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ABSTRACT

A model in which the conditional expected value of a response
variate is an unknown nonlinear function of an unknown linear
combination of regressor variates is considered. It is shown that
in the case that the regressors are stochastic and jointly Gaussian,
or are deterministic and quasi-Gaussian, the ordinary least squares
estimates provide useful estimates of the coefficients of the
linear combination up to an arbitrary multiplier. The cases of

both conditional and unconditional inference are investigated.

KEY WORDS: Gaussian regressors, Generalized linear model,

Multiple regression, Quasi-Gaussian regressors.

1. INTRODUCTION

Multiple regression is one of the most powerful of statisticai
techniques. The procedure has been given numerous justifications
and interpretations. The traditional approach to it rests on a

linear model

.= a + Bx, + g, 1.1
Y5 Bx 5 , (1.1)

with the yj, xj, j=1,...,n observed, with a, 8 unknown
parameters of interest, with the Ej zero mean error variates,

with the xj p column-vectors, and with B a p row-vector.
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- Letting
n

x= I x./n, (1.2)
=17

the ordinary least squares estimate, B8, ‘satisfies

B L (x; - §)(xj - Y)T = § ¥i(x; - 7)T (1.3)

[

with T denoting the operation of matrix transposition. In some
circumstances the entries of B have causal interpretations,
though these must be exercised cautiously (see Box, 1966 and
Mosteller and Tukey, 1977, Chapter 13). It seems that substantive
scientists have gotten . more service out of ordinary least squares
estimates than the narrow assumptions of the traditional approach
might lead one to suspect possible. In many of these situations it
is not the actual.value of the coefficients that is of interest,
rather it is their relative values, which are somehow measuring the
relative importance of the regressor variates of interest. In this
paper it is demonstrated that, in the case where the regressors are
jointly "Gaussian," the ordinary leést squares estimates have a
working interpretation for a broader class of models then one might
have imagined. The solution, §, of (1.3) is shown to provide an

estin\ate Of B in t}le model
y : = g a + Bx . ) + €, ) ( 1 -4

up to an unknown constant of proportionality. The practical
implication is that if the regressors are chosen to be Gaussian,
or happen to be approximately so, then despite the possible
presence of an unknown nonlinearity, é still reflects the relative
importance of the regressor variates.

After computing é, one may go on to prepare a scatter plot
of the points (gx.,yj), j=1l,...,n and look for a functional form
for g(-). Alternatively, one might compute a nonparametric

estimate of g(u) by smoothing the yj values with ij near u.
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It is the usual statisticaltpractice to examine the sampling
properties of the least squares estimate conditional on the x
values that come to hand. Both the unconditional and conditional
distributions are investigated in the paper. Interesting questions
arise in the present context, because the fact that the xs are
Gaussian is an integral part of the study. It will be seen that it
is not convenient to construct confidence regions conditional on a
realization of a Gaussian sequence; however, useful regions may be
" constructed if X5 Xoyeeo is a deterministic quasi-Gaussian
sequence of a particular sort. )

The paper further investigates the extent to which the results
require an assumption of normality and describes an application of
the results to an identification problem in neurophysiology and an

estimation problem in economics.

2. AN ELEMENTARY LEMMA

The whole basis of the procedure is the following simple result
given in Brillinger (1977).

Lemma 1. Let (U,V) be bivariate normal with U nondegenerate.
Let g(+) be a measurable function with E{|g(U)|} and
E{|g(U)U|} < =. Then

cov{g(U),V} = cov{U,V} cov{g(U),U}/var U . (2.1)

Proof. One has E{V|U} = u + QU- with © = cov{U,V}/var U.

Now

cov{g(U),V} = cov{g(U),E{V|U}} = @ cov{g(U),U} ,

giving the result.

That the regression of V on U is linear is key to the
result. It is perhaps worth noting that for g(-), an almost
differentiable function (defined in Stein, 1981 ) satisfying
E{|g'(U)|} <=, one may write

cov{g(U),U}/var U ; E{g'(U)} (2.2)
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This last is an identity that Stein (1981 ) makes use of in his
construction of improved estimates of the mean of a multivariate
Gaussian. A

Now consider the model (1.4) with xj Gaussian of covariénce

matrix I and Ej independent of X5+ Then, from (2.1),
cov{yj,xj} = BL cov{g(U),U}/var U (2.3)

with U =aqa + ij. (Here coviy,x} = E{(y - uy)(x - ux)T}.) The
linear regression coefficient of y on x is proportional to B
of expression (1.4). Provided cov{g(U),U} # O, the constant of
proportionality will not be 0. If consistent estimates of
cov{y,x} and I are constructed, then a consistent estimate of

B (up to an arbitrary multiplier) may be constructed. The details
of the estimate are presented in the next section for the uncon-

ditional case.

