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1 Abstract.

Time series and spatial processes are sometimes ordinal-valued. It can be
convenient to handle such types of data via generalized linear model algo-
rithms employing the complimentary loglog link function. This approach
facilitates the use of standard statistical packages and leads to a convenient
technique for handling serial dependence. Model fit is assessed by uniform
residuals, amongst other tools. In this article an example of such an analy-
sis is provided for a three-valued series corresponding to the possible results
loss, tie, win of events involving a sports team.

?... - 1t 1s important to have in command the mathematics so

you can solve the problem. Of course, the 64 dollar question s
which mathematics to learn, because you can’t learn all of 11.”

E.J. Hannan interviewed in [23]

2  Preamble.

Throughout my whole professional career Ted Hannan was there as a role
model. The ever growing stack of his collected works was a constant re-
search companion. In particular he was special for working on problems
simultaneously from all sides: substantive, theoretical and computational.
He always kept up with, indeed typically led, contemporary developments
in time series. He has left us too soon, but his standards remain.

3 Introduction.

Ordinal data refers to quantities whose values are categories falling on
a scale such that the order of the categories matters and is known. A
characteristic is that adjacent categories may be sensibly merged with the
ordinality remaining. One general reference is [21], Chapter 5. In the time
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FIGURE 1. Results of 84 games: 0, 1, 2 refer to loss, tie, win respectively.

series case the individual values are ordinal categories and questions of
interest include: Is there serial dependence? Is a trend present? Are there
useful explanatories? Is there change?

This work is concerned with a segment Y(¢), ¢ = 0,..,7 — 1 of an
ordinal-valued time series taking values such that

Y() = 0, 1, or2

corresponding to the results loss, tie, win of the Toronto Maple Leafs
Hockey team during the 1993-1994 season. (In assigning points in the stand-
ings 0, 1, 2 actually represent the points awarded.)

Figure 1 provides a graph of the results. There were 84 regular season
games in all. The Toronto team began the season with a record setting
string of 10 wins. In order that the results be more homogeneous for the
analyses presented, the data graphed and analysed actually correspond to
the state of the game after regulation time. (If the game is tied at the end
of regulation time, an overtime is period is played, which may result in a
win for one of the teams.) By this count Toronto had 28 losses, 17 ties and
39 wins in the course of the season.
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FIGURE 2. Smoothed rate for wins and ties respectively with uncertainty limits.
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Figure 2 provides smoothed estimates of the probability of a classic (i.e.
after regulation time) win and of a classic tie respectively. The approx-
imate +2 standard error limits are computed as if the successive games
are statistically independent. Except for the early success, the win curve
fluctuates about a constant mean level. In the case of the ties the curve
fluctuates about the mean level throughout. These curves were produced
employing the cloglog link and the functions gam() and predict.gam() of
the statistical package S (see[2, 8]).

The data are provided in an Appendix.

4 Ordinal Data.

A number of different models have been proposed for the analysis of ordinal
data. These include: continuation ratio (see [12]), stereotype (see [1]) and
the grouped continuous (see [20]).

The following presents an approach to building a stochastic model for
ordinal data. Let Y be 0, 1, 2 for a particular game, depending on whether
the result is a loss, tie or win. Suppose that there exists a latent or state
variable, A, whose value represents the strength of the Toronto team against
a general opponent. Assume the existence of cutpoints a and b such that

Y = 0ifA<a Y =1lifa< A<band Y = 2ifb < A

So for example

Prob{Y = 1} = Fa(b) — Fa(a) (0.1)

where F is the c.d.f. of A. Figure 3 presents an example of a graph of a
possible density function for A with the regions of loss, tie, win indicated.
In the graph the term linear predictor refers to A. The approach involving
a latent variable has the advantages of: easy interpretability, clear possibil-
ities of merging adjacent categories and of flexibility.

Maximum likelihood is a natural method of estimating unknown param-
eters in many cases and will be employed in the present work. Goodness
of fit may be assessed by procedures such as: deviance and chi-squared
type statistics (see [21]), plots of estimated probability against the linear
predictor ([5, 6]) or ”uniform residuals” ([4]).

In a generalized linear model, the link function describes the relation
between the mean of the basic variate and the natural parameter of its dis-
tribution. Its choice is sensibly based on the subject matter of the problem.
The complimentary loglog corresponds to situations in which of an extremal
variate crosses a threshold and an extreme value distribution, ([25]). In the
present context this may be reasonable, with a win for the hockey team
resulting from the team members putting out maximum efforts to exceed
those of the opponent.
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FIGURE 3. Areas of regions refer to probabilities of the respective events.

