitable to define an “experimental day”. If a day was suitable seeding
was or was not carried out the following day, randomly. Seeding, if any,
lasted from 0730 to 2130 hours local time. Rainfall measurements that had
been made in Zurich, about 120 km away from Ticino, were studied.

In the course of their work Neyman and Scott discovered so called ”far-
away effects”, that is an apparent increase in amount of rainfall at a distance.
See Neyman et al (1969).

Figure 4 provides a reconstruction of a graph that Neyman and Scott
(1974) employed to highlight the result. It presents average hourly rainfall
totals smoothed by a running mean of three, for the experimental days when
a “warm” stability layer and southerly winds were present.

To obtain the data of Figure 4 the values were read off a graph in Neyman
and Scott (1974). The solid curve refers to experimental days with seeding,
the dashed to those without. There were 53 experimental days with seeding
and 38 without.

What Neyman and Scott focused on in the figure was an apparent effect
of seeding in Zurich starting about 1400 hours in the afternoon.

They wrote as follows,

“... the curves ... represent averages of a number of independent realizations of
certain stochastic processes. The ‘seeded’ curves are a sample from a popula-
tion of one kind of processes and the ‘not seeded’ curve a sample from another.
For an initial period of a number of hours ... the two kinds of processes co-
incide. Thereafter, at some unknown time T, the two processes may become
different. Presumably, all the experimental days differ from each other, pos-
sibly depending on the direction and velocity of prevailing winds. Therefore,
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Fig 4. Comparison of seeded and not seeded hourly precipitation amounts on days with
southerly upper winds. The solid line is rainfall for seeded days and the dashed line for
unseeded. The horizontal line with arrowheads represents the seeding period at Ticino. A
three hour moving average had been employed to smooth hourly totals.

the time T must be considered as a random variable with some unknown dis-
tribution. The theoretical problem is to deduce the confidence interval for the
expectation of T, ...” Neyman and Scott (1974)

This problem will be returned to later in the paper.

4.4. Neyman and Exploratory Data Analysis (EDA). Given my statisti-
cal background it would be remiss not to provide some discussion of EDA in
Neyman’s work. Quotes are one way to bring out pertinent aspects of Ney-
man’s attitude to EDA. One can conclude that exploratory data analysis
was one of his talents.

“... while hunting for a big problem I certainly established the habit, ..., to
neglect rigour.” Neyman(1967)

“PAGE asked whether the elimination of outliers - supposed projected fore-
ground or background objects recognized by discordant velocities - would not
in itself introduce unwanted selection effects. NEYMAN advised that the in-
vestigator try calculations with and without outliers, then make up his mind
‘which he likes best’, while retaining both.”

“Compared with the old style experiments, characterized by the attitude ‘to
prove’, the proposed experiment would be substantially richer. ... This, then,
will implement the attitude ‘to explore’ contrasted with that ‘to prove’ ”
Neyman and Scott (1965-66)

“We emphasize that such an investigation is only exploratory; whatever may
be found are only clues which must be studied further and hopefully verified
in other experiments.” Dawkins, Neyman and Scott (1977)
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Fig 5. Comparisons of Table 3, x-values and Table 5, y-values. The left panel plots (x-y)
versus (x+y)/2 and the right |x − y| versus (x+y)/2.

JN did not seem to use residuals much. However in Neyman (1980) one
does find,

“... one can observe a substantial number of consecutive differences that are
all negative while all the others are positive. ... the ‘goodness of fit’ is subject
to a rather strong doubt, irrespective of the actual computed value of χ

2, even
if it happens to be small.” Neyman (1980)

Neyman et al (1953) proposed an innovative EDA method to examine
variability, specifically given values X and Y with the same units, plot X−Y
and |X − Y | versus (X + Y )/2. Figure 5 compares Tables 3 and 5 of the
sardine analysis this way. In the two panels one sees wedging, that is an
increase of variability with size. This suggests that a transformation of the
data might simplify the matter. Neyman did employ the log transform in
his analysis of the sardine data consitent with the multiplicative character
of the model.

5. FOUR EXAMPLES OF RANDOM PROCESS DATA ANAL-

YSIS. The following examples report some of my work, typically with col-
laborators. They were suggested in part by my exposure to JN and to the
preceding examples.

