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SUMMARY

Potential functions are a physical science concept often used in modelling the

motion of particles and planets. In the work of this paper potential function based



models are considered for the movement of free-ranging elk in a large, fenced ex-
perimental forest. Equations of motion are set down and the parameters involved
are estimated nonparametrically. The question of whether a potential function
is plausible for describing the elk motion is considered. The conclusion is that it

1s not possible to reject this hypothesis for the data set and estimates considered.
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1. INTRODUCTION

The problem of interest is the description of the movement of elk, Cervus ela-
phus, in a large free-ranging environment. Models of animal movement are be-
coming important tools in the study of a variety of ecological problems, especially
habitat selection, animal migration and dispersal in heterogeneous landscapes.
Specific questions that wildlife biologists have include: How to allocate forage
amongst competing species? What is the effect of vehicular traffic? Is change
taking place? What is the sequence of habitat use? The physical and biological
mechanisms that regulate such movements are clearly complex.

The data available are the locations of M elk, labelled by m = 1,..., M,
recorded at times, t,,x, k = 1, ..., K;;,. More specifically the data consist of the lo-
cations ¥ = (X(tmr), Y (tmr)), corresponding to the UTM (Universal Trans-
verse Mercator) coordinates of the k-th time measurement of the m-th elk. Ex-
planatory variables describing vegetation, topography, and other habitat features
(e.g., distance to road, distance to water) known to influence elk movement, are

also available.



The approach developed in this work is to assume that the animals are moving
in a potential field, H (xr, ), that controls their direction and speed of motion. The
potential field may have points, lines or regions of attraction or repulsion and may
include barriers. The barriers may represent actual physical constructions (e.g.,
fences or be natural). Stochastic differential equations (SDEs) are used to include
variability in the model such as attractors and repellors not in the potential H.
The estimated SDEs may be used to produce estimates of other parameters,
eg. speed, to predict spatial and temporal patterns of animal distribution and
habitat preferences, to simulate trajectories and to study the directionality of
the movement, amongst other possibilities. Later in the paper simulations of the

trajectories will be used to estimate the potential function.

The paper begins with a description of both deterministic and stochastic meth-
ods for describing the paths followed by particles under the influence of a poten-
tial field. Next the experiment in which the elk data were collected is described.
Section 4 provides details of the statistical methods employed in the problem.
Section 5 presents the results obtained. A key examination of the assumption
that a potential function exists is a comparison of second-order partial deriva-
tives taken in the two possible orders, separately for daytime and nighttime data.
The final section reviews some of the merits and limitations of employing the

potential function to model animal movement.

References describing models for animal movement include: [6, 9, 10, 18, 27].
Reference [18] sets down deterministic differential equations (DDEs) for density
functions describing the expected pattern of space use by coyotes being influenced
by the accumulation and decay of scent marks, also described by DDEs. This 1s

to be contrasted with the approach in [4, 20] where stochastic equations were



set down describing the individual realizations or trajectories, for elephant seals
migrating and female bark beetles responding to male pheromones emitted from

a point source, respectively.
2. SOME MATHEMATICS OF MOVING PARTICLES

Both deterministic and stochastic approaches are available for describing the
trajectories of moving particles.

2.1 Deterministic case.

Motion in Newtonian dynamics has often been described by a potential function,
H(r,1),see [19]. Here v = (z,y) is location and ¢ is time. The equation of motion

takes the form

dv(t) = —Bv(t)dt — BV H(x(t),)dl

with r(¢) the particle’s location at time ¢, v() the particle’s velocity and —gV H
the external force field acting on the particle, g being the coefficient of friction,
[19]. Here V = (9/Jz, 0/Jy) is the gradient operator. The function H is seen
to control the particle’s direction and velocity. For example H(r) = |r — a|?
corresponds is a point of attraction at a and H(r) = 1/|r —a|? is a potential
function with a point of repulsion at a.

In the case that 3 is large, the equations are approximately
de(t) = — VH(x(1),1)dt (2.1)
and only the location, r(t), at time ¢ is involved.

There exists considerable mathematical development in the time stationary

case. A force field, F, may be given and the question arises whether there exists



a real-valued function H, such that F = VH. When it does the field is called

conservative. Such a field then has the property that line integrals

/F~dr
c

depend only on the initial and terminal points of the curve C| see [26], and -
refers to the fact that a line integral i1s involved.

