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Introduction.

This paper presents a method to describe analytically the mo-
tion of animals both ranging freely and ranging in a confined
region. The motion of the animals is modelled as being af-
fected by their location and, in some cases, the presence of
deliberately introduced human ”intruders”. The interest is the
effects of the human intruders on the animals’ behavior. The
locations of the animals are available at frequent and approxi-
mately regular time intervals as are the locations of the intrud-
ers.

The data were collected at the Starkey Experimental For-
est and Range (Starkey), northeast Oregon, as part of a long
term study by the U.S. Forest Service. The study concerned
the question of whether recreational uses by humans affect
elk (Cervus elaphus) and mule deer (Odocoileus hemionus),
two animal species of keen economic, social, and aesthetic
interest to users of National Forests. Further details about
Starkey and the recreation experiment may be found in Preisler
et al. (2004) and Wisdom et al. (2004). Additional back-
ground about the study area and overall research conducted
there was described by Rowland et al. (1997) and Brillinger et
al. (2001a).

The principal tool employed in the work is a stochastic dif-
ferential equation, with the drift term depending on location
of the elk and the locations of the moving human intruders.
The sections of the papers are: the experiment and data, ex-
ploratory data analyses, stochastic differential equations, mod-
els and results, the case of a boundary, simulation, and discus-
sion.

The experiment and the data.

Data were collected on the movement of animals in the North-
east Study Area of Starkey during the period April to October,
2003. The 3,580-ha study area is enclosed by a 2.4-m high,
ungulate-proof fence. The size and shape of the study area,
as defined by the ungulate-proof fence, is shown in the figures
below.

The study area contains elk and mule deer, but for this anal-
ysis only elk are considered. For a given treatment type and
period, one of four recreational activities were introduced: hik-
ers, mountain bicyclists, horseback riders, or ATVs (all terrain

vehicles). The interest was the effects of the human intrud-
ers on the elk. These people followed specific routes. They
were GPS equipped and their location estimated about every
second. The elk were also GPS equipped and their locations
estimated about every 5 min. Each treatment type was applied
for 5 day periods, followed by 9-day control periods where no
treatments (no human intruders) were applied. There were 8
elk in the study. The order in which each treatment type was
implemented was randomly selected, and specifically paired
with a control period that immediately followed the randomly-
selected treatment.

Thus, the experimental design involved a given 5-day treat-
ment type, such as 5 days of ATV riding, followed by a 9 ATV-
control period, followed by another 5 days of a treatment type
(e.g. 5 days of hiking) and subsequent 9-day control period,
and so on, through the entire study period of April to October.
Further details of the experiment may be found in Wisdom et
al. (2004).

Exploratory data analyses.

Let {r(t)} denote the path of an elk, giving its location as a
function of time t. The components may be thought of as cor-
responding to latitude and longitude. Preliminary examination
of the data included investigation for a circadian rhythm in elk
via parallel hourly boxplots of their speed of movement. A
purpose was to see if time of day needed to be included in the
models of motion. Both control and ATV days were studied.
The results are presented in Figure 1 below. In preparing this
figure the speed at time ti was estimated by

|r(ti+1)− r(ti)|/(ti+1 − ti)

employing the 80% smallest (ti+1 − ti)’s. The smallest 80%
have been employed because the instantaneous velocity is bet-
ter estimated when the time difference is small. Here r is a
2-entry column vector, and |r|2 = r2

1 + r2
2 . In order to make

the figure more readable, the square root of the speeds has been
employed.

The plots differ for the control and ATV cases. There is
some dependence on time of day for the control days, they ap-
pear to be moving more quickly at 0700 and 1900 hours. The
general level of the median of the square-root speed is about
.3

√

km/hr for the control days. During the hours when the
ATV was in action there are many large values with an appar-
ent velocity up to about 9 km/hour. These presumably corre-
spond to animals speeding off once they sensed the approach
of the ATV.

It is to be remembered that with the control treatment the
elk observation times have a separation of 2 hours while for
the ATV treatment the separation is 5 min. This may introduce
some bias in the estimate of speed. With a model a correction
could be developed.



Stochastic differential equations (SDEs).

In what follows it will be supposed that the motion of an elk is
described by the following (stochastic differential) equation

dr(t) = µ(r(t), t)dt + σ(r(t), t)dB(t) (1)

or in other form

r(t) = r(0) +

∫ t

0
µ(r(s),s)ds +

∫ t

0
σ(r,s)dB(s) (2)

where B is bivariate Brownian, i.e. the increments B(ti+1)−
B(ti) are IN2(O,(ti+1 − ti)I) for all time discretizations {ti}
with t1 < t2 < ... . The function µ is called the drift rate and σ
the diffusion coefficient. The functions µ, σ depend on loca-
tion and time and are assumed smooth in the estimation pro-
cedures below.

