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An Empirical Investigation of the Chandler Wobble and Two
Proposed Excitation Processes

By
David R. Brillinger, Berkeley, U.S.A.

1. Introduction -

The axis of instantaneous rotation of the Earth does not remain fixed
relative to the body of the Earth, rather, its points of interception with the
surface wander about within a region approximately the size of a tennis-
court. This wandering was predicted by Euler in 1765 and confirmed by
observation in 1891. The top graph of Figure 1 provides the x and y coordinates
of the deviation of the North pole from its mean position for the period
1960—1969. (In units of 0”.001 = .101 ft.) The motion of the pole produces
a variation in the latitude which may be used to deduce the time path of the
pole. We mention briefly how this is done.

The zenith is the direction opposite to local gravity. The altitude of a star
is the complement of its zenith distance. The fundamental method of de-
termining the latitude of an observatory is to take the average of the altitudes
of a circumpolar star when it crosses the meridian above and below the pole.
Since 1899 the International Latitude Service has measured the variation of
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latitude at five stations apread along 39°08' north latitude. A conventional
pole of rotation (the C.1.0.) has been adopted. Suppose X (1) denotes the
displacement of the instantaneous north pole at time 7 from the C.I.O. towards
Greenwich and Y (¢) the displacement towards 90° west of Greenwich. Let
Ag,(¢) denote the increment in latitude at observatory j, from its mean
latitude. Then estimates x (£), y (f) of X (¢), Y (¢) are determined by the least
squares fit of the regression equation

g =Z @)+ X()cos i+ Y()sink + & (t) (1.1

J=1,..., 5 where A, denotes the longitude of the j-th observatory. For:z at
monthly intervals, these values are given in Vicente and Yumi (1969, 1970),
which is the source of the data used in the computations of this paper. The
values of x (¢) and y (¢) fall in the intervals —0".37, 0”'.47 and —0".28, 0".50
respectively. The probable errors given in Table 12 of Yumi, Ishii and Sato
(1968) may be used to deduce the standard errors of x(¢), y () from the
above linear fit. These are 0”.057 and 0'".048 respectively.

Chandler (1891) suggested that the polar motion was made up of two
principal components with periods one year and 428 days = 14 months
respectively. Figure 3 below gives the logarithm of the periodogram of the
data. Two peaks, at frequencies near these periods are apparent. In the next
section we shall set down a differential equation that describes the motion
of the pole when the Earth is subjected to arbitrary excitations. Scientific
workers seem to be agreed that the component of the motion with period
one year results from the excitation function possessing a strong seasonal
component. 428 days corresponds to the Fuler frequency of vibration of
the Earth; however the source of the energy that stimulates the natural
vibration is not agreed upon. We shall consider earthquakes and shifts of
the mass of the atmosphere as possible sources of the energy. This 428 day
component is called the Chandler component. The associated motion of the
Earth is called the Chandler wobble.

In the next section we present a variety of harmonic analyses of the polar
variation including; power spectrum estimation, maximum likelihood fit
of a model of the spectrum, bispectrum estimation and complex demodulation.
In Section 3 we carry out cross-spectrum analysis of the polar motion series
with two earthquake series as well as complex demodulation of the latter.
In Section 4 we repeat this analysis with an atmospheric series.

Munk and MacDonald (1960) is an excellent source of basic material con-
cerning the rotation of the Earth. The proceedings of two symposia on the
topic have appeared. These are Mansinha, Smylie and Beck (1970) and Melchior
and Yumi (1972). These works show that the problem of understanding the
rotation of the Earth is exceedingly rich in geophysical terms. It is also rich
in statistical aspects. We mention the papers; Walker and Young (1955, 1957),
Arato, Kolmogorov and Sinai (1962), Mandlebroit and McCamy (1970).
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2. Analyses of the Polar Motion

