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SUMMARY

Forest fires are an important societal problem. They cause extensive damage and substantial funds are spent
preparing for and fighting them. This work develops a stochastic model useful for probabilistic risk assessment,
specifically to estimate chances of fires at a future time given explanatory variables. Questions of interest include:
Are random effects needed in the risk model? and if yes, How is the analysis to be implemented? An exploratory
data analysis approach is taken using both fixed and random effects models for data concerning the Federal Lands
in the state of California during the period 2000–2003. Published in 2006 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The concern of the work is wildfires in the Federal Lands of California. A previous paper (Brillinger

et al., 2004) was concerned with the same problems but for the case of Oregon. For comparative

purposes, this paper parallels it to a close extent. The goal is to estimate probabilities associated with

the occurrence of wildfires, for example, the probability that a fire might occur in a specified region

during some given day, week, or month of the year. Explanatory variables such as elevation and fire

danger indices are available. In particular, one may wish to estimate

Probffire in particular region and time period j explanatoriesg

where the (future) time period may be short or long term. Various sources of variability arise. One

follows from the response, Y , being binary and Bernoulli distributed. Another follows from the year to
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year changes. The latter is dealt with here by introducing a random effect, I, for year. One then wishes

an estimate of

EIfProbffire in particular region and time period j explanatories; Igg
Spatial and daily (fixed) effects are included in the model as smooth additive functions g1ðx; yÞ and

g2ðdÞ, respectively of space ðx; yÞ and day of the year d. The year effect, I, is also additive to the linear
predictor. An estimate of varfIg is obtained via quasi-likelihood estimation.

Figure 1 shows the basic data in a derived form. Figure 1(a) gives the locations of all of the fires in

the data set. Figure 1(b) gives the daily totals over the 4 years. The latter appears as a smooth curve

plus quite a number of larger outliers in the summer fire season.

As an example of projecting daily counts the Yosemite National Forest is considered.

2. STATISTICAL BACKGROUND

The model used is a particular case of the generalized mixed effects model, for example (Breslow and

Clayton, 1993). The vector Y, and the matrices X and Z are given. The linear predictor takes the form

� ¼ X�þ Zb

Figure 1. (a) Fire locations; the blocked off upper right area is the state of Nevada; (b) 4-year total for each day of the year
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with the vector � fixed and the random vector b normal with mean 0 and covariance matrix R. Further

there exists an inverse link function h such that

EfY jbg ¼ hð�Þ
It is also assumed that

varfY jbg ¼ vð�Þ
with v a known function.

These assumptions may be used to set down a penalized quasi-likelihood function (Green 1987;

Schall 1991; Breslow and Clayton, 1993) and an iterative scheme may be set up to evaluate the

parameters. The function glmmPQL() of Venables and Ripley (2002), which uses the linear mixed

effects function lme() of Pinheiro and Bates (2000), is used in the computations presented below. The

estimates obtained may be used in turn to estimate EfbjYg. A common alternative to attacking the

model directly is to use a fixed effects procedure and take the random effects as parameters and then

compute the sample variance of the estimates obtained.

In Sub-section 4.1 below the false discovery rate (FDR) is used to describe the certainty of an

estimated spatial effect. A null hypothesis that there is no spatial effect is considered. The FDR is

defined as the fraction of false rejections of the null hypothesis among all rejections. It is useful here

because hypotheses are being examined for each spatial pixel. There are various FDR procedures for

controlling the indicated rate. The one used here is due to Benjamini and Yekutieli (2001).

3. THE CASE OF CALIFORNIA

The fires studied occurred in California Federal lands during the period 2000–2003. These lands make

up an important part of the state. Data for the full year were used. Spatial pixels that were 1 km by 1 km

were used. This meant that the data set was very large. Because of this only a sample of the locations

where no fires occurred was used. All the space-time cells (voxels) with fires were included. For each

day a sample of voxels with no fires was taken. The number of voxels sampled each day was

proportional to the total number of fires on that day, proportional to a smoothed version of Figure 1b.

Having in mind the problem and the data available, a number of models may be considered. Set

Y ¼ 1; 0 according to whether there has been a fire or not in a particular spatial pixel and time period.

Suppose, to begin, that the fixed explanatories used are location, ðx; yÞ, and day of the year, d. The

further explanatory year, I, is taken as fixed in Model II and random in Model III below.