Suppressing the dependence of µ, σ on r and t solutions to
(1) may be approximated by

(r(ti+1)− r(ti))/(ti+1 − ti) ≈ µ + σZi+1/
√

ti+1 − ti (3)

The Zi are IN2(0,I) and correspond to (B(ti+1) −
B(ti))/

√
ti+1 − ti). Expression (3) suggests how µ and σ

might be estimated by least squares procedures.

Models and results.

Figure 2 shows an example of the data available. The points
ri j(ti) are joined for given j, j indexing the 8 elk. The data
of the figure are for the 9-day control periods that were paired
with the 5-day periods of ATV riding. The points joined are
those no farther apart in time than the 80th percentile of all the
time differences. The figure shows a sequence of straight line
segments. One sees points of concentration and indications of
routes. Two basic models are now considered for the paths, the
first does not involve explanatory variables while the second
does.
Model I. The control case. Suppose that the drift, µ, depends
smoothly on location, r, and one has

dr = µ(r)dt + noise (4)

The model (4) may be fit in the manner of Brillinger et al.
(2001a). The resulting estimated velocity field, (µ̂1(r), µ̂2(r)),
is plotted in Figure 3 for both ATV and control periods. One
sees longer arrows, i.e. the animals are moving faster, for the
ATV periods. For the control periods one sees the elk moving
away from the fences, being led to the lower right, and then
swept into the middle. In the case of the ATVs the spacing
of the time points is 5 min, while it is 2 hours for the control
periods.
Model II. Intruders. Suppose that at time t the animal is influ-
enced by where the ATV is at time t. If the ATV is very close
one can to imagine that the behavior of the animal is altered in

some fashion, e.g. the animal runs away. Supposing that the
ATV is at x(t) at time t consider the model

dr(t) = µ(r)dt + ν(|r(t)−x(t)|)dt + noise (5)

Here ν is a 2-vector and |r(t)−x(t)| is the distance between the
elk and the ATV at time t. The term ν(|r(t)−x(t)|) represents
the increment to the velocity of the animal at time t.

The time spacings of measurements differ for the elk and the
intruders. Specifically when the ATV is present the spacings
are 5 min for the elk and 1 sec for the ATV. To begin the model
fitting the values of x(t) are obtained for the available elk times
by interpolation as necessary. The ATV samples are close in
time so the interpolation is not difficult.

Assuming that µ and ν in (5) are smooth functions, then the
model may be fit by the function gam of Splus, see Venables
and Ripley (2002). Figure 4 graphs |ν̂|(d), d distance, for the

ATV. (The norm |ν| =
√

ν2
1 +ν2

2.) For the ATV one sees an
increase in the speed, particularly when elk and humans are
close to one another. The increased speed of elk is apparent
at distances as far as 1.5 km (Figure 4). An upper 95% null
level is indicated in Figure 4 by a dashed line. This is based on
standard errors output by gam. Also graphed are correspond-
ing figures for the bikers, equestrians and hikers. In these cases
distance is to the nearest intruder. The biker and hiker cases
show evidence of the intruders disturbing the animals. The
equestrian case needs further investigation.

In the cases other than the ATV more than one intruder was
active complicating the computations.
A reality check. As a check of their reasonableness of the null
line one can proceed as follows. One would expect not much
influence if the ATV is far away from the elk. Consider then
the model

dr(t) = µ(r)dt + ν(|r(t)−x(t − τ)|)dt + noise (6)

where τ is a time lag.
Expression (6) allows the change in speed of an elk is af-

fected by the location of the ATV τ time units earlier. The
model (6) is fit for τ = 0; 5; 10; 15 min and the results are
given in Figure 5. One sees a diminished ATV effect and less
precise confidence intervals at increasing large increments of
τ.

Estimation of |ν(d)| was also done in the absence of the µ
terms and the results were very similar. This gave some valid-
ity to interpreting the estimate ν̂(d) on its own.

Wisdom et al. (2004) and Preisler et al. (2004) modelled
the probability of elk response to ATVs, for data for the year
2002, and obtained similar results to those here although some
differences were apparent.

This completes the data analysis part of the paper. Attention
now turns to an analytic problem arising because of the fence.

The case of a boundary.