3. UNCONDITIONAL INFERENCE

The estimate of interest is the ordinary least squares estimate
defined by (1.3). Its properties will be investigated when the
variates are related by yj = g(a + ij) + ej and when the x‘j

are Gaussian.

Assumption I. X 5 X5y -.. are independent normals with mean u
and nonsingular covariance matriz I . €s €y ... are independent
of the xs and have finite variance 02. E{xnglg(a + ij)|2} < ®
for j =1,2,... .

From expressions (1.3) and (2.3) one can see that, almost
surely, the ordinary least squares estimate é tends to

cov{y,x}Z_l = kB, where

k

covi{g(a + Bx),a + Bx}/var{a + Bx} . (3.1)

That is, é is a strongly consistent estimate of B, wup to a

constant, Xk, of proportionality. For B +to be useful, one needs
k # 0.
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Turning to the question of the asymptotic distribution of
E, set 4

B{x) = gla + Sx) - ¥— 6x (3.2)

where 6 = kB and y = E{g(a + Bx) - 6x}. Then one has

Theorem 1. Suppose Assumption I is satisfied. Let
yj = gla + ij) + ej, j=1,2,... . Let é be given by (1.3)
~and k by (3.1). Then /(B - kB) 1is asymptotically normal with

mean 0 and covariance matrix

oz + TR0 (x - w )x - w)DET (3.3)

This theorem may be demonstrated using a result of Freedman
(1981). The proof is presented in the Appendix. In the case that
g(+) is a linear function, the second term in (3.3) will be absent
and one has the usual expression for the asymptotic covariance
matrix of a least squares estimate.

For the estimate ﬁ to be of practical use, one needs some
estimate of its.covariance matfix. Several general methods are
available for obtaining the latter: the delta method, the jack-
knife, and the bootstrap. é is a function of U-statistics, hence
the use of the jackknife estimate of the covariance matrix is
justified by the results of Arvesen (1969). With a further -
assumption of - E{|g(a + Bx)|4} <, the use of the bootstrap
estimate is justified by the results of Freedman (1981). The delta
method estimate will now be constructed.

Write expression (1.3) as

[0 8] L F] [ 5}1%=z_yj[1x§1§ (3.4)
J J J

or [ﬁ é]A = B. Here A and B are means of (matrix-valued)

sample values. As A and B are means, the variances and

covariances of all their entries may be estimated directly, by the

usual expressions. Now if AO’ BO denote ihe expected values of

A and B respectively, then one has the perturbation expansion
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mB]=8at=8a"t+(s8

-1
oho )A

0

. ] <
- B, - ByA; (A - AJAS + ... &

(3.5)

This gives é as an (approximate) linear function of A and B,
whose covariance matrix may now be estimated using the estimates
of the variances and covariances of the entries of A and B and

replacing A., B, by A, B respectively.

Having an_agproximation to the large sample distribution of
B and an estimate of its covariance matrix, one can go on to
construct approximate confidence intervals, test hypotheses, and
the like.

A concern with these results, however, is that they are
unconditional — -averaging over all realizations of the xs. Yet
in practice, Xpsewea Xy will usually be ancillary and one would
like to carry out inference conditional on its value at hand. The

next section considers this issue.

4. CONDITIONAL INFERENCE

let X = {xl, x2,...} denote the sequence of regressor
variables. This section is concerned with inferences conditional

on X. To begin, consider the case where are

SURCIEEE
independent realizations of a p-variate normal with mean ux and

covariance matrix I. Directly from expression (1.3) one has

81X} = + - %)t - x. - )T =
E{B|X} = ? gla ij)(xj x:) [? (xj x)(xj x)'] un(x)
: (4.1)
var{B|x} = o°[z (x; - X)(x -7 - 6% (x) . (4.2)

J

The variance is the usual least squares expression. In the case
that g(+) is linear, the conditional expected value is B;
however it will generally be different from B or kB. A question

of interest is how close may it be expected to be to kB ?
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- The asymptotic conditional distribution of é is normal.