In this case the function H may be obtained from its partial derivatives,
F = (H,, Hy), [25, 26]. Specifically for motion in an open connected region the

potential function may be obtained, up to an additive constant, as

(z9)
H(z,y) = /( : F.dr (2.2)
ab

where (a, b) is a point in the region. When a potential function exists, the path of
the line integral taken from the starting point (a,b) to the terminal point (z,y)
will not affect the final result. The function H may also be estimated, given
H,, H, via simulation experiments as described below.

If F has components H,, H,, then a necessary condition for the existence of
a corresponding potential function is that

s—ny = %Hy (2.3)
[25, 26]. In the case that the region is simply connected, this condition is also
sufficient.
2.2 Stochastic case.
A pertinent probabilistic concept for dynamic situations is a stochastic differ-

ential equation (SDE), see [3, 16]. Such equations lead to Markov processes and

take the form

dx(t) = n(e(D),0)d + (x,1)dB(1) (2.4)



with p the drift parameter, 3 the variance or diffusion parameter and B bivariate
Brownian motion. Here r, pu, B are vectors while ¥ is a matrix.

The parameters have the interpretations

BLar(t)[Hey = p(x(1), t)dt

var{dr(t)|H;y = X(r(t),t)dt

with H; representing the time history of the process. Since the process is Markov,
these conditional parameters depend only on the previous position, as indicated.

Many properties are known concerning solutions of SDEs; for example in the
present context when H does not depend on ¢ and ¥ = ¢2I, there may be an

invariant density
m(r) = cexp{—2H(r)/c2} (2.5)

representing the longrun density of locations the particle visits, [3]. Thus, by
modelling movements, population distributions may be estimated. At the same
time given g = (—Hy, —Hy) and a og, realizations of the process (2.4) may be
generated, from which the density #(r) may be estimated from the realizations
and then (2.5) inverted to obtain an estimate of H.

There may be barriers restraining the motion. Also the stimulus, here repre-
sented by X(r, 1)dB(t), may have periodic properties in ¢.

A particular case of an SDE is provided by the mean-reverting Ornstein —

Uhlenbeck (O-U) process where
e t) = Al — (1)

S(r,t) = X



and the mean is a. The papers [9, 10] propose the O-U process as a model for
animal motion and develop maximum likelihod estimates of the parameters. The
O-U process becomes the random walk when A = 0, i.e., when the drift term,
p(r,1),is 0.

If A is symmetric, the potential function corresponding to an O-U process is
H(x,t) = (a — r)"A(a — r)/2
Tts invariant distribution is multivariate normal, N(a, ®), where
(o]
T = / eTAUSIRT AUy
0

see [3], p. H97. If & = 21, then ¥ = ¢2A~1/2.

The situation of a particle being affected by the force field of a potential func-
tion is conveniently visualized by picturing a ball rolling around in the interior
of a perspective plot of the potential function. Some simulations are provided
below.

To derive simulated paths on can proceed as follows. Consider a one-
dimensional process dx(t) = p(x,t)dt + o(x,t)dB(t). Suppose that at time ¢

the particle is at location #(t) = . Now for the location at time ¢ 4 dt take

+ /J(l‘,t) \/E

. 1
zt4+dt) = ¢ £ U(a:,t)\/a with prob ) 20(e.1)

See [17, 22]. In the bivariate case one generates  and y processes.

Figure 1 presents examples of such simulations in the case of the process
de(t) = —VH(r)dt + dB(t)

and two particular potential functions. In the first example H(x,t) = r7r, i.e.

the process is Ornstein-Uhlenbeck reverting to the origin. The trajectory is seen



to meander around the origin and one can imagine a ball rolling around in the
interior of the parabaloid in the left column of the Figure 1.

In the second example a mound has been added at the origin. Now the tra-
jectory is seen to circle around the mound staying in the groove of the bottom
of H.

Keeping in mind these examples one can visualize the motion of particles given
particular potential functions.

2.3 Random potential/environment.

The discussion above provides a means of interpreting the drift term of a
bivariate SDE. It is also important to have an understanding of what phenomena
can lead to the variance/diffusion term.

Suppose that at time ¢ there are other particles and that they are at random
positions r;(t). These particles might be attracted towards each other following

the existence of a potential function
J
Hr,t) = a()) v — ;)
j=1
for some pertinent function «(.). Following equation (2.1)
de(t) = — VH(x,t)dt

with V H (r,t) approximately normal for large J via some Central Limit Theorem.
One has, approximately, an SDE such as (2.4) with no drift term.