The extreme value distribution of the first type is given by
Prob{A > A} = exp{—e*} for A > 0
The graph of Figure 3 is based on this distribution. One can write
log(—log(1 — Prob{A < A})) = A

and sees the appearance of the cloglog link. In the case of ordinal-valued
Y one writes
log(—log(l — Prob{Y < j} = ¥b;

with 6; > #;_; and

log(~log(1 — Prob{Y = j |V > j}) = a; (0.2)
forj = 0, 1, 2. Pregibon, [24], noted the fact that for the cloglog link the
parametrization was of the same form and hence, by writing a probability as
a product of conditional probabilities, one could employ standard statistical
packages in analyses of such multinomial data. See also [17]. One can work

with Prob{win} and Prob{tie|not win} in the present hockey game case.
Explanatory variables, z, may be introduced quite directly by writing

A=E + ﬂ'l‘
where E has the extreme value distribution. Now (0.1) becomes

Fe(b—p'z) — Fr(a—pf'z)




5 The Time Series Case.

There is a massive literature concerning time series, that is sequences
Y(), t = 0, £1, £2,... which are stochastic. The literature mainly
refers to real-valued Y, some of it refers to count-valued ([3, 14, 18, 28]).
What distiguishes the present circumstance are the values that Y can take
on. In this work the values correspond to ordinal categories. In the case of
two categories the series are binary and there is a large existing literature
([5, 9]). There is further a literature for extensions to the case of the gener-
alized linear models ([11, 10, 15, 16, 26, 27]). There are also approaches to
categorical-valued time series based on Markov chains and on state space
descriptions ([11, 10]). A distinction that arises in the literature concerns
whether one realization of the time series is involved or several. The latter
case is typically referred to as longitudinal data analysis ([7, 19, 22]).

Both parametric and nonparametric models can be considered. A di-
rect parametric way to introduce temporal dependence is to set up an
autoregressive-type model with past values of the series being employed
as explanatories. In likelihood approaches it is then convenient to set up
a likelihood as the product of a sequence of conditional mass or density
functions, fy,

T-1

H Ty o) (ye|Heo1)
t=0

with H; denoting the history {yo, ..., y:}. Taking this result together with
the simplification resulting from the use of the complimentary loglog func-
tion, referred to in Section 4, means that parametric analyses can be carried
out using standard functions such as glm() of S, [8]. The appearance of the
conditional term (0.2) may be controlled by the use of the weight option.

6 Results

The graphs of Figure 1 may be considered a first-order analysis of the
question of temporal dependence. What may be seen is a small indication
of an increased probability of a win for the Toronto team at the beginning
of the season. It is of further interest whether there is some clustering of
the losses, ties or wins or if these perhaps alternate in some fashion.

A nonparametric second-order analysis may be developed by creating a
bivariate time series. Define the two binary series Y7 and Y; with Y1(t) = 1
if the t-th game is a win and 0 otherwise, similarly define Ya(t) = 1 if
the game is a tie and 0 otherwise. To begin consider a frequency domain
approach, the one so often taken by Ted Hannan [13]. In the case of a bi-
variate stationary white noise process, each of the second-order spectra are
constant and the quadrature spectrum is identically 0. Figure 4 provides
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FIGURE 4. Second-order periodograms of the data.
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the periodograms and cross-periodograms of the data for the series Y7 and
Y5. The solid lines are the estimated levels in the case that the successive
observations are i.i.d. The dashed lines are approximate 95% marginal con-
fidence limits. There is one unusual point in the crossperiodogram, but no
substantial evidence for temporal dependence.

One type of parametric analysis involves fitting a process of autoregres-
sive type. As an example consider the model

log(~log(1 — Prob{Y(t) = jlHi}) = 05 +6;-mer (0.3)

with the ¢ - y term having the meaning that the value, y;_1, of the series
at the previous time point is to be viewed as a factor. The deviance change
in fitting the model 0.3 with and without this term is 3.03 on 4 degrees of
freedom with a corresponding probvalue of .553. There is no evidence for
the postulated form of dependency on the previous time value. Earlier time
values may be studied just as easily.

Various other explanatories may be considered, for example whether the
game is home or away, goals scored and some measure of the strength of
the opposing team. In the case of including whether the game was home
or away, as an explanatory factor, the deviance change is only .012 on 1
degree of freedom. The corresponding probvalue is .911 . Again there is no
evidence of an effect.

7 Goodness of Fit.

In any work with stochastic models, goodness of fit is a central issue. In
work with generalized linear models the residual deviance is often employed;
however its approximation by a chisquared variate in the null case is often
poor. In [4] the idea of employing uniform residuals was introduced. One
uses the probability integral transformation based on the fittted model. In
the case that the parameter values are known, this will have a uniform
distribution. These residuals may be plotted against explanatories, be used
to construct probability plots and other such things.

The present approach acts as if the data are binary. Suppose that X is
a Bernoulli variate with Prob{X = 1} = =. Then a standard uniform
variate, V', may be constructed by setting

V = uniformon (1-m1)if X =1

V = uniformon (0,1 —m)if X = 0

This was done for the simplest model (of the ¥ i.i.d.) and the observed
data, based on the estimates of Prob{win} and Prob{tie|not win}. Figure
5 gives plots of the V’s against game for the wins and conditional ties. In
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the first case one sees some elevated values at the beginning, but random-
ness therafter. In the second case there is apparent randomness. Figure
6 gives a normal probability plot and a plot against the home-away vari-
ate respectively. There is no evidence to contradict the assumptions of the
fitted model.

8 Summary.

The 1993-94 Toronto team began the season with a string of successes;
however ultimately the results of the various games appear random. The
analyses provide no real evidence for temporal dependence in rate or serial
correlation. If temporal dependence had been noted there would have been
the possibility of using the model for prediction.
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10 Appendix

The site variable refers to whether the game was home or away, 0 is away.
The overtime variable refers to whether the game ended in regulation time,
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