Specifically one has:

Theorem 2. Suppose Assumption I is satisfied. Then almost surely

-1/2

Prob{/a(f - un(X))gn(X) /3 < b|x} » &by )...e(by) (4.3)

as n+=, where b = (b "’bp) and ®(+) s the standard

gie
normal cwmulative. :

This result provides information concerning the deviations of
B from 'un(X) for a given X. However, one is interested in the
deviations of B from XkB. The next lemma indicates that while
un(X) - kB = oa-s-(l)’ it is not generally oa!se(l/fﬁ) and so
(4.3) is not of great use in conditional inference questions

concerning B. Theorem 2 is proved in the Appendix of the paper.

5 ... be independent normals with mean M

Lemma 2. Let Xys X
and nonsingular covariance matrix L. Suppose
E{xnglg(a+8xj)|2} <o, j=1,2,... . Then
I _ 1 1
EGBIX} = uy(X) =3B + M + o (=), (4.4)

where k 1is given by (3.1) and W is normal with mean 0 and

covariance matrizx
IR (x - u )(x - w )T (4.5)
h(x) being given by (3.2).

The deviations of un(x) from kB are seeﬁ to be of order
1//n, generally. One implication of this is that the result (4.3)
cannot be used to construct approximate confidence regions for k8.
Some other approach is needed. The lemma is proved in the Appendix.

As the lemma and discussion make clear, for a typical
realization of the Gaussian process X, un(x) does not tend to
kB rapidly enough to be useful. Consider expression (4.1). The
term

z # L)X,
; g(a BxJ)xJ/n
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may be considered an approximation to the integral, or expected
value, E{g(a + 6xjx}. This suggests that by‘choosing a sequence
xl, Xyp oee corresponding to a clever numerical integration rule,
one might be able to have E{§|X} closer to kB than 0a°s-(l/n)'
This does turn out to be possible.

Halton (1960) has demonstrated the existence of a sequence of
points Up; Uy, oo in the unit cube [0,1]p with the property

that ( )
#Hu,...u €1
1 n - (1) = o(nH10g nP)  (4.6)

D = sup |

Ied H

where J 1is the family of all subintervals of [O,l]p and where
#(I) is the Lebesgue measure of I. (A computer algorithm for
generating the sequence is given in Halton and Smith, 1964.) The
usefulness of this sequence is that for a-function, f, with
variation, V(f), in the sense of Hardy and Krause (see

Neiderreiter, 1978, p. 967), one has

n
ERECOAE f f(u)au] < V(£ID_ = o(n Y(10g nP) (4.7)
Fa
for bounded V(f). The sequence up, Uy, ... may be said to be
uvasi-uniform. Writi u, = (u..,...,u, and x, = (X..,,...,X.

. -1 .
with xjk =9 (ujk)’ the sequence xl, x2, ... may be said to be
quasi-Gaussian. Letting h(xj) = f(uj), one has from (4.7),

LI n(x) - | n(x06(x;) Jax = o(n™ P "
12 2 n(xg) - [ nxe(x).00x)ax = o(nH10g nfP)  (4.8)

J=1

for h(Q_l(ul),...,Q-l(up)) of bounded variation with ¢(-)
denoting the standard normal density. One might say that for
p > 1, quasi-Monte Carlo techniques exist that outperform naive
Monte Carlo.

Returning to the question of the estimation of é of the
model (1.4), suppose now that the values of tﬁe regressors may be
chosen by the experimenter. Suppose he takes X5 Xoy o ens to be

the above quasi-Gaussian sequence. Consider B satisfying
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Bz xjxg = ij§ : (4.9)
. j o

(There is no need to correct for the mean with this sequence.) One

has

E{Z y.x'/n == gla + Bx. )x./n
j J J j 4 J

f gla + Bx)xt¢(x1)---¢(xp)dx + 0(n"Y(10g n)P)

1]

K + 0(n"(log n)P)
from (4.8), provided g is of bounded variation as required.
Similarly,

T xsxg/n =1+ O(n-l(log n)p) :
J

In summary, for the deterministic quasi-Gaussian sequence indicated

above, one has

EB = k8 + 0(n (log n)P) . (4.10)
The variance-covariance matrix of B 1is 02[2 xjxg]_l, and hence
' o

the conclusion of Theorem 2 becomes
Prob{(B - kB)[Z xjxgll/2

/o < b} > &b )...0(b ) . (4.11)
3 P

Once an estimate of o 1is ;t hand, approximate confidence regions
for kB may be constructed using (4.11).