The position of the pole of rotation at time ¢ is conveniently described by
the complex number
ZO=XWO+iY(® @1

where X (1), Y (¢) are the displacements from the C.I.O. towards Greenwich
and towards 90° west of Greenwich respectively. Munk and MacDonald
have investigated the dynamics of the spinning Earth. Let & () denote an
excitation function whose mctements, do (1), describe the change in the
Earth’s inertia tensor in the time interval (¢, t + dt) - do (¢) is complex-valued
with Re d® (r) giving the change towards Greenwich and Imde (¢) the
change towards 90° west of Greenwich. [In the next section we shall make
use of a formula for d@ (1) when the change results from a shift of mass in an
earthquake.] From classical mechanics, Munk and MacDonald deduce the
equation of motion .

dZ(t)=aZ(t)dt + do (1) .2)

with @ = —f§ + iy complex-valued and § > 0. If & (r) =0, then a solution
of (2.2) is provided by

Z (1) = e = e~P (cos yt + isin yf) (23)

This motion is one of a damped oscillation of requency y. The greater j, the
greater will be the damping.

Suppose now that @ (1), — o0 < t < <0, is a random process with stationary
increments and power spectrum fpq (4). [See Brillinger (1970) for a discussion
of the spectral analysis of processes with stationary increments. The definitions
given there must be modified trivially to apply to complex-valued processes.]
Then (2.2) will have a solution with stationary increments and power spectrum

Szz D =ik — a|2foo A) = [62 + (2 — )] foo (A) @49

This expression shows that f;, (1) may be expected to inherit the peaks of
Jeo (#) and to possess a new peak, of spread 8, at A = y.

Were Z (1) available for an interval 0 <t < T, we would be led to base a
spectral analysis of it on the Founer-StleltJes transform
cxp {—ide}dZ (1) 2.5)

The polar motion values we use are given at monthly intervals, and so we
are led to take as basic statistic the finite Fourier transform of the first dif-
ferences of Z (1), namely

aP @) =T§:exp (—idd} [(Zt + 1) — Z ()] (2.6)

— o <A < o. The second graph of Figure 1 is a plot of the series
Z(t + 1) — Z (¢) for the time period 1960—1969. The first graph of Figure 2
isaplotof | Z(t + 1) — Z(¢)| for the period 1902—1969.
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In Figure 3 we have plotted logio of the periodogram If2() =
Q=T)1|dP(A)|2for .88 < A/2n < 1.00. I£P(A) may be considered to be a highly
unstable estimate of fz (4). In the case that the process @ (f), — © <t < o0,
is mixing, the periodogram will be asymptotically exponential with mean
S22 (A). The standard deviation of the curve in Figure 3 will be approximately
.43, Peaks are present in this graph at frequencies /27 = 917, .929 cor-
responding to rotations in a negative direction with periods = 12 months,
14.1 months respectively. It has long been understood that the process @ (¢),
— 0 <t < o, would contain a strong component of period 12 months
because of the seasonal variation of the loading of the Earth through, shifts
of the atmosphere, melting of snow, tides and the like. [See Jefferys (1959).]
This would account for the peak in Figure 3 corresponding to a period of
12 months. Before smoothing the periodogram ‘in order to obtain a more
stable estimate of the power spectrum, we therefore removed the seasonal
variation from the series of first differences by subtracting monthly means.
The values subtracted are given in Table 1. They correspond to a figure of
ellipsoidal shape. Figure 4 is logio of the spectral estimate obtained by

Table 1
(units of 0”.001)

Jan. Feb. March Aprii May June July Aug. Sept. Oct. Nov. Dec.

x —41 -17 -2 22 33 43 49 31 -2 -34 -4 -4
y 11 28 43 34 22 7 -12 =35 —40 -—45 -19 5
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smoothing 8 adjacent periodogram ordinates based on the seasonally cor-
rected values. The bandwidth of this estimate is .01 cycles/month, Its
asymptotic standard error is .15.