5.1. Example 4: SHEEP BLOWFLIES. In Example 2 above Neyman
studied data on sardines that included the actual age information. However
it can be the case that, even though a population is age-structured, only
aggregate data are available, and actual age information is unavailable. This
is the case in the example that follows. To deal with it a state space model
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Life stage Length

egg 12-24 hours
larva 5-10 days
pupa 6-8 days
adult 1-35 days

Table 6

Life stages and their lengths for sheep blowflies.

is set down. The (unobserved) state vector is taken to be the counts of
individuals in the various age groups. The story and details follow.

The tale begins with the mathematician John Guckenheimer and the then
entomologist George Oster coming to meet with DRB. They had in hand
data on a population of lucilia cuprina (Australian sheep blowflies). The data
concerned an experiment maintained from 1954 to 1956 under constant, but
limited conditions by A. J. Nicholson, then Chief Division of Entomology,
CSIRO, Australia.

At the beginning of the experiment 1000 eggs were placed in a cage. Every
other day counts were made of the number of eggs, of nonemerging flies’ eggs,
of the number of adult flies emerging, and of the number of adult fly deaths.
The life stages, and corresponding time periods, of these insects are given in
Table 6. Further details of the experiment may be found in Nicholson (1957).
To get digital values Oster and a student took a photo of one of the figures
in that paper. The photo was then projected on a wall and numerical values
read off. Unfortunately some of the populations’ sizes went off the top of
the figure. The values for these cases were obtained when DRB later visited
CSIRO.

Guckenheimer and Oster’s question was whether these data displayed the
presence of a strange attractor, a concept from nonlinear dynamic systems
analysis, see Brillinger et al (1980), and Guckenheimer and Holmes (1983).
The behavior evidenced in the second half of the series graphed in Figure 6 is
what attracted Guckenheimer and Oster’s attention. The initial oscillations
come from the usual lifespan of the adults.

In the particular experiment studied here the amount of food put in the
fly cage was deliberately restricted. This meant that the fecundity of the
females was reduced. When much food was available many eggs were laid.
With insufficient food the number of eggs was reduced. This led to boom
periods and bust periods in the population size.

Figure 6 graphs the square roots of total adult population count, as well
as of the number of flies emerging. The time points are every other day
over a period of approximately two years. In the graphs one sees an initial
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Fig 6. Square roots of counts for the Nicholson blowfly data. The top panel provides the
number of adults and the bottom the number of emerging pupae.

periodic behavior in both series followed by rather irregular behavior. The
square roots were plotted to make the variability of the display more nearly
constant.

Brillinger et al. (1980) proceeded by setting down a formal state space
model for the situation as follows,

t = 0, 1, 2, ..., represents time, observations being made every other day.
Et, the number of emerging flies in time period (t, t + 1],
Et, the entrant column vector. It has Et in row 1 and 0 elsewhere,
Nt, the adult population at time t.
Constructs include,
Nt = [Nit], the state vector. In it row i gives the number of population

members aged i − 1 at time t
Pt = P(Ht) = [pi,t], the survival matrix. The entry in row i + 1,

column i gives the proportion surviving age i to age i + 1. Pt is taken as
depending on the history Ht that is the collection of the data values up to
and including time t.

The available data are Et and Nt.
The measurement equation, corresponding to the observed population size

is, Nt = 1
′
Nt. The dynamic equation is

Nt+1 = PtNt + Et+1 + fluctuations,

This expression updates the counts of adult flies in each age group, starting
from N0 = 0. The fluctuations represent variabilities in those numbers.

In one analysis, ibid, the following nonlinear age and density model was
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Fig 7. Deaths series and synthetic death series using the model (6)

employed,

pi,t = 1 − Prob{individual aged i, dies aged i at time t| Ht}

= (1 − αi)(1 − βNt)(1 − γNt−1) (6)

This model allows survival dependence on age, i, on the current population
size, Nt and on the preceding population size, Nt−1. The final term allows
the possibility that it takes some time for the limited or excess food situation
to take effect.

Weighted least squares was employed in the fitting of model (6). On the
basis of residual plots weights were taken to be N2

t . Hence writing Dt =
Nt−1 − Nt + Et one seeks

minθ

∑

t

(Dt+1 −
∑

i

qimi,t)
2/N2

t

where θ = {αi, β, γ} and mi,t is the conditional expected value, E{Ni,t|Ht}.
Graphs of the estimates of the individual entries of Nt are provided ibid.