With an estimate of g(-), 02 may be estimated from the
residuals of the fit. Various nonparametric estimates of a
regression function are available. A bibliographic review of these
is given in Collomb (1981). In the present context one might form

~ n ~ n
g(u) = I ijn(u - ij)/ p

W (u - Bx.) (4.12)
=1 =1 7 !

for example, with Wn a sequence of weight functions becoming
concentrated at 0 as n increases. For large n, é(u) may

be expected to be near g(a + u/k). The error variance may be
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estimated by
[vs - é(éxj)]‘?/n . (4.13)

Q
"
[ 5 I =}

J=1

A procedure for constructing approximate confidence regions for

kB8 has been set down.

5.  DISCUSSION

Section 3 discussed inference in the unconditionsl case when

X s Koy owne

p-variate normals.

was any realization of a sequence of independent
Section 4 developed inference for the case
fhat xl, X., ... Wwas a very particular deterministic sequence
(that was quasi-Gaussian). It would appear that the latter
conditional inferencé procedure is the preferred one —as is the
case in the usual (linear) regressidn situation —since X peeeaXy
is generally an ancillary statistic. Lehmann (1981) comments on
some aspects of ancillaries and conditional inference.

If the form of the function g(+) is known, then one will be
able to determine other estimates of B, for example, the maximum
likelihood. These other estimates may be expected to be more
efficient. There have been at least two studies in which the
ordinary least squares estimate has been compared with the maximum
likelihood estimate. In both cases it has been found to perform
well, even when the xs were not Gaussian.

Greene (1981) considered the model

¥s = max{0, a + ij + ej} (5.1)

with the €s independent normals of mean O and variance o .

He derived both the ordinary least squares and the maximum
likelihood estimate of B for a set of data from a study of female
labor supply. Here y was the number of hours worked in a survey
year. The xs are listed in Table 1. (Eight of them are dummy
variables.) The estimate, E, has been standardized to égr = 1.

The proportion of nontruncated observations was .460.
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There is close agreement between the results of least squares
and maximum likelihood. This occurs despite some of the xs having
far from normal distributions. Greene (1981) is able to construct
an estimate for of (3.1), since g(*) is known, and so obtain an

estimate of B itself.

Table 1
Variable Maximum Likelihood Least Squares
x, = small child -.4140 -.3831
_iz = health -.5072 -.4472
x3 = other income .0605 .0008
x, = wage 5156 .6(553
X5 = south - .2953 .2989
Xe = farm -.2266 -.2218
X, = urban .0554 .0523
Xg = age .0097 .0094
Xg = education .0113 .0125
X = rel. wage .1438 L1346
X); = 2nd marriage .0127 ©.0143
X 5 = mean divorce prob. L2416 .2381
- X3 high divorce prob. .2906 .2652

Brillinger and Segundo (1979) present an example of a

successful application of the estimation procedure discussed in
this paper, in a more complicated situation. A neuron was
stimulated by a fluctuating current, causing it to fire every so
often. The stimulating current was taken to be stationary Gaussian.
In the classic model of neuron firing, the input current X(t) is
filtered to form the membrane potential .

B(t)
wt) = [ a()X( t-u )du
0
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with B(t) the time elapsed at time t since the neuron last
fired. The neuron then fires next when U(t) crosses an
approximately constant threshold. It is of interest to estimate 1
the function a(+) of (5.1) and to confirm the presence of a

threshold.

A time series analog of the procedure considered in this paper
was applied to experimental data consisting of a record of the
current taken as input and the times at which the neuron fired.
Strictly speaking, the model is not appropriate here because of
correlation introduced by B(t) being present in (5.1). A
maximum likelihood procedure was developed to deal with this
difficulty. It was found that the resﬁlts of the procedure of
this paper wére quite consistent with the maximum likelihood
results. In the principal experiment, the input current was taken
to be Gaussian.. In a second experiment, the input current was
taken to have a uniform distribution. Figure 1 gives the time

series analog of the regression estimate of a(+) when X(t) is

Caussian. Figure 2 gives it for X(t) uniform. The two estimates
are surprisingly close, suggesting that the procedure may be robust.

In a part of the study analagous to the estimation of the '
function g(-), the nonlinearity was estimated and found to have -
a threshold character, Sampling fluctuations of the estimates were
estimated by splitting the data up into a number of segments and w
estimating the parameters separately for each segment, rather than

attempting to use any of the procedures of Section 3.