The smooth curve in Figure 4 corresponds to a fitted model whose construc-
tion we now describe. Suppose that we denote the seasonally corrected version
of Z (1), ® (1) by Z' (1), &' (r) respectively. The second graph of Figure 2 is
a plot of | Z'(t + 1) — 2Z’ (¢)|, the amplitude of the seasonally adjusted
first differences. It is seen to peak around the years 1910 and 1950. The model
(2.2) retains the form

dZ'()=a 2'(t) + do’' (1) .7

We may solve the equation (2.7) and obtain
:
Z' (1) = [ et do’ (u) (2.8)

Noting the assumed removal of seasonal components from @ (7), we now
assume that &’ (f) is a noise process with stationary orthogonal increments
and var {dtﬁ' (1)} = o2 [Were we to assume it Gaussian as well, then (2.7)
would be the model of Arato et al. (1962).] Consider the series of increments

AZ()=Z @+ 1)—Z' () 2.9)




418 D. R. Brillinger
[T BN P} ﬁ""‘
3.9%
2.08
.0
o' .............. t2e B e h‘l‘:nc’ . s iee
t=0,+1,.... We see from the representation (2.8) that this series has
autocovariance function
Caz,,az (W) = a2 exp {—Blul} exp {iy u}[28 (2.10)
u=0,+1,...and hence power spectrum
fhz’,az A=
o2 1—exp{—28} 1

= 2n 2B
for — 0 <2 < 0.

1 — 2exp {—pB} cos (A — ¥) + exp {—25}

We have mentioned previously that the series Z (¢) is not observed directly,
but is measured subject to error. Let

7O=2Z"O+¢=0) @11

denote the observed series, corrected for seasonal effects, where we assume
that € (1), t =0, 4+ 1,... is a stationary noise series with vare(f) = y2. It
follows that the power spectrum of the first differences of 2’ () will be given by

Jaz, ar Q) = faz,az @)+ %’;2;' |1 —eH2 (2.12)

/
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This last constitutes our proposed model for the spectrum of Figure 4. It is
seen to involve four unknown parameters; ¥ the frequency of the Chandler
wobble, f the damping constant, ¢ the standard deviation of the seasonally
corrected excitation function and y the standard deviation of the measurement
€eITOrS.

We fit the model by the method of maximum likelihood. Set

- w1 27ns
fi= IS’?‘.A:‘ (T),f; =fA:‘,A:‘( T )

for s=0,...,7— 1. Under a variety of conditions, the variates f,/f,,
s=0,...,T— 1 are approximately independent standard exponentials. The
likelihood function of the data therefore has the approximate form

L=gﬁwmy—ﬂm}

Let 8, 0’ denote any two of the parameters, then

alog L f—1f) 2f,

56— 2 2 98 @13
odlogL ologL| o 0J; af,
[ 20 ae']—zf'_a?ae'

The maximum likelihood equations are obtained by setting (2.13) equal
to O for the various parameters. We solve these equations by the method
of scoring [see Rao (1965), p. 302]. This procedure has the advantage of
producing estimates of the asymptotic standard errors incidentally. We began
the recursion with estimates determined by the method of moments. The
procedure stabilised after two rounds. We obtained the following results.

Table 2
parameter y2n B ¢ v
estimate 9294 .0050 7.1 319

s. €. .0026 .0023 33 62

The indicated results for y lead to a 95 per cent confidence interval for the
Chandler period to be from 13.2 months to 15.3 months. A 95 per cent con-
fidence interval for g is from .0005 month-! to .0095 month-1, It has not been
determined accurately at all. The estimate of ¢ is important in searching for
the source of the excitation of the whobble. It suggests that the non-seasonal
fluctuations of the excitation have standard deviation of order 07.007 for
monthly values. It is interesting to compare the magnitude of the standard
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deviation of the observational errors as estimated here with the values 0".057,

0''.048 mentioned in the introduction. In the present notation they correspond _ n|NmMater
to = 0.075 a value larger than the 0.032 found here. In either case the <
observational errors are large compared to the magnitude of the phenomenon g| tman—=
under study.

In Figure 4 we have plotted expression (2.12) using the parameter values wl mnnama:
of Table 2. The fit seems consistent with the standard error .15 of the estimate ! =| 70T
except for the peak just to the left of the Chandler peak. Surprisingly, this ol tmame—
peak is centered at a frequency, (.846) (27) that is near the sum of the seasonal =2
and Chandler frequencies. This occurrence led us to suspect the presence <O —
of a non-linear phenomenon. We therefore estimated the modulus of the R/
bicoherency .

