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The paper's concern is the estimation  of the average monthly temperature across a given 

region as a function of time. The region studied here is the Canadian province of Ontario 

and the time unit is month. Data for various stations and times were obtained from the 

Berkeley Earth website, (www.berkeleyearth.org). In the work a generalized additive 

model with  random effects is employed that allows both spatial and temporal 

dependence.. Handling variability in both space and time is basic.  

. 

1.   Introduction 

 

This study uses historical data to analyse Earth's surface temperatures as  

functions of time, t, and space, (x,y) The particular focus is the monthly averages 

for the Canadian province of Ontario. These particular data evidence a wide 

variety of the complications common to surface temperature studies.  The data 

employed were obtained from the Berkeley Earth project [2, 12, 13], 

     The temperatures are measured at stations in a regular temporal fashion and 

typically there are many temperature values at the same (x,y) . However these 

locations are distributed irregularly. Further, stations enter and leave as time 

passes so there are starts and stops and gaps in the temporal sequences. This may 

be seen in the right hand panel of Figure 1 below where the measurement times 

are shown as related to their latitude. The left hand pane provides the geographic 

locations of the stations. One sees that the measurements get scarcer as one 

moves north in the province.   

     Biases may be anticipated to be present in the results of equally weighted 

analyses if the spatial and temporal irregularities are not dealt with. The temporal 

case will be handled here, for now, by restricting consideration to stations not 

missing too many values. The spatial aspect will be dealt with by introducing 
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weights, a continuous form of poststratification. Generalized additive models 

with random effects are employed. 

 

 
Figure 1. The left panel show the locations of 1990-2011 stations. The right panel highlights  the 

stations' dates and related latitude. 

 

     The statistical package R, [11], is employed in the analyses throughout.  The 

R-libraries employed included mgcv, spatialkernel, RandomFields and splancs. 

The library mgcv works with regression splines. It includes smoothing parameter 

estimation by cross-validation. 

 

2. The data. 

 

Figure 1 may be interpreted in general terms. Consider the left hand panel. The 

bottom and left hand side border on water, the Lakes Huron, Erie and Ontario. 

As one moves north in the province the temperature gets cooler. The winters and 

summers can both be extremely hot. The circles in the plot are the locations of 

the stations that existed at some time in the period 1990-2011. There are 440 of 

these. The panel shows a much greater density of stations in the south. The right 

panel is consistent with this. In addition it shows the temporal gaps in coverage 

of the province generally and the station monthly values specifically.  

     For this time period there are 264 data months, however December 2011 was 

missing throughout A decision was taken to exclude any station missing more 

than 20 months at this stage.  
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     To deal with the remaining missing values an elementary analysis of variance 

model wa employed, specifically 

 

Yjk = αj + βk + εjk                                                                                                                                                 (1)    

                                          

with j indexing years and k months. It was and fit by least squares. This provided 

estimates of the December 2011 values in particular. Here Y is temperature, α a 

year effect, β a month effect and ε an error. The locations remained irregularly 

spread, as may be seen in Figure 4 to come. The effects of this will be 

ameliorated by employing weights, a form of continuous post-stratification, The  

fit was by simple least squares and the estimates aj_+ bk  then employed as 

needed. This led to a complete array of 264 by 81 "temperatures". The 81 cases 

will be referred to as the basic subset of stations. The 264 time points were all 

spaced 1 month apart 

     The data for one of the stations, Toronto Centre, is provided in the top panel 

of Figure 2. The dominant feature in the graph is the annual 12 month seasonal. 

It provides the vast majority of the variability in the series. The monthly average 

temperature may be seen to range from about -25 degrees centigrade to about  

+20  during the period 1990 to November 2011. 

 

 

3. Models and preliminary analyses. . 

 

The model (1) provided an elementary method to infer missing values. Often one 

seeks regular arrays of data as various statistical methods have such in mind, 

however more complex methods could be employed. The missing time 

observations were dealt with from the start. Figure 1 right hand panel shows the 

importance of this. At the outset stations with more than 20 months missing were 

excluded 

     As an illustrative analysis we consider the 1990 to 2011 data for Toronto 

Centre with the December 2011 value filled in. Next consider the following 

stochastic model 

 

Y(t) = α(year) + β(month) + ε(t)                                                                        (2) 

 

where year and mon (month) are factors and ε(.) is a stationary autoregressive 

series of order 1. This is the model Wood considers in Section 6 7.2  of his. book 

[14]. He provides R-commands and results for an analysis of daily Cairo, Egypt 

temperature for a stretch of 3780 days of data starting  1 January 1995. He 

employs the R-library mgcv and presents a variety of results. The fitting 

procedures employed are based on an assumption of gaussian ε. The series {ε(t)} 

is  assumed to be a stationary AR(1) and is treated as an additive random effect 
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in the model. The functions α and β are assumed to be smooth. The actual fitting 

is via the R-function gamm(.)  employing maximum likelihood. The functions α 

and β are represented as splines. Estimation of numbers and locations of knots is 

included in the function gamm(.). 