The concept of other particles in the field might be used to portray the at-
traction among elk traveling together in a herd for example. Conversely, it could
be used to portray repulsion between two different species of animals where, be-
cause of social interactions, individuals of one species are avoiding individuals of

the other species.



3. THE EXPERIMENT

The main study area at Starkey Experimental Forest and Range consists of
7,762 ha in the Blue Mountains of northeastern Oregon [23]. Tt was enclosed with
a gameproof fence in 1988 and radio-telemetry studies were initiated. Each spring
a sample of the resident population of elk and mule deer (Odocoileus hemionus)
are fitted with collars containing Loran-C receivers. A sample of the domestic
cattle herd brought to Starkey Forest each summer is also fitted with collars.
The collars are instructed at regular intervals to intercept Loran-C broadcsts
and relay these signals to a central receiver. Locations are then computed from
the Loran-C time delay. They have a mean error about 50 m [12]. The telemetry
system attempts to locate some animal every 20 seconds, and thus cycles through
approximately 190 collared elk, deer, and cattle in about 60-65 minutes. The
study area is also managed for a variety of public uses such as recreation, hunting,
forest management, cattle grazing, and other activities. An extensive database
was built describing vegetation, topography, and location of roads, streams and
other features relevant to the study of elk [23]. The data used in the work of
this paper were collected from the analyses in 1994 and involve 53 female elk.
Observations were omitted from the analysis for 30 days when hunting of elk
by rifle occurred in the forest, and also when time intervals between successive
locations were greater than 1.5 hours. This was done in an attempt to make the
situation more uniform and reduce the difficulties of interpreting widely spaced
observations. Figure 2 illustrates the successive movements for two typical elk
during 1994. Two small game-proof exclosures within the study area are shown
in white. Elk 43 is seen to spend much of its time below the larger fenced off

area on the right. The trajectory plotted is a sequence of straight line segments
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and jagged. This discreteness results from the fact that location estimates are
available but every 1-4 hours.

Turning to Elk 42, it is seen to spend most of the time in the northern part
of the forest. The implications of the time sampling are particularly apparent in
this case in the upper right corner. It is not that the elk i1s jumping the fence,
rather the locations are at time points an hour or so apart. Elk 42 does stay
within the Starkey Forest (at least as far as is known).

Figure 3 shows separately the daytime and nighttime locations visited by all
53 elk, but restricting the points plotted to those less than 1.5 hours apart and
excluding the days with hunting.

The points plotted have been jittered to make their apparent density clearer.
A variety of heavily used and and also sparsely used regions may be seen. When
a detailed map 1s consulted it can be seen that some of these regions relate
to the locations of roads and other habitat features. This circumstance will be
addressed in later research. There is also an apparent difference between day and
night distributions, which is no surprise because the animals forage at dawn and

dusk and rest in the daytime.
4. THE STATISTICAL METHODS USED

Kernel methods, [14], may be employed to form an estimate of the longrun den-

sity of elk locations. Estimates take the form

) = > K@ — v(tme)) / D1 (4.1)

for some kernel function K(.). Such an estimate will be employed later in the
paper, together with the realtion (2.5), to obtain an estimated of the (assumed

to exist) potential function.
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Turning to the SDE (2.4) its solution may be approximated by

(r(tg1) —r(W)/ (41 — &) = pe(h), i) + B(x(W), W)Z/ /41 — U

l=1,2,...witht; <ty <13 < ...sampling times and with Z a bivariate standard

normal. In terms of the individual components of r one can write

AX(t

Ai) = m(X,Y) 4+ noise
AY(t

A}E) = 12(X,Y) 4 noise

further assuming time invariance. If the drift functions, gy, po, are smooth, one
has a nonparametric regression problem. The functions p, 2 may be estimated
via loess(.), [7], or by a kernel method, [14].

Acting as if H exists, from estimates of p1, s one has an estimate of H’s
gradient (H,, lffy) = — (fi1, fiz). The function H itself may then be estimated

following (2.2), specifically one could employ
> He(wsyi)Das + Y Hy(wi, i) Ay

for some path of points (x;,y;), i = 0,1,2, ... from (a,b) to (z,y) staying within
the region having taken some starting point (a, b) in the region, i.e. standardized
the estimate by f](a, b) = 0. Depending on the character of the region complex
paths may be needed. This is the case for the region of this paper.