IfAzAz.dz(zh ;'2)1 214 R anms
VFon.as ) faz, 25 R2) Faz, s (B + 42) @14 ol maaene

(See the Appendix for the definition of the third-order spectrum appearing
here.) Table 3 below presents an estimate for frequencies in the immediate 2 mYane=
neighborhood of the seasonal, the Chandler and the seasonal plus the Chandler.

The bandwidth of the estimate is .01. In the null case the square of the estimate n) /L nmn
is distributed asymptotically as an exponential with mean T/2zN, if N denotes )

the number of third-order periodograms averaged in forming the estimate. g|amans
[The sampling properties of such estimates are discussed in Brillinger and <«

Rosenblatt (1967) and Huber et al. (1970).] The 99 per cent point for the values ! 2 YRR A
of Table 3 is 2.52, corresponding to N = 95. There is a clear suggestion that e

the values of Table 3 are larger than would be expected in the null case. No g|nmaman
dramatic peaks are present in the table however. Our conclusion is that the

excitation process or the measurement error process, is not quite normal.
Table 4 presents an estimate of (2.14) covering the whole frequency domain.
Here the bandwidth adopted was .05 and N = 1950. The 99 per cent point
of the null distribution is now .56. Again there are no dramatic peaks in the
function, rather the whole collection of values is larger than would be expected
in the null case. It appears that the data are somewhat non-normal.

k)]
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Table 3
frequency/2n ! meoaa
g7 88 89 S0 91 92 93 94 95 96 ( = =
87 25 1 2 A 9 12 16 16 9 15 § o =nn
88 1 11 3 21 A 9 13 9 2 g
89 23 7 s 13 18 7 9 K} 2
90 11 8 4 26 11 22 12 ;!_ gl me
o1 s 14 13 9 22 s :
92 29 25 27 1 19 o
93 8 2 LS 3 g2
94 13 6 5 :
95 25 23
96 N g 8 _c': ngy




D. R. Brillinger Investigation of the Chandler Wobble and Two Proposed Excitation Processes 421

ated here with the values 0”.057,

present notation they correspond © e L L L L L L L LR R LA
2 found here. In either case the :
¢ magnitude of the phenomenon S N L L L L LR ALy
».12) using the parameter values | menadnateananmnnen

g| MannAnagTanaamnnen

tandard error .15 of the estimate !
ihgndler peak. Surprisingly, this <mey= v__ L
at is near the sum of the seasonal

Jed us to suspect the presence

.80

- estimated the modulus of the L R A
)I [— 'O.N.N."?"‘."'!".'.‘:'.”.“.—.N.":
) = .
_— (2.14)
(1 + A2) w|maaememonaannT
-]
third-order spectrum appearing
or frequencies in the immediate g|mEnnToaaaeans

\d the seasonal plus the Chandler.

1l case the square of the estimate n|Rtanmnaneaan
1 with mean T/2=N, if N denotes ’

eraged in forming the estimate. g|anmeanamnm®
are discussed in Brillinger and : -

1¢ 99 per cent point for the values l 2 Llnanamanme=
There is a clear suggestion that | e T

be expected in the null case. No g|nmnmnaae
ever. Our conclusion is that the .

r process, is not quite normal.
ng the whole frequency domain.
"= 1950. The 99 per cent point
sre are no dramatic peaks in the
is larger than would be expected
somewhat non-normal.

........

35

30
3
3
4
3
3
3
3

......

.25

15
3
3
2
3

92 93 94 95 96 i ®
o~
2 16 16 9 15 § o|®man
4 9 13 9 2 =
3 18 a1 9 5 § N
4 26 11 22 12 wine
14 13 9 22 s =<
29 25 27 Kl 1.9 ‘
8 2 15 3 g%
1.3 6 K] :
25 23
7 2LoNRRRe2RABERRERRY

...................

Ve \;M:Ja.‘t:;ufur\;?J,._;JJ;{.J;;):{J,;-JL—J: [ st S 5~ LE WD D M B J':j

- O - .