 
 
Figure 2. Top panel: Toronto Centre monthly temperatures. Middle panel: estimated seasonal effect 

Bottom panel: Toronto trend effect estimate and associated uncertainties.. 

 

     Some results of carrying out the fitting of model (2) are shown in Figure 2. 

The top panel, already discussed, provides the data themselves. The seasonal 

effect is clear and meant to be handled by β. The middle panel provides its 

estimate. That effect is well known and understood to a degree. The quantity of 

topical interest is α, where climate change might lurk. It is interesting that the 

estimate of α here is approximately linear in time. The bowtie lines in the figure 

are one way to display 2 standard error variations. It has in mind prediction 
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purposes. One of the outer limits of the bounds is almost on top of the zero line. 

There remain the data from the other stations to possibly clarify the situation.  

 

4. Results. 

 

In the next analyses trend effect terms are estimated for each of the 81 stations 

and then the trends merged. These trend curves are plotted in Figure 3. The 

curve for Toronto Centre appearing in Figure 2 is one of them. There is 

considerable scatter but a central core of curves heading from the lower left to 

the upper right. 

Figure 3. The 81 individual estimated station trends effects superposed 
. 

     To make inferences one needs measures of uncertainty and these  need to take 

note of temporal and spatial variability. In the figure one sees outliers 

highlighting the need for a robust/resistant method of merging the 81 curves 
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     The next step is to average the values at each time point, however spatial bias 

is a serious concern. One debiasing approach is to weight the stations in a region 

inversely to the density of stations there, Pertinent weights were determined as 

follows: the locations of the stations are viewed as a planar point process and ts 

intensity function estimated by kernel smoothing. This was realized by the 

function  "lambdahat" of the R-library "spatialkernel". If the estimated density at 

the location (x,y) is d(x,y) the weight at (x,y) is w(x,y) = 1/d(x,y). For the data 

concerned the array is not changing for the time period of interest. The rates are 

displayed in Figure 4 via the diameter of circles which are centered at the 

various array locations.. As anticipated the weights get larger as one moves to 

the north of the province where stations are scarce. 
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Figure 4. The weights employed in the merging work. There is one for each of the 81 stations 

station. The diameter of the circle is proportional to the density at the station. Also shown are the 

locations of the observation stations in Ontario.. 

 

     For the moment a simple weighted average of the 81 estimated trend effects is 

employed. The weights are those of Figure 4 and the resulting curve is the 

central one in Figure 5.  Assuming the 81 values at a given time point are 

statistically independent there is the classic formula for the variance of a 

weighted mean and  an estimate for it. The bounding curves in the Figure are the 

approximate ±2 s.e. limits.  

 
Figure 5. Individual station trend effects with weights inversely proportional to station density. 

There are 2 s.e. bounds. 

 

 

     Looking at Figure 5 it is hard not to infer that there is an increasing trend for 

this province and time period. However serial dependence has to be a concern as 
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it may be affecting the estimated standard error. Perhaps the AR(1) didn't go far 

enough. However there is a multiplier that may be motivated and applied to 

standard errors after a least squares fit to take some note of remaining temporal 

dependence.  In the present case it is estimated as 1.4015. The source of this 

number is the average of the first 10 periodogram values divided by the average 

of all, see for Example p. 127 in Hannan [8]. Including it will not change Figure 

5 a great deal..  

 

5. Model assessment. 

 

The library mgcv has a function that provides results for some common methods 

of assessing fit, in the case of independent observations. It leads to Figure 6 here. 

 
Figure 6. The output produced by the mgcv function gam.check. 
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     On examining these statistics, the marginal gaussianity is suggested in the two 

left hand panels. This is important because the fitting and inference techniques 

employed are motivated by that assumption. The bottom right hand panel 

suggested that the responses are approximately linearly related to the fitted 

values. That would relate to how much of the variability of the temperatures was 

due to seasonal variability. The top right panel gives reason for further research. 

It reflects that the variability around the fit is greater at the low temperatures. 