In the models, g1 and g2 are respectively smooth splines for location and day of the year.

Model I: With Y , binary-valued and ðx; yÞ and d fixed

logit ProbfY ¼ 1jx; y; dg ¼ g1ðx; yÞ þ g2ðdÞ ð1Þ

Model II: With I, a fixed factor for year

logit ProbfY ¼ 1jx; y; d; Ig ¼ g1ðx; yÞ þ g2ðdÞ þ I ð2Þ
Model III: With I, a factor whose effects are independent normals with mean 0 and variance �2

logit ProbfY ¼ 1jx; y; d; Ig ¼ g1ðx; yÞ þ g2ðdÞ þ I ð3Þ
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Writing

� ¼ g1ðx; yÞ þ g2ðdÞ

for Model III, and assuming I to be normal, the probability of a fire is

ProbfY ¼ 1jexplanatoriesg ¼
Z

expf� þ �zg
ð1þ expf� þ �zgÞ�ðzÞdz

with �ð:Þ the density function of the standard normal. The distribution of Y in Model III is logit-

normal.

An added detail of the current set up is that the no-fire cases were sampled. Interestingly, with the

logit link, one has a generalized linear model with an offset of logð1=�Þ. The new logit is simply

logit p0 ¼ logit pþ logð1=�Þ, i.e., an offset. One reference is Maddala (1992, p. 330). This meant that

Figure 2. The estimated spatial and daily effects for Model I, (a) Provides an image plot of the estimated spatial effect. The

darker values correspond to increased fire risk. In (b), the vertical lines provide approximate 95% confidence limits about a

smoothed version of the solid line
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standard generalized linear model computer programs could be used for the analysis. The offset is not

indicated in expressions (1), (2), or (3) as they are the basic models.

4. RESULTS

4.1. Fitting and assessing Models I and II

Model I involves fitting the sum of smooth functions, specifically splines, of ðx; yÞ and d. Figure 2

shows the fitted spatial and day effects. Figures 2(a) and 2(b) look like smoothed version of Figure 1.

Figure 2(b) shows the fitted effect of day as a solid curve. The effect is seen to peak around day 200 and

be smaller for September through April. The vertical lines about the curve provide approximate 95%

marginal confidence limits graphed about a smoothed form of ĝ2ðdÞ. The limits were computed via a

jackknife dropping years in turn.

Figure 3(a) provides the estimated spatial effect in contour form. As in Figure 2(a) one notes

reduced risk in the eastern and western parts of the state. Figure 3(b) shows the results of controlling

the overall FDR at level 0.01. There is strong evidence for a spatial effect around much of the region of

study.

Figure 3. (a) Provides the estimated spatial effect in contour form, (b) shows the region found significant by the FDR analysis.

The dot in (a) shows the location of the Yosemite National Forest
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Projections of future counts are of basic interest in this work, for example, the expected fire count

for a given region and months. To obtain these, one sums probabilities over pixels of the selected

region, and days of the year, specifically one computes

X
i

expf�̂ig
ð1þ expf�̂igÞ

ð4Þ

where i sums over the pixels in the region, the days of the selected month and

�̂i ¼ ĝ1ðxi; yiÞ þ ĝ2ðdiÞ

As an example, predictions are presented for the Yosemite National Park in the Federal Lands of

California. Figure 4 provides estimates of the expected count of fires for Yosemite National Park

each month derived via expression (4). (Yosemite is indicated by the dot in the left-hand panel of

Figure 3(a).) One sees the expected count peaking, just below a level of 34 fires, in July. The

distribution of a future count can be approximated by a Poisson with the indicated estimated expected

count.

4.2. Results of fitting Model III

Next consideration turns to Model III, i.e., including a random effect for year. The fitting is carried out

via penalized quasi-likelihood implemented as the function glmmPQL(), (Venables and Ripley, 2002).

Figure 4. Model I predictions of expected counts by month for Yosemite National Park based on expression (4)
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Doing so, one obtains for the standard error of the year effect �̂ ¼ 0:157. The program output also

includes X=
ffiffiffi
n

p ¼ 1:062, where X is square root of the estimate of the dispersion statistic. This value

suggests that the logistic-normal model is fitting the data rather well.