T




422 D. R. Briidinger

In order to be able to better understand the behavior of the polar motion
and in order to get an idea of the character of the excitation process, @ (1),
we carried out a complex demodulation of the series Az (f) at several fre-
quencies. [This procedure is described for real-valued series in Tukey (1961).]
Specifically we formed the series

1 i
s (D)= an_ﬁsbdz(u) exp {—iu 4} 52.15)

t=0,1,..., T — 1 for a variety of 2 and L = 48. We note that | 24, (1, 4) 12
t=0,...,7T—1, is a running periodogram for the data at frequency A.
Its average across the whole time domain would provide an alternate estimate
of f4;, 4; (). Variations in it are indicative of temporal variations in the power
at frequency A. The time path of arg g4, (t, ) gives information concerning
the value of the dominant frequency component in the neighborhood of 2.
If its path is a straight line with slope » for some time period, then the com-
ponent with frequency 4 + ¥ is dominant in that time period.

Figure 5 is a plot of |24 (t, N2, arg Zar (L, 2), 1= 0,...,T—1 for
A2 = 9294, the Chandler frequency. The Chandler component is seen
to be strong in the period 1910—1914 and very strong in the period 1948 —1955.

.......................................................................................................

["*"»wwb*—#uuwua;JA:_J:'J?J.:@@,;J:d«; K B2

L AE I T AINT T 'J

Investigation of the Chandler Wobble and

....................................

...................................

The second graph suggests that
period 1925—1940 when the pow:
and argt,, (1, 4) for 27 = 91
the seasonal component is seen t
period. Figure 7 is especially intere
for A/2n = .8460, corresponding
The component at this frequency
period 1905—1914. 1 have no ¢
due to a fault in the data processi:
of the equations of motion leadir
lead to the appearance of harmo
of a seasonal plus Chandler freqt

We now turn to the problem
the excitation process @ (). An
parameter values of Table 2), a
process Z' (1) dominates only fo'
of the Chandler frequency. It fol

Bar A =12
=

/




“

D. R. Bridinger

nd the behavior of the polar motion
icter of the excitation process, @ (2),
1 of the series Az (¢) at several fre-
r real-valued series in Tukey (1961).]

X Az(u)exp {—iui) .15
-#| <L
1L = 48. We note that | ¢, (¢, A) |2
gram for the data at frequency 4.
would provide an alternate estimate
of temporal variations in the power
- (t, 2) gives information concerning
nponent in the neighborhood of 2.
or some time period, then the com-
- in that time period.

18 L4y (t,A), t=0,..., T—1 for
The Chandler component is seen
‘ery strong in the period 1948 — 1955,

...................................................

Investigation of the Chandler Wobble and Two Proposed Excitation Processes 423

Bt e . i i ster Figurs§

etate - -
...........................

2 =3

. N . .
S 1500 [0 atoe sy [T
L4 ¥ AL A G LR FI R YT ) WETICAL INTLRVAL » L3146

The second graph suggests that the Chandler frequency decreased in the
period 1925—1940 when the power was low. Figure 6 is a plot of | z4,(1,4)12
and argg,, (1, 4) for 4/2n = 9167, the annual component. The power of
the seasonal component is seen to be reasonably stationary across the whole
period. Figure 7 is especially interesting. It is a plot of | Sar (1,212,218 24, (1, 4)
for /27 = .8460, corresponding to the Chandler frequency plus the seasonal.
The component at this frequency is seen to be present effectively only for the
period 1905—1914. 1 have no explanation for this behavior. Perhaps it is
due to a fault in the data processing for the early years. A perturbation analysis
of the equations of motion leading to (2.2) suggests that non-linearities would
lead to the appearance of harmonics of the seasonal, but not the appearance
of a seasonal plus Chandler frequency component.

We now turn to the problem of discerning, if possible, the character of
the excitation process @ (f). An examination of expression (2.12), (with the
parameter values of Table 2), as plotted in Figure 4 suggests that the true
process Z’ () dominates only for frequencies in the immediate neighborhood
of the Chandler frequency. It follows that we will have