6. A PARTIAL CONVERSE

The development of the results of this paper made essential use
of an assumption of normality for the xs. A question of some
interest is whether there is any other distribution leading to
similar results. The following theorem indicates that normality

is required for regressor variates of one important type.
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Theorem 3. Let the p-variate x be of the form a + be with a
a p-vector, b pxp;' and nonsingular, and the entries of €
independent, identically distributed of mean 0, and finite nonzero
variance. Let I denote the covariance matrix of x. Suppose
Pp>1 ad

cov{g(Bx),x} = kBZ (6.1)

for some B # 0, some Xk # 0, and all g(u) of the form
.exp{itu}, t real-valued. Then, x is normally distributed. -

This theorem is proved in the Appendix. This result is far
from a converse; however, it does suggest strongly that normal

regressors will prove the most useful.

7. CONCLUDING REMARKS

So far, the work of this paper has been predicated on the assumption
(1.4) of a model with an additive error. When the xs were
Gaussian and independent of the error, this model led to the
relationship cov{y,x} = kB var x, on which the estimation
procedure proposed was based. In fact, this relationship follows

from the weaker assumption that

E{y[x} = g(a + Bx) . (7.1)

The estimation procedure is now seen to be of use in a broader
class of situations. Consider, for example, the binomial response

(or regression) model. Here y =1 or O with
Prob{y = 1|x} = g(a + Bx) (7.2)

with g(+) normal for the probit model and logistic for the logit
model. From what has gone before in the paper, one sees that if
g(+) is unknown and x is Gaﬁssian, then B may be estimated, up
to a constant of proportionality, by ordinary least squares. As a
second example, consider the Cox (1972) model of proportional
hazards. This involves a random variate y (a survival time),

and associated covariates x, with



110 Linear Model with "Gaussian" Regressor Variables
Prob{y < t|x} =1 - [1 - Fo(t)]exp{BX} ,

FO(°) being an unknown ced-f. (This class of models is sometimes
referred to as the class of Lehmann alternatives, introduced in
Lehmann, 1953.) It is clear that, when the expected value exists,
E{y|x} = g(Bx), for some g(+). If x is taken to be Gaussian
and associated ys recorded, then the procedure of this paper
allows the estimation of XB. As a final example, one has linear

regression with a censored dependent variate; for example,

o + Bx + € if the right-hand side is nonnegative

J
=0 . otherwise

Such models are discussed in Green (1981), Nelson (1981), and
references given therein. It is clear that E{y|x} = g(a + Bx)
and that ordinary least squares estimates are of use in the

Gaussian case once again.

APPENDIX

Proof of Theorem 1. By writing expression (1.3) in the form (3.4),

without the 1/n's one has [ﬁ a] of the form of the statistie
B(n) considered on page 1219 of Freedman (1981). His result gives
the asymptotic normality of é. His expression for the asymptotic

covariance matrix may be manipulated to give (3.3).

Proof of Theorem 2. Expand the equations (1.3) to the form (3.4)
once again, that is, to the form of the usual normal equations of
multiple regression. If 6 = [p 8] and GX = E{é]x}, this gives

-0z [*| nx1=ze.1x9
X i 1% J 5 9 J

This corresponds to standard multiple regression with the regression

coefficient 0. That O - 8,

stated conditions of the xs and es is shown in Miller (1974).

is asymptotically normal under the
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Proof of Lemma 2. Taking o = 0 in Theorem 1, it follows that

/E(un(x) - XB) 1is asymptotically normal with mean 0 and
covariance matrix (4.5). That un(X) then has the representation
(4.4) follows from a theorem of Skorokhod {1956) (see also Wichura,
1970). |

Proof of Theorem 3. One can assume a = E{x} = 0. Then, from (6.1),

E{g(Bx)x'} = KE{Bxx'} . (A.1)

Set Lp = Bx and Lj = ij with the Yj chosen so that
Ll"'

one has

"Lp are mutually uncorrelated. .Multiplying (A.1) by Y;:

E{g(BX)Lj} = kE{LpLj} =0

and so E{g(Lp)Lj} = 0. From Lemma 1.1.1 of Kagan et al (1973),
this last gives E{LJILP} = 0. That x 1is necessarily normal now
follows from Theorem 5.5.3 of Kagan et al or Theorem 2 of Cacoullos
(1967).
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SUMMATION FUNCTION UIA CROSS-SPECTRAL ANALYSIS

A A\ P -\
MAA NN W e =g \ Wt VA A e v ~—~—
0 20 30 80 80 100

LAG (1,50 SECOND) -

Figure 1. Estimate of the summation function a(-)
obtained with Gaussian input.
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SUMMATION FUNCTIDN UIA CROSS-SPECTRAL ANALYSIS

1

0 20 40 50 80 100
LAG (150 SECOND)

Figure 2. Estimate of the summation function a(-+)
obtained with uniform input.
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