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1. Let Xi, • • • , Xn be independent observations from the uniform 
distribution on [0, l ] . Let Fn(x)~the proportion of the Xj^x. We 
will prove 

THEOREM. There is a random function {Gn(x); Orgarrgl}, with the 
same distribution as {Fn(x) ; 0 ^ x g 1} for each n, and there is a Brown-
ian motion W, such that for the Brownian B(x) =n~1,2W(nx) 

sup | nli*[Gn(x) - x \ - [B(x) - xB(l)] \ 

(1) ° M l 

- Ofri-^Oog w)1/2flog log n)l<*] 
almost surely as n—*<*>. 

This theorem is of use in the investigation of the asymptotic be­
havior of functionals of {Fn(x); 0 ^ # ^ l } , especially functionals 
dependent on ». 

2. We construct Gn(x) as follows; let Yu F2, • • • be independent 
exponential variables with mean 1. Let S(k) = Fi + • • • +F* t k 
= 1, 2, • • • and let 5(0) =0. Set 

Gn(x) « k/n HS(k)/S(n + 1) ^ x < S(k + 1)/S(n + 1). 

This {Gn(x) ; 0 ̂ x ^ 1} has the same distribution as {Fn(x) ; 0 £x S1} 
for each n. We now record a series of lemmas. 

LEMMA 1. There is a Brownian motion W such that 

(2) sup | * - S(k) - W(k) | = 0[nl»Qog w)1/2(loglogn)1'*] 

almost surely as n—• <». 

PROOF. This result is deducible from Theorem 1.5 of Strassen [8]. 

LEMMA 2. Almost surely as n—• <» 

(3) sup | S(nGn(x)) - xS(n + 1) | « Off*1'*]. 
O S i g l 
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PROOF. 

| S(nGn(x)) - xS(n + 1) | 

- | S(k) - xS(n + 1) | iïS(k) £ xS(n + 1) < S(k + 1) 

S S(k + 1) - S(k) if S(k) ^ xS(n + 1) < J(* + 1). 

^ max F* 

and one sees, by elementary calculations, that this last = 0[w1/4] 
almost surely as n—* oo. 

LEMMA 3. Almost surely as n—*™ 

sup | nGn(x) - S(nGn(x)) - W(f*G*(*)) | 

(4) 

= 0[y'4(log w)1/2(log log rc)1/4]. 

PROOF. 

| nGn(x) - 5(nG.(*)) - W(nGn(x)) \ 
= | k - S(k) - W(i) | if S(k) è xS(n + 1) < 5(* + 1) 
g sup | £ - 5(4) - W(4) | 

and (4) follows from (2). 

LEMMA 4. Almost surely as n—><x> 

(5) sup | G » ( * ) - * | = OlW-^Cloglog»)1'2]. 

PROOF. See Theorem 2* in Chung [3]. 
We next define the Brownian motion B by B(x) = n~ll2W(nx) and 

then have 

LEMMA 5. Almost surely as n—> «> 

(6) sup | B(Gn(x)) - B(x) | = 0[w-1/4(log n)li\\og log n)1'*]. 

PROOF. (6) follows from (5) and Levy's Holder condition for 
Brownian motion (see I to and McKean [4]) extended to apply to the 
interval [0, n]. 

PROOF OF THEOREM. Up to an error term 

0[ir-l'4(log ftf^flog log rc)1'4], 

that is uniform in x, almost surely as n—> *> 
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nll2Gn(x) = trli*S(nGn(%)) + n^f2W(nGn(x)) from (4), 

= rrli*xS(n + 1) + B(Gn(x)) from (3), 

= trl'*x[(n + 1) - W(n + 1)] + B(x) from (2) and (6), 

= n^x - s£ ( l ) + B(x), 

giving (1). 

3. We may use the probability integral transformation to deduce a 
representation of the sample distribution function of observations 
from any continuous distribution. The results of Rosenkrantz [7] 
may be adapted to obtain rates of convergence in distribution for 
certain functionals of Fn(x). The announcement of Kiefer [5] suggests 
that the error term in (1) may be best possible. 

Bickel [ l ] and Billingsley [2] consider the weak convergence of the 
process nlf2[Fn(x)-x] to W(x)-xW(l). Pyke and Root [6] let the 
distribution of Y depend on n and then prove 

sup I n^iGnix) - x] - [W(x) - xW(l)] | = o(l) 

almost surely as n-+ °o. I would like to thank Professor Pyke for the 
remark that B, as constructed above, depends on n. 
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