GAJ' (t9 2) = gdz' (’s J')
= (A — a)y1 84 (1,2) 2.16)
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3. Excitation by Earthquakes

| Earthquakes were proposed at ¢
wobble [see Cecchini (1928)]. A
possibility have been carried out re
(1971, 1972) for example]. We be;
series of monthly earthquake energ
given in Dubourdieu (1972), whict
The series is one of earthquake enc
quakes of magnitude > 7.0 throug
Figure 8 is a plot of the square o
We notice that the energy released
Figure 9 gives | { (1, 4)12, arg £ (
A corresponding to the Chandler f
frequency is seen to be greatest
A comparison of this plot with tt
two do not match too well with 1.
is a graph of logjo of the estimat
proximate standard error of this es
spectrum is not far from constant.
Clearly the effect any earthquak:
on the location of the earthquake
its movement. The above analysis
(1971, 1972) has developed expres

for, and only for, /27 = .9294. Figure 5 is therefore especially important
in the search for the process, @ (), exciting the Chandler wobble. The
instantaneous power of this process, at frequency .9294, must have behaved
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in the manner of the top graph of Figure 5, namely been high for the period
1910—1914 and very high for the period 1948—1955. 1 do not know of a :
process that has behaved in this manner. 1 would appreciate suggestions : lj\!\
that anyone has. In the next sections I examine two processes that have been - U &
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3. Excitation by Earthquakes

Earthquakes were proposed at an early time as a cause of the Chandler
wobble [see Cecchini (1928)]. A number of serious investigations of this
possibility have been carried out recently [see Mansinha et al. (1970), Dahlen
(1971, 1972) for example]. We begin this section with an examination of a
series of monthly earthquake energy. We computed such a series from values
given in Dubourdieu (1972), which were based on the data in Duda (1965).
The series is one of earthquake energy (in ergs) released per month by earth-
quakes of magnitude > 7.0 throughout the world in the period 1904—1965.
Figure 8 is a plot of the square of an 8 year running average of this series.
We notice that the energy released was greatest in the period 1904—1910.

Figure 9 gives | L (t,4)[2, arg { (£, 4),1=0, ..., T — 1 for this series with
4 corresponding to the Chandler frequency. The instantaneous power at this
frequency is seen to be greatest for the periods 1914—1925, 1946—1954.
A comparison of this plot with the top graph of Figure 5 suggests that the
two do not match too well with respect to either shape or timing. Figure 10
is a graph of log;o of the estimated power spectrum of this series. The ap-
proximate standard error of this estimate is .09, suggesting that the population
spectrum is not far from constant. The bandwidth is .05.

Clearly the effect any earthquake has on the motion of the pole will depend
on the location of the earthquake within the Earth and on the direction of
its movement. The above analysis takes no note of this dependence. Dahlen
(1971, 1972) has developed expressions for the change in the Earth’s inertia
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426 D. R. Brillinger
tensor as a function of an earthquake’s latitude, longitude, depth, strike,
dip, slip and magnitude. Let 6;denote all of these parameters for the j-th earth-
quake. Let 7, denote the time of occurrence of the j-th earthquake. Dahlen
(1972) has derived an expression for C (0), the change in the Earth’s inertia
tensor for an earthquake with parameter 6. The excitation function @' ()
may now be written '

o —-@@H= <X C(6) 3.1
s <l’] <!
— figare 10
el
] N M
-\ A \f
Y L W Yh
' LW \w/
\ \/ vy
\
- \VAJ
The model (2.11) therefore takes the form
TM=Z'@O)+e@ (3.2)
with
dZ'(t) =a Z' (1) + do' (1) 3.3)

and de’ (f) given. This is a model of a linear causal relationship involving
two observed processes, z’ (f), @' (7). If we assume that these processes have
stationary increments, then we can carry out a frequency domain analysis
of the processes in the manner of Section 4 of Brillinger (1970).