References to inferential methods for diffusion processes include: [1, 2, 5, 8,

13, 15, 24].
5. RESULTS

The results of the model fitting and assessment are provided in Figures 4-7.
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Following expression (2.5), and under assumptions leading to its existence,

the potential function may be estimated up to an additive constant by
—log #(r) (5.1)

with #(.) the density estimate, usin gthe kernel estimate. The results are given
in Figure 5 separately for days and nights. The hotspots of Figures 3 go over
into the depressions, i.e. coldspots, of Figure 4.

Figure 5 provides H as estimated by simulation following the method de-
scribed in Section 2.2 having used loess(.) to estimate the gradient of H. In the
estimate provided the starting point was taken to be the center point of the re-
gion. The value of oy was 20 pixel units, to be sure the trajectory roamed around
the region widely. The points of the trajectory were picked to remain within the
outer boundary of Starkey by resampling an increment if it led to a point outside
of the region.

In both Figures 4 and 5 the hotspots (lighter areas) are in the north of Starkey
in daytime and in the south in nightime. One sees the main attractors. The ex-
tent of agreement relates in part to the question of whether a potential function
actually exists, for this assumption underlies the computations leading to Figure
5. If a potential function does not exist then one needs a different method of esti-
mating w(xr) because one cannot simply integrate up. The question of statistical
uncertainty will be addressed below.

Expression (2.3) suggests one way to address the question of the existence
of a potential function. Figure 6 takes H,, Hy and further computes Ayﬁx
and Axf]y. (Here A,, A, are the z and y difference operators.) There is some

agreement. The daytime plots are on the same grey scale, as are the nighttime
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plots.

It is clear that some discussion of sampling uncertainty is needed in order to
make plausible inferences. In the work the jackknife, [11], was employed to exam-
ine the hypothesis of the existence of a potential function. In its implimentation
50 of the elk tracks were used, 5 tracks were dropped each time in the evaluations
of the 10 pseudo estimates.

Given estimates of the variances of the quantities graphed in Figure 6, they
may be compared by taking the difference and dividing by the estimate of the
standard deviation of the difference, point by point and separately for day and
night. Figure 7 graphs the locations where the absolute values of t-statistics
obtained exceed the 95 percent point of the Student-t distribution with 9 degrees
of freedom. There are not a lot, the proportions of point exceedances are .036
and .026, for day and night respectively to be contrasted with the nominal .05 .
One doesn’t notice much structure in where the exeedances are located.

The conclusion of the analysis is that with the data set and estimates consid-
ered, it 1s not possible to reject the hypothesis that a potential function exists

that may be used to describe the motion of the elk.

6. DISCUSSION AND SUMMARY

A basic advantage of working with a potential function, H, is that H is scalar-
valued, as opposed to the bivariate g of (2.4). That is one has to model but a
single real-valued function. The function can include individual effects, eg. at-
traction, repulsion, barriers, and this will be done in future work. The estimates
computed here are nonparametric. In practice the results obtained can be ex-

pected to sometimes suggest particular explanatories to include in parametric
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forms.

A disadvantage of the work is that such an H may not exist. In such a case one
needs an alternate method of estimating 7(.) given estimates of the parameters
of the SDE. The concept of potential comes from the "much simpler” physical
sciences. The motion of complex biological entities is surely many times more
complicated than that of a falling ball, for example. A further difficulty arises
in the drawing of conclusions. An elk’s locations are available at successive time
points, but they are 1-4 hours apart. The elk can be many different places between
the times at which locations are estimated. This complication showed itself in
Figure 2, where the track plotted would suggest that Elk 42 jumped some fences.

The assumption of a potential function led to the setting down of a stochastic
differential equation for a diffusion process. Such an SDE assumption was needed
both in motivating the estimates computed and in estimating the potential func-
tion itself. But diffusion processes are Markov, whereas more realistic equations
would involve time lags and the process therefore not be Markov.

Some related results are presented in [21]. In current work the SDE approach is

being further developed as a convenient way to include covariates in the models.
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Starkey Project area and trajectory examples
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Fi1G. 2. Points along the trajectories of two elk.
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Daytime elk locations (jittered) Nighttime elk locations (jittered)
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Fi1G. 3. Locations visited by all 53 collared elk.
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Density based potential estimate: Days

Density based potential estimate: Nights
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Potential function estimate based on density estimate.
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Estimates of the second-order mized partial derivatives.
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