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Learning a Potential Function From a Trajectory

David R. Brillinger

Abstract—This letter concerns the use of stochastic gradient sys-
tems in the modeling of the paths of moving particles and the con-
sequent estimation of a potential function. The work proceeds by
setting down a parametric or nonparametric model for the poten-
tial function. The method is simple, direct, and flexible, being based
on a linear model and the least squares. Explanatories, attractors,
and repellors may be included directly. The large sample distri-
bution of the estimated potential function is provided, under spe-
cific assumptions. There are direct extensions to updating, sliding
window, adaptive, robust, and real-time variants. An example an-
alyzing the path of an elk is presented.

Index Terms—Mobility model, monitoring, potential function,
stochastic differential equation, stochastic gradient system.

I. INTRODUCTION

OCATION signals of moving objects, obtained for ex-
L ample by GPS or LORAN, have become common in
practice. Typically, one has scattered positions along trajecto-
ries of the objects. The questions of how to summarize, how
to predict, and how to simulate make such movements arise.
This happens particularly when a number of paths are involved
or the path of an object is a tangle. See Fig. 1, which shows
1571 locations over a period of a month along the track of an
elk in Starkey Project in Oregon. (Reference [1] provides the
project’s website address.)

This letter provides a unified approach for dealing with move-
ment modeling and associated data. The fields in which move-
ment data have arisen include animal tracking [2], [3] and soccer
[4]. There are papers developing a statistical potential approach
to tracks. These include [2], [3], and references therein. This
letter provides some formal background missing in those pa-
pers, discussion, and an example.

Let r denote a point in RP. (In the mathematical expressions
below, all the vectors appearing are column vectors and set in
boldface.) A potential function, V'(r), is a real-valued function
of location. Its use can lead to simpler representations of motion
than those based on modeling velocities directly. One can note
that in the overdamped case, the equation of motion of a particle
in the potential field, V (r), is

dr(t) = —VV(r(t))dt )

having assumed V (r) differentiable and with V denoting the
gradient. [The negative sign in (1) is traditional.] The entity

Manuscript received December 12, 2006; revised April 2, 2007. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Dr. Brian M. Sadler.

The author is with the Statistics Department, University of California
Berkeley, Berkeley, CA 94720 USA (e-mail: brill@stat.berkeley.edu).

Digital Object Identifier 10.1109/LSP.2007.900032

13

12 1

11 1

10

Fig. 1. Path of an elk around the NE pasture of the Starkey Experimental Forest
in Oregon. Locations were estimated every two hours and are joined by consec-
utive straight lines.

dr(t)/dt is called a vector field. When p = 2, the level surfaces
of the potential function are conveniently displayed in contour
form and its gradient as arrows on a grid (see Figs. 2 and 3).

The estimation method to be presented can be motivated by
stochastic gradient systems, that is, systems that can be written
in the time invariant case as

dr(t) = =VV(r(t))dt + o(r(t))dB(t) 2)

for some differentiable V" with B(#) a p-dimensional Brownian
motion and o a p by p matrix. Expression (2) is a particular case
of the stochastic differential equation (SDE)

dr(t) = p(r(t))dt + o(r(t))dB(t). 3)

What distinguishes the traditional SDE work from the present
study is that the drift term p here has the special form —VV for
some real-valued function V. It will be seen that the modeling
situation is simplified when such a V' is assumed to exist.

II. PROBLEM AND APPROACH

The basic problem assumes the model (2) and seeks to learn
V(r) givendata (r(¢;),2 = 1,- - -, n). These data will be viewed
as locations at successive times, {¢; }, of an object moving along
a trajectory of the process (2). One seeks both vector field and
potential function estimates.
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Fig. 2. Estimated vector field for the path of Fig. 1.

Supposing that VV(r) is a smooth function of r, and that
the observation times are close together, one can set down the
following approximation to (2):

r(tiy1) —r(ti) = =VV(r(t:))(tip1 — ti)
+(tig1 —t) %0 Ziy1 )

for: =1,2,3,---,n,witho apby p covariance matrix and with
the Z; independent p-dimensional variates having mean 0 and
covariance matrix I. The reason for the multiplier (#; 1 —t;)*/?
is that for real-valued Brownian, Var(dB(t)) = dt.