A difficulty presents itself at the beginning of the analysis. Not all of the
components of 0 are available for most of the earthquakes. After reading
Dahlen (1971) and discussions with Professor B. A. Bolt, Professor T. V.
McEvilly and W. Peppin, I have approached this difficulty as follows. Earth-
quakes tend to occur in belts along the edges of great plates on the Earth’s
surface [see Calder (1972)]. I constructed 11 strips at plate to plate boundaries
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within which the majority of the events occurred (166 out of 187) using the
map of Chase (1972). (I took as basic data the earthquakes of magnitude
> 7.9 occurring in the period 1900—1971.) For the unknown components
of 6, I then took the parameters suggested by the direction and overall motion
of the plates. I read average strike angles from the map of Chase (1972).
I used the dip angles of Davies and Brune (1971). 1 assigned slip angles by
assuming that the oceanic plates were plunging at a 45° angle under the
continental plates at the oceanic transform faults. The remaining 19 events
bad unknown parameters assigned at random.
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Figure 11 is a plot of the square of an 8 year running average of the energy
released by earthquakes of magnitude > 7.9 for the period 1900—1971.
Notice the large value of this function for the period 1904—1911. Figure 12
is an estimate of the logyo spectrum of the series of times of these events.
The horizontal line is an estimate of the asymptote of the curve. The ap-
proximate standard error of the estimate is .072. The graph is suggestive
that the corresponding population curve is near constant. (It would be constant
for a stationary Poisson process.)

Figure 13 is a plot of the complex demodulate at the Chandler frequency
of the process @' (7). Because of the point process with ancillary variate
character of @' (f) we compute the demodulate differently from (2.15). We
compute instead

X C(6)exp{—iit} X))

7 leL

1

Figure 13 has no semblance with Figure 5, as it should were the earthquakes
exciting the pole. Figure 14 is an estimate of the spectrum of the process @' (7).
The bandwidth is .05 and approximate standard error .086. The Figure sug-
gests that the population spectrum is near constant. The average level suggests
a monthly excitation standard error of .74, far below the value 7.1 found
from the polar coordinate data in Section 2. Figure 15 gives an estimate of
the coherence between z’ (7) and @’ (f) computed in the manner of Brillinger
(1970). Notice the low level of the curve. The 95 per cent point of the approx-
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imate null distribution is .069. We have no evidence for a linear time invariant : gives an estimate of the coherence bet

connection between the process z’ (f) and the computed series of earthquake corrected process ¥’ (f). The bandy

effect. Perhaps the most telling thing against earthquakes being a principal of the null distribution is .095. W.

cause of the Chandler wobble is an elementary comparison of Figures 11 j exists a linear time invariant relatio

and 2. Earthquake energy was high at the beginning of this century and has pheric series at any but the seasonal

been trailing off since. The wobble amplitude has not been trailing off, in fact

it reached its highest level around 1950. . : sy a1 srranc et i

4. Excitation by the Atmosphere - oL
In 1901 Spitaler suggested that the seasonal component of polar motion : /‘M

was due to changes in the inertia tensor of the atmosphere. Hassan (1960) aaerea, /

estimated the atmospheric product of inertia, v (), on a monthly basis for , :

the period 1900—1950. Munk and Hassan (1961) carried out a cross-spectral ,/

analysis of this data with the polar motion. We carry out a further analysis saprias,

here. Figure 16 gives log;o of the estimated power spectrum of this atmospheric e aln

data. The bandwidth of the estimate is .02. The approximate standard error =S

of the curve is .13. The peaks appearing occur at the seasonal frequency .

and its harmonics. Figure 17 gives | £, (¢, 4) |2, arg &, (1, ) for A at the seasonal
frequency and L = 48. The instantaneous power is quite level after 1913.

The phase is near constant also. The coherence between the series Az (¢) and LI
the series y (¢) is .88 at the seasonal frequency corresponding to polar motion N
in a negative direction. Figure 18 gives |, (1, 4)12, arg gy (¢, A) for 4 the :
Chandler frequency. There is clearly not much power at this frequency, nor s
does its variation appear the same as that of the Chandler wobble. Figure 19 wen wh w
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gives an estimate of the coherence between the process 4z’ (f) and the seasonally
corrected process ¢’ (f). The bandwidth here is .05. The 95 per cent point
of the null distribution is .095. We have no evidence to suggest that there
exists a linear time invariant relation between the polar series and the atmos-
pheric series at any but the seasonal frequency.
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Appendix on Complex-Valued Processes

The simplest approach to the definition of the spectral parameters of a complex-valued
process is through the spectral representation. Let W(r), — o < t < o, be a complex-
valued process with stationary increments and spectral representation

el — 1
W) =] —5—dzp®)