Synthetic series were computed to assess the reasonableness of the model
(6). In the simulations counts of deaths in the time period (t − 1, t], are
computed. The deaths, Dt, are plotted in the top panel of Figure 7. The
value Dt is thought of as fluctuating about the value

∑

i

qi,tNi,t

where Ni,t is the population aged i at time t.
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The results of two simulations are provided in Figure 7. In the first, the
middle series, the variability is taken as binomial. In the second, the bottom
series, the variability is taken as independent normal, mean 0, standard
deviation σ̂Nt with σ̂ estimated from the weighted least square results. That
the appearances of the synthetic series are so close to the actual series relates
to the use of the common stimulus series, Et.

A byproduct of this analysis is that because the measurement equation,
Nt = 1

′
Nt, is of simple addition form by this analysis one has developed a

decomposition of the population total series into individual age series. These
are graphed in Brillinger et al. (1980).

The fitted death rates were non-linear in the population size, so mathe-
matically a strange attractor might be present, ibid.

In this situation one is actually dealing with a nonlinear closed loop feed-
back system with time lags. Guttorp (1980), in his doctoral thesis, completed
the analysis of the feedback loop modeling the births.

5.2. Example 5 - WEATHER MODIFICATION REVISITED. Neyman
and Scott’s problem referred to in Example 3 was addressed in Brillinger
(1995). At issue was making inferences concerning the travel time of seeding
effects from Ticino to Zurich. The approach of the paper was to envisage a
succession of travel time effects that started at times throughout the seeding
period. This way one had replicates to allow employment of statistical char-
acteristics. A conceptual model involving a gamma density for the travel ve-
locity of the seeding effect was employed. The data themselves were graphed
in Figure 4 above.

The model employed is the following. Suppose that “rain particles” cre-
ated at Ticino move off towards Zurich with a possibility of leading to a
cluster of rain drops there. Suppose that the particles are born at Ticino at
the times σj of a point process M , at rate pM (t). Suppose that the travel
times from the particles’ times of creation, Uj , to Zurich are independent
of each other with density fU (.). Let N denote the point process of times,
τj at which the particles arrive at Zurich and pN (t) denote the rate of tha
process.

If the j-th particle moves with velocity vj and the distance to be travelled
is ∆, then its travel time is uj = ∆/vj and since

∑

j

δ(t − τj) =
∑

j

δ(t − σj − uj)

with δ() the Dirac delta, one has

pN (t) =

∫

pM (t − u)fU (u)du
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Let the amounts, Rj , of rain falling at Zurich associated with the indi-
vidual particles, be statistically independent of the particles. Let µR denote
E{Rj}. Then the rate of rainfall at Zurich at time t is

pX(t) = µR

∫

pM (t − u)fU (u)du

Next let X(t) denote the cumulative amount of rain falling at Zurich from
time 0 to time t. Its expected value is

E{X(t)} =

∫ t

0

pX(v)dv

Turning to Figure 4, Neyman and Scott employed a running mean of order
3 of the hourly totals to get the values graphed. These are the data available
for analysis. (The hourly values appear to be lost.) The running mean may
be written

Y (t) =
1

3
(X(t + 1) − X(t − 2))

for t = 2, 3, ... Its expected value is

1

3

∫ t+1

t−2

pX(v)dv =
1

3
µR

∫ t+1

t−2

∫

pM (v − u)fU (u)dudv (7)

One can now view the Neyman-Scott problem as related to estimating fU (.)
of (7), that is estimating the travel time density given the available data.

To proceed, the seeding rate pM (t) will be taken to be constant on the
time interval from 0730 to 2130 hours and to be 0 otherwise. It will be further
assumed that the travel time of U has the form θ/W with θ a parameter,
and with W weibull, having scale 1, and shape s. Brillinger (1995) took the
gamma as the density, but a review of the literature of wind speeds suggests
that the weibull would be more appropriate.

Writing pM (t) = C for A < t < B, (here A = 7.5 and B = 21.5 hr.)
one has the regression function

E{Y (t)} = α +
C

3
µR[

∫ t+1−A

t−2−A

FU (u)du −

∫ t+1−B

t−2−B

FU (u)du] (8)

where FU (.) denotes the distribution function of U , in the case of seeding
and α is the natural level of rainfall. With the assumed weibull velocity
distribution, (8) may be evaluated in terms of G the distribution function
of the weibull. Specifically,

∫ x

0

FU (u)du = x

[

1 − G(
1

x
, s)

]

−
s

s − 1

[

1 − G(
1

x
, s − 1)

]
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Fig 8. Left panel - actual and fitted (dotted line) rainfall when seeding. Right panel - actual
and synthetic in the case of seeding (dotted line).