One could deal with this by introducing further weights, but that is for future 

research. 

     Autocorrelation in the series ε of model (2) needs to be studied. The 

assumption of the independence of the error term, ε, values for the curves in 

Figure 3 entered into the computation of the standard error bounds. Even though 

these bounds are marginal temporal dependence is a concern in their derivation. 

 
Figure 7. The top panel shows 81epriodogram replicates. The lower provides the  average of the 81 

Both figures are graphed on "log paper". 
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     Assessing temporal independence of time series residuals is a classic time 

series problem. Spectrum analysis is one way to address this issue. Figure 7 

shows the  periodograms of the 81 individual residual time series and of their 

averaged series. Generally there appears to be some slopping down as one moves 

from the left to right. The AR(1) term was meant to handle this. This occurrence 

motivates the estimation of a multiplier 

     The bottom curve of Figure 7 shows the average of the periodograms in the 

top panel. The horizontal line is as reference level. The plot is on log paper 

There has to be some consideration of spatial dependence. The variogram is a 

classic parameter to study. An isotropic form will be estimated here. It may be 

considered an average of a non-isotropic form. Figure 8 provides the results 

obtained via the R-function  "EmpiricalVariogram" of the R-library 

RandomFields. This particular function accepts replicates. There are two panels 

in the figure, one for the residual series and the other for the temperature series.  

The y-axis scales in the two are quite different. This goes along with the 

inclusion of a monthly term in the model reduces the variability greatly. 

 

 

. 



 12

 
 

 
Figure 8. Estimated variograms, assuming isotropy, for the temperatures and residual series 

respectively. The individual date series are treated as replicates. 

... 

     Unfortunately no indication of uncertainty is provided. One might use some 

form of simulation or seek a multiplier, as in the temporal case. Figure 8 

suggests that spatial dependence extends some distance, e.g. up to lag 12. There 

was no use of utm coordinates, or of some other coordinate system in terms of 

km, so the lag units are confused. With the isotropic condition the correlation 

surface is ellipsoidally shaped. There is also the outlier at lag 0. It could be an 

artifact of the assumption of isotropy,  or result from a mixture of populations 

being present. 
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     Lastly, one of the referees emphasized that the seasonal shape would be 

changing as one moved from the south to the north of the province. This effect 

has been dealt with in a sense by working with the individual station series. 

 

. 

6. Discussion/Conclusions. 

 

This paper has presented an approach. Various limitations have turned up during 

it development. It is intended to address these in future work. 

     Time series development has often involved taking a statistic developed for 

the independent case and seeing its properties under a time series model. One 

can point to the work of Anderson [1], Grenander and Rosenblatt [7], Hannan 

[8], with mean levels given by regression models and their study of the OLS 

estimate in the presence of stationary errors. Spatial-temporal dependence does 

appear to exist. If wished Gauss-Markov methods could be invoked to increase 

the efficiency of the estimates and to obtain more appropriate standard error 

values. 

     In practice the approach to studying spatial-temporal dependency has been to 

employ a model including some at the mean level and then check residuals  for 

dependency hoping they turn out to be close to white noise. Here AR(1) 

modelling was introduced at the outset, following the result in Wood [14]. Yet 

temporal dependency beyond that appeared to exist. In consequence a 

"Correction factor" was introduced. In the spatial case weights were introduced 

to attempt to reduce the spatial dependency, but an estimated variogram 

suggested that such dependency remained.  

     There are limitations of the present analysis. A key one is the non-general use 

of robustness methods. However a small early study of introducing biweights 

was carried out and the resulting figures did not change a lot. It needs also to be 

noted that temperature series from neighboring provinces/states were not 

included in the analyses and logically should be.  Other explanatories, such as 

topography and station elevation might lead to improvements of the estimates. so 

too might interaction terms. One can mention month with latitude, 

     Other substantial contributions to spatial-temporal data modelling and 

analysis appear in: Cressie and Wikle [4], Dutilleul [5], Gelfand et al.,[6]. and 

Le and Zidek [10], Craigmile and Guttorp [3], Jones and Vecchia [9].  

     In conclusion, part of the intention of preparing this paper was to alert the 

statistical community to the presence of Berkeley Earth. Its data and the methods 

they are developing are going to provide a goldmine for statistical researchers. 

Members of that team have begun to exploit the data and preprints on the 

website, www.berkeleyearth.org. This present paper show that some "shovel 

ready" statistical software is available to employ. Having said that please note 

that this paper is not to be seen as a Berkeley Earth report 
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