The approximation

(r(tiv1) —r(t:))/(tiv1 — i)
= u(r(t:)) +0Zit1 /(tigr —t:)'* (5

for the SDE (3) was employed in [2] and [3] for elk and move-
ment and is employed in the example of this letter. In [2], an
early attempt was made at estimating a potential function by
numerical integration and simulation. The question was asked
whether the vector field, p, had the form —VV (r). This may
be studied by comparing an unrestricted estimate of u with one
assuming the existence of a potential function. The approach of
papers [2] and [3] was informal.

III. POTENTIAL FUNCTIONS

A basic issue is how to describe mathematically a potential
function, V(r),r in RP. Suppose one exists. For introductory
purposes in the development, suppose V' is linear in a vector-
valued parameter 3. Write V (r) = ¢(r)7 3 with ¢ an L by 1
vector of functions of known form and 8 an L by 1 unknown
parameter. Examples of such a V' follow. The gradient of V is
the p by 1 vector V()T B.

Example 1: Polynomial expansion.

Consider V(r) = Y B,,r™, where m = (ma,---,m,) and
™ = x{my ...z my,, with 37 over my,---,m, > 0 and 1
< my + cldots +my, < M.
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Fig. 3. Estimated potential for the path of Fig. 1. The lighter shading corre-
sponds to smaller values.

One could employ a trigonometric polynomial, a spline func-
tion, or a wavelet expansion here. Many functions, V, can be
well approximated by taking M large. In practice, one might
employ M,, with M,, increasing with n.

Example 2: Node based.

Consider nodal points u;,! = 1,- -+, L'in R? and set V(r) =
> B K (r — u;) for some real-valued differentiable kernel K.
As a specific example of K, one has the radial basis thin plate
splines [5, pp. 30-34]

K(r) = |r|**Plog|r|for p even, = |r|*?Pfor podd.  (6)

Here ¢ denotes the order of differentiability of K,2q — p > 0,
and |r| = (rTr)'/2. An expression like (6) leads to a smooth
representation for V.

Example 3: Attraction and repulsion.

Consider a region A and a point r outside A. Potential func-
tions can be set down leading to attraction or repulsion from
A. Specifically, if one lets d 4(r) denote the minimum distance
from the point r outside A to A and sets V' (r) = 3d4(r)*, then
for a > 0, one has attraction to A and repulsion if & < 0. One
can reverse attraction and repulsion by changing the sign of d 4.
It can be convenient to use V(1) = (31 log da (1) + Ba2d a(r) for
similar purposes.

The functional forms of Examples 1-3 may be added together
to provide other forms.

Reference [6] considers the observed trajectory of a monk
seal near the island of Molokai employing the mixed function

V(r) = vz + 2y + 711127 + yi2my + y22y” + C/d(z,y) (7)
where 7 = (z,)7 is in R? and represents the location of the
animal on the ocean surface. The value d(z,y) is the distance
from the location 7 to the nearest point on the island. The v’s
and C' are unknown parameters to be estimated. The final term
in (7) keeps the seal off of the island. A different monk seal is
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studied in [7], and a different, now time dependent, potential
function is employed

V(r,t) = alogd(r,t) + Bd(r,t)

with d(r, t) being the animal’s distance from an attractor at time
t. The attractor switched depending on whether the animal was
on an outbound or an inbound journey.

Reference [4] studies the motion of a soccer ball during a very
exciting World Cup moment. The potential function used is

alogd(r) + Bd(r) + iz + y2y + Y1122 + Y122y + Y2042

with d(r) the shortest distance to the goalmouth from
r = (z,y)T. The first two terms lead to attraction to the
goalmouth and the remaining to general motion on the field.

Potential function and vector field estimates are provided in
each of the papers just referenced. The function V (r) is linear in
the parameter, and least squares is employed as the estimation
procedure in each case. The function could be nonlinear, and
then, nonlinear least squares could be employed. Reference [8]
develops asymptotic results pertinent to the nonlinear case. Al-
ternately, the {Z;} in (5) could be non-Gaussian and maximum
likelihood estimation employed.