(To derive this one replaces Prob{1/W ≤ u} by Prob{W ≥ 1/u} and inte-
grates by parts.)

The estimates of the unknowns µ = θΓ((s − 1)/s) (the average travel
time), s, α, β = CµR/3 were determined by ordinary least squares, weight-
ing the seeded terms by 53 and the unseeded by 38 to handle the unequal
numbers of seeded and unseeded cases.

Figure 8 lefthand panel presents the data (solid curve) and the fitted
(dotted) curve. The parameter estimates obtained are:

µ̂ = 4.78(.47) hr, ŝ = 6.68(5.12), α̂ = .24(.02), β̂ = 1.69(.19)

The standard errors, assumed the errors to be i.i.d. .)
One sees in the lefthand panel that the actual data have a peak near

1800 during 0730 and 2130 hr, whereas the fitted has a flat top. Perhaps
the birthrate, pM (t), of particles is not approximately constant as assumed
above. Perhaps the distribution, fU (u), depends on time. Perhaps the result
is due to natural variability.

A synthetic plot is generated to examine the fit. Specifically the fluctua-
tions of the unseeded days have been added to the fitted curve and graphed
in the righthand panel of Figure 8. Still the fitted curve is quite flat on the
top, in contrast to the Neyman-Scott data curve which is noticeably peaked.
The added fluctuations do not bring the curve up to the data level.

Returning to the Neyman-Scott problem of Section 3, the second quota-
tion there refers to T , a random time at which seeding first shows up in
Zurich. The U ’s represent the lengths of time it takes for an effect just ini-
tiated to arrive. One can take the expected value, EU , to be ET . Using the
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parameter estimates above, an approximate 95% confidence interval for the
expectation of T is

4.78 ± 2 ∗ .47 hours

More work needs to be done with this example. A indication of how to
proceed is provided by Figure 8. The data graph is pointed, whereas the
fitted is flat-topped.

5.3. Example 6. ELK MOTION. The data now studied were collected
at the Starkey Experimental Forest & Range (Starkey), in Northeastern
Oregon. Quoting from the website,

fs.fed.us/pnw/starkey/publications/by keyword/Modelling Pubs.shtml
Starkey was set up by the US Forest Service for

“Long-term studies of elk, deer, and cattle - examining the effects of ungulates
on ecosystems”.

. A specific management question of concern is whether recreational uses by
humans would affect the animals there substantially. Further details about
Starkey and the recreation experiment may be found in Brillinger et al.
(2001ab, 2004), in Preisler et al. (2004) and in Wisdom et al. (2005).

In the first analysis presented the elk were not deliberately disturbed and
their paths were sampled at discrete times. This gave control data for an
experiment. An all terrain vehicle (ATV) was introduced and drove around
on the roads in the NE Meadow of Starkey. The analysis to be presented
quantifies the effect of the disturbance. The locations of both the ATV and
the elk were monitored by GPS methods.

There were 8 elk in the study. The ATV was introduced into the meadow
over 5 day periods. This was followed by 9-day “control” periods with no
ATV. In the control periods the animals were located every 2 hours. In
the ATV case elk locations were estimated about every 5 min. The ATV’s
locations were determined every second.

Figure 9, lefthand panel, shows observed elk trajectories superposed. One
sees the animals constrained by the fence, but moving about most of the
Reserve. They often visit the SE corner. The straight line segments result
from the locations being obtained only every 2 hours in this control case.

The animal motion will be modeled by the SDE

dr(t) = µ(r(t))dt + σdB(t) (9)

with r(t) the location at time t, B a bivariate standard Brownian motion
and σ a scalar. The function µ is assumed to be smooth. The discrete ap-
proximation (3) becomes a generalized additive model with Gaussian errors,
see Hastie and Tibshirani (1990).
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Fig 9. Northeast pasture of the Starkey Reserve and the elk motion on control days. The
left panel shows the paths of 8 elk, superposed. The right panel displays the estimated
velocity field µ̂(r) as a vector field.

The resulting estimate is displayed as a velocity vector field (µ̂1(r), µ̂2(r))
in the right hand panel of Figure 9 employing arrows. One sees the animals
moving along the boundary and towards the center of the pasture. The fence
can be ignored in this data analysis.

The fence is important in preparing a synthetic trajectory. What was done
in that connection was to employ the relation (3) with the proviso that if it
generated a point outside the boundary, then another point was generated
until one stayed within the boundary. This is a naive method but effective
method if the ti of (3) are close enough together. Better ways for dealing
with boundaries are reviewed in Brillinger (2003).

