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ABSTRACT

This paper is concerned with time-depth curves recorded for northern ele-
phant seals that are migrating. The curves show a succession of dives of
varying depths, durations and types. A mixture model is employed to esti-
mate the various curves present. An advantage of this procedure, over the
ones that have been employed, is that it is automatic. Further a categorical-
valued series is developed for the sequence of dives. It is examined for ev-
idence of independence for both dives of one type and amongst dives of
different types.

Key words and phrases: Categorical-valued time series, dive patterns, ele-
phant seals, foraging behavior, longitudinal data; mixture model.
AMS 1991 subject classifications: Primary 62M10; 62M15; 62P10.

1 Introduction

Studies of the foraging behaviors of a variety of marine vertebrates (eg.
seals, sea lions, penguins, sea birds, sea turtles) have been conducted in
recent years using micro-processor controlled event recorders to document
diving patterns. The data generated from these recorders are time series

*The work of DRB supported by the Office of Naval Research Grant N0O0014-94-1-
0042 and the National Science Foundation Grant DMS-9625774. Elephant seal dive data
were collected in previous studies with partial support of a contract to BSS from the
Space and Missile Command, U.S. Department of the Air Force.
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Seal 91510f: days 54-59

hour

FIGURE 1. Six days diving for one seal. The curves from top to bottom represent
the seal’s depth as a function of hour for six successive days. Depth was measured
every 30s.

of depth measurements made at regular intervals (5s to 60s) over days
to months. These data are often displayed graphically as two-dimensional
plots of depth versus time. Consequently the two-dimensional shapes of
dives, which lack spatial components (i.e.latitude and longitude), have been
described and used to separate them into discrete categories of similar
shapes, sometimes according to maximum depths reached and durations of
dives. For the most part, the dives have been classified into a small number
of shape categories by visual inspection (eg. [1], [10], [17], [20], [9], [22],
126], [27]).

The function (eg., swimming, hunting, exploring) of various dives have
been inferred from their two dimensional shapes. Further, the inferred func-
tions have been incorporated into discussions of animal physiology and en-
ergetics. Thus, the ability to classify dives according to shapes based on
time and depth interactions has had utility in developing hypotheses about
foraging strategies and efficiency in free-ranging aquatic predators.
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Using time-depth series collected for foraging northern elephant seals
(Mirounga angustirostris). We earlier developed, [8], a computer-assisted
method to automatically and quickly describe dive shape with an algorithm
to fit joined straight line segments employing the BIC criterion to estimate
the number of segments. Here we develop an alternate approach.

As in other species studied, the individual dives of northern elephant
seals seem to consist of a restricted number of types, possibly indicating
different activity and function (see Figures 1 and 2). In addition to basic
questions and inferences of function of particularly shaped dives, it is im-
portant to assess the patterns of sequences and mix of the various types to
explore hypotheses concerning navigation and orientation, sleep, predator
avoidance and the influences of geographic location on foraging strategy.

The data studied in the paper may be seen as curves or segments stretched
one after the other. Experiments in which the basic data are curves have
been studied in various ways, see [2], [3] and the references therein. One
technique is principal components, see [15], [24]. Others are presented in
[18] and [28]. In particular, longitudinal data analysis and modelling are
discussed in the books [13], [19] and [14]. The data of this paper differ from
the usual longitudinal data in that there is but one subject (here a seal)
and the curves run one after the other. These data are of the character of
the response in an evoked response experiment, see [4].

The observations of discrete categories of two-dimensional shapes of types
leads to consideration of a mixture model involving particular functional
forms occurring with particular probabilities. That having been said, the
model considered in this paper is: the data are curves with Y (u) referring
to the seal’s depth u time units after the start of the j-th dive. The variate
Y; (u) has conditional expected value ap(u), with probability Py, k= 1,...
indexing the types.

After this model has been fit, one can go on to estimate the type, &k, of
a particular dive, and thence obtain a sequence of dive types, /%1, /%2,
. This categorical-valued time series can be examined for short and long
range temporal dependence for example.