Then the spectrum fyy g g pAAt, ..., A4, ,), where there are k W’s before the
comma and / after, is given by
cum {dZy, (1), .. .,dZp (4, dZp (1 1), - - -, dZ 3 g s D} =
S+ .o+ A — Ay —... ). wow.. wh e dp—D) B A

In particular, the power spectrum of a zero mean series is given by
EdZy (M) dZw () = 6 (M — &) f, w () dAg Ay
Sinai (1963) discusses some aspects of the spectral theory of complex-valued processes,
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Summary

The axis of rotation of the Earth does not remain fixed relative to the body of the Earth.
Instead it has a motion composed of a movement with period 12 months and another move-
ment with period 14.2 months (the Chandler wobbie). The 12 month component appears
to result from annual fluctuations in the loading of the Earth. The period 14.2 months cor-
responds to the fundamental frequency of vibration of the Earth. Scientific workers are not
agreed upon the cause of the vibration however.

In this paper we use harmonic analysis to examine the possibility that either major carth-
quakes or annual fiuctuations of the atmosphere are the cause. Our computations sﬁgéat
that neither of these phenomena provides the source of the energy for the vibration.

Résumé

L’axe de rotation de la Terre ne reste pas fixe par rapport au globe terrestre. Son mouve-
ment se décompose en deux composants: un mouvement de periode 12 mois et un autre
mouvement de periode 14,2 mois (le mouvement de Chandler). La premiére composante
provient des fluctuations annuelles dans la repatition des masses de la Terre. La deuxi¢me
composante correspond 2 Ja fréquence fondamentale de vibration de 1a Terre. Les chercheurs
scientifiques ne sont pas d'accord sur ]e cause de la vibration a la fréquence fondamentale.

Dans cet article, nous utilisons I’analyse harmoniques pour examiner la possibilité que
cette vibration proviendre de grands tremblements de terre ou de fluctuations annuelles
de I'atmosphere. Nos calculs indiquent qu’auncune de ces séries n’est la source d’energie
de 1a vibration.

Discussion

DISCU

Discussant: P. BLOOMFEELD, USA
Paper under discussion: Brillinger, An empir

1t is always a pleasure to se¢ new work by L
1t is especially interesting to see an example
tionary increments, and its use in detecting line
a technique which will allow the over-workec
many cases.

Two questions come to mind concerning
is about the representation of data as a comr
analysis of the data, such as the estimatior
Furthermore, if these data do indeed follow &
valued-series is entirely appropriate. Howev
motion that there is probably considerable !
that an analysis based on Hermitian quadrat
introduced by the measurement €rror. For
were correlated, this would not be detected.
effects are, in fact, present in the data.

The second point concerns the use of seco
methods are most easily understood when ap
they will be appropriate when used on a poil
tities, no one of which dominates the rest.
quakes on the Chandler wobble do, in fact
major earthquakes, such as the 1960 in Chile
information might be obtained by exarmninir
However, as Dahlen (1972) has pointed ot
negative, or at least to show discrepancies b

Discussant: A. M. WALKER, UK
Paper under discussion: Brillinger, An Emp
1 much enjoyed reading this very impress!
in the analysis which puzzied me, and I shol
The first relates to the model defined by e«
with stationary orthogonal increments. The
first order autoregressive continuous time
Walker and Young in their 1955 and 1957
the autocovariance function of Z’ (r) rathert
function of 42’ (f) led to the result

02 .
Te—#l"l iy {

2
-g-ﬁ— (e~ + (e*

Morcover, the discrete time process {Z'(.
it would be natural to fit the model to va
1 must somehow have misunderstood Dr. B
for some explanation.

The second point concerns the equatior
citation function @ (¢) is such that its inc!




BULLETIN OF THE INTERNATIONAL STATISTICAL INSTITUTE
BULLETIN DE L’INSTITUT INTERNATIONAL DE STATISTIQUE

PROCEEDINGS

i OF THE 39T SESSION

ACTES

DE LA 39¢ SESSION

4 VOLUMES : 4 TOMES

1973

VIENNA : VIENNE

INVITED PAPERS
CONTRIBUTIONS DEMANDEES

VOLUME XLV..... BOOK 3 /| TOME XLV..... 3* LIVRAISON

x®

ke e - .e P OGE®