Figure 2 shows that the motion of the animals is much affected
by the boundary of the study area, as defined by the ungulate-



proof fence. Effective models need to take note of this, i.e.
one needs expressions for SDEs with boundaries. Suppose the
animal is restricted to a region D with boundary ∂D. An appli-
cable SDE is

dr(t) = µ(r(t), t)dt + σ(r(t), t)dB(t)+dA(t) (7)

where A is an increasing process which only increases when
r(t) is on the boundary ∂D.

For more detail on this and related approaches see Brillinger
(2003) and references therein.

Simulation.

Simulation finds many uses in probabilistic and statistical
work with SDEs. Topics that may be mentioned include: solv-
ing an SDE, program checking, estimating functionals, likeli-
hood computation, bootstrapping, and model checking. In the
case with no boundaries one can use expression (3).

The following material refers to the constrained case. Sup-
pose the process is restricted to the domain D, e.g. D = {r :
φ(r) > 0} with boundary ∂D = {r : φ(r) = 0}. The idea is
to approximate the continuous time process by a discrete time
Markov chain. First some notation. Set

a(r, t) =
1
2

σ(r, t)σ(r, t)′

Next, for convenience in writing the formulas and car-
rying out the simulations, the case presented is that of
ai j(r, t) = 0, i 6= j. (General formulas may be found in Kush-
ner (1976). Suppose that time is discretized with tk+1−tk = ∆.
Set rk = r(tk). Let Dh refer to the lattice points with separa-
tion h in D. Suppose r0 in Dh. Let ei denote the unit vector in
the i-th coordinate direction.

Consider the Markov chain with transition probabilities

P(rk = r0 ± eih | rk−1 = r0)

=
∆
h2 (aii(r0, tk−1) + h|µi(r0, tk −1)|±) (8)

P(rk = r0 | rk−1 = r0) = 1 − ∑ preceding (9)

provided all the possible transition points are in Dh. Here it
has been supposed the the probabilities are ≥ 0. By choice of
∆ and h this may be arranged.

In the above expressions the following notation has been
employed.

|u|+ = u i f u > 0 and = 0 otherwise

and
|u|− = −u i f u < 0 and = 0 otherwise

Next, consider the boundary case. Suppose there is a reflec-
tion direction γ(r) for r in ∂D This relates to the setup (6) as
follows. The discrete boundary ∂Dh may be defined as

{r : line connecting r to neighboring grid points touching ∂D}

dA(t) = γ(r(t))I∂D(r(t))dµ(t)

with

dµ(t) = lim{ dt I∂Dh
(rt))/h}

I being the indicator function. Now one completes the descrip-
tion of the simulation process by

Prob(r = r0 ± eih|γ, r0 in ∂Dh) = γ±i (r)/|γ(r)| (10)

Figure 6 provides the results of a simulation taking
aii(r) = µ̂i(r) and a starting point near the boundary. One
sees the “animal” head to the middle of the pasture and then
meander around there. Current research concerns the problem
of allowing the animal to move away from the middle as Fig-
ure 2 indicated happens in the real situation. The grid character
of the motion in the figure results from the use of a mesh with
spacing h in the simulation.

Discussion.

An SDE has been employed to model the (possible) effects of
human disturbance on an elk in a bounded region.

The statistical tools used in this work include: exploratory
data analysis, stochastic differential equations, the generalized
additive model and simulation.

One might assess the fit of the model via residuals,

r j(ti+1)− r j(ti)− µ̂ j(r(ti))(ti+1 − ti)

σ̂ j(r(ti))
√

ti+1 − ti

as was done in Brillinger et al. (2001a).
The statistical tools illustrated here appear useful in future

analyses of animal reactions to recreational uses by humans.
The use of SDEs and associated tools, as specified here, pro-
vides high utility in describing animal reactions under such
experiments.
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Figure 1: Parallel boxplots of elk speed for control and ATV days respectively.
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Figure 2: Elk paths during control periods following the ATV treatments. The points joined are 2 hours apart.
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Figure 3: Top:Estimated vector field of the elk movement during ATV periods. Bottom: For the control periods at the beginning
and end of the experiment.
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Figure 4: The estimated effect, or ν(d), per equation (5), which is the incremental increase in the speed of elk at time t, in
relation to distance from humans engaged in riding bicycles, an ATV, horses and on foot. The dashed line represents the upper
95% null level, below which the human effect may be deemed not different than control periods.
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Simulation of control case

km

km

5.5 6.0 6.5 7.0 7.5 8.0

9

10

11

12

13

•

Figure 6: A simulation, by the equations (8-10), of the fitted SDE using the data from the control days.