Some details of the data are provided in Section 2. Section 3 indicates the
fitting procedure employed to obtain estimates of the various dive types.
The results of this fitting are presented in Section 4. The next section
refers to the sequence of dive types and presents the results of analyses
looking for serial dependence. Section 6 provides discussion, particularly of
the problem of identifiability, and summary.

There are three other papers concerned with the data for this particular

seal, [5], [6], [7].
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FIGURE 2. The first 10 dives of Day 56.
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2 The Data

The data set analyzed in the present work is for a female northern elephant
seal (Mirounga angustirostris). This species breeds on offshore islands
and at a few mainland sites along the coasts of California and Baja Cali-
fornia ([30], [32]). Adults are ashore briefly in winter to breed and again in
spring (females) or summer (males) to molt but spend the remainder of the
year, 8-10 months, at sea foraging. They make two solitary, long-distance
migrations each year between islands in southern California and offshore
foraging locations in the mid-North Pacific, Gulf of Alaska and along the
Aleutian Islands covering 18,000 to 20,000 km (surface movements alone)
during the double migrations ([29]). The seals dive continually during these
migrations; dives average 20 to 40 minutes long (longest = 2 hours) and 350
to 6560 meters deep (deepest = 1560 meters) and are only separated briefly
for 2-3 minutes while the seals are at the sea-surface breathing (e.g., [12],
[29]). The data studied here are depth measurements made at 30 second
intervals throughout the periods at sea (See Figures 1 and 2.) They are
recorded by a microprocessor-controlled event-recorder which is harmlessly
glued to a seal’s hair (e.g.[29], [1], [31]). The instruments are attached at
the end of the breeding or molt season and then recovered when the seals
next return to shore several months later.

The dives’ start times could be read from the time-depth record quite
clearly allowing individual dives to be selected, as graphed in Figure 2 for
example.

3 Fitting a Mixture of Dive Types

Let Y;(u) denote the depth at lag w in j-th dive. Suppose there are possible
types ax(u), k = 1,2, ..., with k to be selected randomly. One may consider
the model:

Prob{K = k} = Py (1)

Yi(u) = ax(u) + ¢(u) (2)

for k = 1,2,...and j = 1,2,... with €(.) representing noise. Equations
(1), (2) provide a mixture model.

EM algorithms are often a convenient way to obtain maximum likelihood
estimates in such models, see [11], [23], [25]. In the case that the noise
values, ¢(.), are assumed independent with variance o?(u) at lag u and
Gaussian, an EM algorithm for estimating the aj(u) is implemented by the

an(u) = > Yi(u) pjr / Z Pik (3)

J
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o(u)? = ZZ (Vi (w) — ar(u))’pjx / J (4)

Pyo= Y bir/J (5)

bin = Poexp{=)_(Yi(u) — aw(w)® / 26(w)?} / C; (6)

where Cj is determined so that >~, pjr = 1. The development of such
algorithms is indicated in [25].

4 The Estimated Types

Days 56 to 115 of the migration were studied, accounting for 3629 dives. In
employing the EM algorithm, starting values are needed. Here the number
of dive types for the analysis was taken to be 9 and the initial curves a(.)
were taken to be the averages of the curves in the 9 cells determined by
cross-classifying by duration and depth using the 33 and 67 percentiles as
the cut points of those variables. The initial values of the P} were 1/9.
Apparent convergence occurred quickly.

Figure 3 provides the results of fitting the mixture model. It is interesting
that the curves obtained are all unimodal. The first and second curves each
occur about 23 percent of the time. The curves may be distinguished from
each other by characteristics such as: duration, maximum depth, symmetry,
flatness at maximum depth.

In future work other means of generating initial curves will be investi-
gated. Also the number of dive types might be estimated employing the
BIC criterion.

5 Categorical-valued Time Series of Types

Suppose that dive types are well-defined and the actual types are given
by k;, 7 = 1,2,.... This is a categorical-valued time series. One can ask
for example: Is the series k; white noise and if it is not, how might it be
described?