Figure 10 shows the trajectories of three of the animals. The lower right
panel presents a synthetic path generated including 188 location points. The
synthetic trajectory does not appear unreasonable.

Consideration now turns an analog of regression analysis for trajectories,
that is there is an explanatory variable. The explanatory is the changing
location, x(t) of the ATV. The left hand panel of Figure 11 shows the routes
of the ATV cruising around the roads of the Meadow. The righthand panel
provides the superposed trajectories of the 8 elk. One sees for example the
elk heading to the NE corner, possibly seeking refuge. The noise of the ATV
is surely a repellor when it is close to an elk, but one wonders at what
distance does the replulsion begin?

The following model was employed to study that question. Let r(t) denote
the location of an elk, and x(t) the location of the ATV both at time t. Let
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Fig 10. The first 3 panels display the tracks of the indicated animals. The final panel,
lower right, is a synthetic path.
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Fig 11. The left panel shows the ATV’s route, while the right shows the elk paths in the
presence of the ATV.
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Fig 12. The function |ν̂| of (10) for the time lags 0, 5, 10, 15 minutes.

τ be a time lag to be studied. Consider

dr(t) = µ(r(t))dt + ν(|r(t) − x(t − τ)|)dt + σdB(t) (10)

The times of observation differ for the elk and the ATV. They are every
5 minutes for the elk when the ATV is present and every 1 sec for the
ATV itself. In the approach adopted location values, x(t), of the ATV are
estimated for the elk observation times via interpolation. The ATV observed
times are close in time, namely one second, so the interpolation should be
reasonably accurate.

Expression (6) allows the change in speed of an elk to be affected by the
location of the ATV τ time units earlier. Assuming that µ and ν in (10)
are smooth functions, then the model may be fit as a generalized additive
model. Figure 12 graphs |ν̂(d)|, d being the distance of the elk from the
ATV. (The norm |ν| =

√

ν2
1

+ ν2
2

here.) One sees an apparent increase in
the speed of the elk, particularly when an elk and the ATV are close to each
another. The increased speed is apparent at distances out to about 1.5 km.
An upper 95% null level is indicated in Figure 12 by a dashed line. One sees
less precise measurement at increasing large values of τ .

The estimation of |ν(d)| was also carried in the absence of the µ term
in the model. The results were very similar. This gives some validity to
interpreting the estimate ν̂(d) on its own despite the presence of µ in the
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model.
In conclusion, the ATV is having an apparent effect and it has been quan-

tified to an extent by the graphs of Figure 12.
These results were presented in Brillinger et al (2004). Also Wisdom et

al. (2004) and Preisler et al. (2004) modelled the probability of elk response
to ATVs in a different way. They used data for the year 2002, and measured
the presence of an effect in another manner.

5.4. Example 7. MONK SEALS: A POTENTIAL FUNCTION APPROACH.
Hawaiian monk seals are endemic to the Hawaiian Islands. The species is
endangered and has been declining for several decades. It now numbers
about 1300. One hypothesis accounting for the decline in numbers is the
poor growth and survival of young seals owing to poor foraging success. In
consequence of the decline data have been collected recently on the foraging
habitats, movements, and behaviors of these seals throughout the Hawaiian
Islands Archipelago. Specific questions that have been posed re the species
include:

What are the geographic and vertical marine habitats that Hawaiian monk
seals use?

How long is a foraging trip?
For more biological detail see Stewart et al. (2006), Brillinger et al. (2006,
2007).

The data set studied is for the west side of the main Hawaiian Island of
Molokai. The work proceeds by fitting an SDE that mimics some aspects of
the behavior of seals. It employs GPS location data collected for one seal.
An SDE is found by developing a potential function.

The data are from a three month journey of a juvenile male while he for-
aged and occasionally hauled out onshore. The track started 13 April 2004
and ended 27 July 2004. The animal was tagged and released at the south-
west corner of Molokai, see Figure 13 top left panel. The track is indicated
for six contiguous 15 day periods. The seal had a satellite-linked radio trans-
mitter glued to his dorsal pelage. It was used to document geographic and
vertical movements as proxies of foraging behavior.

There were 754 location estimates provided by the Argos satellite service,
but many were suspicious. Associated with a location estimate is a prediction
of the location’s error (LC or location class). The LC index takes on the
values 3, 2, 1, 0, A, B, Z. When LC = 3, 2, or 1 the error in the location
is predicted to be 1 km or less, and these are the cases employed in the
analysis here.