Figure 5 shows the estimated daily effects. There are not great changes from the Model I results

presented in Figure 2(a).

An estimate of the expected number of fires for some region and future occasion is provided by

X
i

Z
expf�̂i þ �̂zg

ð1þ expf�̂i þ �̂zgÞ�ðzÞdz ð5Þ

with i again labeling the pixels of the region of concern and the days of the month, and �̂i ¼
ĝ1ðxi; yiÞ þ ĝ2ðdiÞ. The integral in expression (5) is evaluated numerically and the results are given in

Figure 6a. Uncertainties may be derived via the jackknife splitting on year.

In some circumstances an estimate of

ProbfAt least one fire in a particular region and monthg

Figure 5. The estimated daily effects for Model III

RISK ASSESSMENT 629

Published in 2006 by John Wiley & Sons, Ltd. Environmetrics 2006; 17: 623–633



is desired. With an approximate Poisson process of intensity of fires �ðx0; y0; d0Þ, and a region M this

probability is given by

1� exp �
Z
M

�ðx0; y0; d0Þdx0dy0dd0
� �

whose integrand may be approximated by expression (4). The results are given in Figure 6(b).

Figure 6(a) may be compared with Figure 4. The two are very similar. It may be noted that �̂ is small,

0.157.

Figure 7 gives estimates of the random year effects, that is EfIjdatag for each of the of the years

2000–2003. Such effects are sometimes referred to as shrunken effects.

4.3. Model assessment

The response is binary, Y ¼ 0; 1 and so various of the classical model effect procedures are not

particularly effective. However, uniform residuals are an aid to assessing goodness of fit, in various

Figure 6. Model III predictions of expected monthly totals and corresponding risks for Yosemite National Forest based on

expression (4). The risk computation assumes a Poisson distribution of the count
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such nonstandard cases, (Brillinger and Preisler, 1983; Brillinger, 1996). In the binary case, these may

be computed as follows: suppose ProbfY ¼ 1jexplanatoriesg ¼ � and that U1 and U2 denote

independent uniforms on the intervals ð0; 1� �Þ; ð1� �; 1Þ, respectively, then the variate

U ¼ U1 � ð1� YÞ þ U2 � Y

has a uniform distribution on the interval ð0; 1Þ. Whereas when ProbfY ¼ 1jexplanatoriesg ¼ �0, then
EfUg ¼ ð1þ � � �0Þ=2 for example. We refer to U, when an estimate of �̂ is used, as a uniform

residual and write Û. We refer to ��1ðÛÞ as a normal residual. Working with the normal residuals has

the advantage of spreading the values out. Various traditional residual plots may now be constructed,

for example normal probability plots involving the normal residuals ��1ðÛÞ or plots of ��1ðÛÞ versus
explanatories.

The right-hand panel of Figure 8 shows notched boxplots of the normal residuals of Model I

against the year. The graph suggests that year need not be in the model as an explanatory. The

left-hand panel provides a normal probability plot and there appears not much to be concerned

with.

Figure 9 provides similar plots for Model III, but now the explanatory in the right-hand panel is

elevation. Again there is little indication that this explanatory need be included. The left-hand shows

little evidence against the distributional assumptions made.

Figure 7. Shrunken year effects for Model III
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Figure 8. Model assessment results for Model I; (a) is a normal probability plot of the normal residuals, (b) shows notched

boxplots for each year’s normal residuals. The notches are very small here

Figure 9. Model assessment results for Model III. The negative elevations in (b) come from Death Valley
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5. SUMMARYAND DISCUSSION

Two distinct models, one fixed effect and the other random effect, have been set down and studied.

Their fit has been assessed by probability and residual plots.

One question in the work was whether a random effect was in fact needed. An answer to this is: yes,

the context of the situation and the desire for estimates of future probabilities more or less guarantees

so. It was noted how close the estimate of the random effect variance derived from fixed effect

modeling was to that based on random effects modeling.

Turning to the promised comparisons with the Oregon results , the same methodology appears to

work equally well with both the California and Oregon data.

The work that has been presented is preliminary and exploratory. It is meant to lead to possible

approaches in the full modeling effort.

Further details of the approach may be found in Brillinger et al. (2003) and Preisler et al. (2004).

This work parallels that of Brillinger et al. (2004) and Preisler and Benoit (2004) closely.
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