In practice one needs to estimate the k;. A simple procedure is to deter-
mine for which shape, ag(u), the j-th dive, ¥;(u), has the smallest mean-
squared error. The corresponding categorical-valued series was constructed.
For example the estimated types for the 10 dives of Figure 2 are respec-
tively 8, 5, 5,5, 5, 5,5, 5,5, 5. This constancy may be seen at the start
of the second curve in Figure 1.
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Seal 91510: estimated dive shapes
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FIGURE 3. The 9 estimated types of dives. They are in
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For the next analysis, a representation alternate to /%j above 1s useful.
Suppose a vector-valued series i1s constructed whose components are 0-1
valued series corresponding to a particular dive types. In particular set

Xp; =1 ifkj = k

and = Ootherwisefork = 1,...,9andj = 1,2,....Then X;, 7 =1,2,3, ...
1s a time series indexed by dive number j.

This vector-valued series may now be examined for serial dependence
and for interdependence of components. Figure 4 provides estimates of the
power spectra, of the 9 components, obtained by averaging 14 periodograms
each based on successive stretches of length 256. The vertical arrows in-
dicate the width of approximate 95 percent marginal confidence intervals.
When it appears, the high peak on the left corresponds to the seal’s reg-
ularly diving about 70 times per day. Interestingly series 7 could be white
noise, corresponding to that dive type appearing randomly throughout the
migration. The other series appear to be far from white noise. For example,
the elevated values on the left could correspond to that particular dive type
appearing in clusters.

It 1s of interest to look into the interdependence of the dive types. Because
the data have multinomial character, 1.e. some dive type has to occur at
each time j, the series cannot be completely independent. To alleviate this
dependence only the first 8 components of the series will be retained for
the next analysis.

A classic test of multivariate dependence is based on comparing the de-
terminant of a sample covariance matrix to the product of the sample
variances. A time series extension of this is given in [33]. The likelihood
ratio test statistic considered here, of the hypothesis of independence in
the stationary time series case, is given by

—2n Z( Zlog fu(/\k) — log f(/\k)) (7)

where Aj are the frequencies at which the spectral density matrix, f(A), is
estimated and n is the number of periodograms averaged in forming the
spectrum estimates.

These computations were carried out with n = 28. Figure 5 provides the
individual terms of (7) and the approximate upper 99 per cent marginal null
level in the case of independence as a horizontal line. (This last is based on a
chi-squared distribution with 8(8-1) = 56 degrees of freedom.) The statistic
is above the null level steadily suggesting the presence of some substantial
interdependence of the components. The high peak again corresponds to
the animal’s regularly diving about 70 times per day. The different dive
types appear to be particularly tied together at that frequency.

The sampling variability of the k has also been ignored in these calcula-
tions.
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Papers concerned with categorical-valued longitudinal data include [21]

and [16].

6 Discussion and Summary

There are important difficulties of interpretation of the results of the anal-
yses. Figure 6 shows 4 different possible descent paths of an animal. Each
have same time-depth curve, Y(u) = — fu, yet the paths are very dif-
ferent. The actual descent could in fact be a combination of these. The
situation is that conclusions must be drawn carefully. More sophisticated
measuring equipment capable of fine scale spatial positioning is required to
address this difficulty.

The noise in (2) was taken as statistically independent at the various
lags, however it could be modelled as dependent. Then a covariance matrix
would be estimated at expression (4) of the EM algorithm.

These preliminary studies indicate that temporal dependence needs to
be incorporated into studies of migration to determine whether regularities
in behavior imply broad spatio-temporal regularity in the distribution of
prey resources or whether oceanographic conditions, season and geographic
location influence foraging behavior. Further, additional studies of the spa-
tial components of individual dives are needed to determine how they may
confuse or support interpretations of dive form and function based on the
necessarily limited shapes that can be categorized from two-dimensional
descriptions derived from depth vs. time data series.
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