The estimated times of locations are irregularly spaced and not as close
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Fig 13. Plots of the seal’s well-determined locations for successive 15 day periods. The
dashed line is the 200 fathom line. It corresponds to Penguin Bank.

together as one might like. This can lead to difficulties of analysis and in-
terpretation.

The motivating SDE of the analysis is

dr(t) = µ(r(t))dt + σdB(t), r(t) ∈ F (11)

with µ = −∇H, H a potential function, σ scalar, B bivariate Brownian
and F the region inside the 200 fathom line up to Molokai. There was discus-
sion of the potential approach in Section 3. The potential function employed
here is

H(x, y) = β10x + β01y + β20x
2 + β11xy + β02y

2 + C/dM (x, y) (12)

where dM is the shortest distance to Molokai from the location (x, y). The
final term in (12) is meant to keep the animal off Molokai.

The model was fit by ordinary least squares taking C = 7.5. In the analysis
the number of data points was 142 and the parameter estimates obtained
were β̂ = (93.53, 8.00, -.47 , .47, -.41), and σ̂ = 4.64km . Figure 14 shows
the estimated potential function, Ĥ. This seal is pulled into the middle of
the concentric contours, with the Brownian term pushing it about.

Synthetic plots were generated to assess the reasonableness of the model
and to suggest departures. Figure 15 shows the results of a simulation of the
process (only one path was generated) having taken the parameter values
to be those estimated and having broken the overall trajectory down into
6 segments as in Figure 13, to which it may be compared. The sampling
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values are the deeper the potential function is. The slanted line region is Molokai.
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Fig 15. Synthetic plots of the model (11) having fit the potential function (12). The times
are those of the data of Figure 13.
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interval, dt, employed in the numerical integration of the fitted SDE is 1
hour. The paths were constrained to not go outside the 200 fathom line
and not to go on the island. (See Brillinger (2003) for methods of doing
this.) The locations of the time points of the synthetic track are the times
of the observed locations. This allows direct comparison with the data plot
of Figure 13. The variability of Figure 15 is not unlike that of Figure 13.

In this work the scattered, sometimes unreasonable, satellite locations
have been cleaned up and summarized by a potential function. The general
motion of the animal on a foraging trip has been inferred and simulated.
It has been learned that the animal stays mostly within Penguin Bank and
tends to remain in an area off the west coast of Molokai.

There are other examples of potential function estimation in Brillinger et
al (2006, 2007) and Brillinger (2007ab).

6. CONCLUSION.

“Say what you are going to say, say it, then say what you said.” Neyman
(Personal communication)

It was a great honor to be invited to present the Neyman Lecture. I
attended many Neyman Seminars and made quite a few presentations as
well. A side effect of the work was the very pleasant experience of reading
through many of Neyman’s papers in the course of preparing the lecture and
the article. So many personal memories returned.

The emphasis has been placed on dynamic and spatial situations. There
are three examples of JN and ELS, two concern temporal functions and one
spatial. Four examples are provided of the work of DRB with collabora-
tors. Two are temporal and two are spatial-temporal. The data are from
astronomy, fisheries, meteorology, insect biology, animal biology and marine
biology. The models and analyses were not all that difficult. The statistical
package R was employed.

The field of sampling was another one to which Neyman made major
contributions, see Neyman (1934,1938). It can be argued that that work
in sampling had profounder impact on the United States than any of his
other applied work. I looked hard but did not find reference to repeated
sample surveys in JN’s work. Had I there would have been some discussion
of dynamic sample survey.

The reader cannot have missed the many references to Elizabeth Scott.
In fact in many places in my lecture the title could have been the Neyman-
Scott Lecture. From the year 1948 on 55 out of 140 of JN’s papers were
with her. Some 118 of Betty’s publications are listed in Billard and Ferber
(1991). One in the spirit of this lecture, Scott (1957), concerns the Scott



DYNAMIC INDETERMINISM IN SCIENCE 29

effect, a biasing effect that occurs in galaxy observations because at greatest
distances only the brightest would be observed. She developed a correction
method, ibid.

I end with a wonderful and enlightening story concerning Jerzy Neyman.
It was told by Alan Izenman at the lecture in Minneapolis. In the early
seventies the Berkeley Statistics Department voted to do away with language
requirements. (There had been exams in two non-English languages.) In the
graduate class that JN was teaching he announced that he was going to
ask various people to give their presentation in their native, non-English,
language. This continued for a number of weeks and languages.
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