IV. ESTIMATION

The representation (4) with 7 in R? and VV (r) = Vé(r:)T 8
will be employed. The values r(#;) will be written r;. Consider
the p by 1 vector (r;41 —7;)/(tiz1 — t;)*/?. Following expres-
sion (5), the model has the form (r; 1, — 73)/(tiy1 — t;)"/? =
—Vo(r) TB(tis1 — t:)'/? + 0Z;41

i =1,---,n — 1 involving the L by 1 vector 3, the L by p
matrix V(r;), the p by p matrix o, and the p by 1 vector Z, 4.
Suppose o = oI with o positive and I the p by p identity matrix.
Stack the n—1 values (r;41—1;)/(tip1—t)Y2,i=1,-++,n—1
vertically to form the (n — 1)p by 1 array Y',,. Stack the n — 1
matrices —V(r;) T (tis1 — t;)*/? to form the (n — 1)p by L
matrix X,,. Stack the n — 1 values 0 Z;; to form €,,. Then one
has the regression model

Y,=X,8+¢, ®)

with the difference from ordinary regression that Y, and X,
are statistically dependent. Using a generalized inverse, if
necessary, one can compute an ordinary least-squares estimate
b= (XTX,) 'XTY, of B, and then, if p(r)T B is estimable,
©(r)Tb is a reasonable estimate of V (r).

Supposing the individual entries of €,, to be independent, zero
mean, variance o variates, asymptotic properties of ¢(r)7b
may be obtained from [9, Theorem 3]. The theorem is given in
the Appendix.

Let y; denote the jthrow of Y,,. Let :ch denote the jth row of
X, . One can compute s2 = ((n—1)p)~* Y (y; —z7b)" (y; —
z;‘»rb) as an estimate of o2 and, for example, set down a confi-
dence interval for ¢(r)T B using the results of [9]. Specifically,

provided lim log Apax (X :X n)/n — 0 almost surely, one has
sn, — o and by a Slutsky Theorem

(p(r) (X5 X0) " (r)) " 20(r) T (b= B) /50 — N(0,1)

with N(0,1) the standard normal. This leads to the approximate
100(1 — )% confidence interval

@(r)"B = p(r) b+ zap2(0(r) (X X)) "H(r) )25y,

where z, /o denotes the 100a/2 percent point of the standard
normal. As mentioned in [9], one could use the F' distribution
to construct an approximate confidence region for a collection

of values {¢(ry)TB}.

V. EXAMPLE

The Starkey Project is a large area in Oregon set aside to
study the interactions of elk, deer, cows, and man sharing an
environment [1]. Fig. 1 shows a sampled trajectory of one of
the elk in the NE Pasture. There were 1571 GPS locations and
times of location obtained with a time interval of approximately
two hours between successive locations. It is recognized that the
theory connecting the sampled times case to the continuous time
case expects the times to be close together. It is still anticipated
that the discrete model studied is of interest in its own right and
will provide results of practical use.

A potential function V() was approximated by a thin plate
radial basis spline employing the kernel function of (6) with p
and ¢ = 2, and L = 36. The = and y components of the u,
were taken to be the 100m/7m = 1,---,6 percentiles of the
standardized x and y values. These reason values were chosen
was for illustrative purposes.

The coefficients 8, were estimated by ordinary least squares
employing the model (5) with ¢ = o . The results are provided
in Figs. 2 and 3. One sees the confusion of Fig. 1 much reduced.
A point of attraction appears near the point (7.5,11.0). When one
looks at a topographic plot of elevations, the point of attraction
appears to be a valley/canyon of sorts. Fig. 3 provides an image
plot of the potential function. Now one sees the point of attrac-
tion immediately.

The confusion of Fig. 1 has been referred to. An empirical
gradient plot is similarly confused.

VI. EXTENSIONS AND CONCLUSION

Various generalizations of the letter’s results may be men-
tioned. One could set down an expansion for V' employing
wavelet functions. One could consider updating methods for
real-time work, e.g., those based on a Kalman filter. One
could envisage a potential function as a spatial state variable
and the paths of objects determined by the measurement
equation. If the potential function is changing slowly, one
could consider a sliding window estimate [10]. Estimates that
are robust to non-normailty and resistant estimation can be
considered. In video analysis, one might consider the model
I(r,t) = Io(r) + 6(r(t) — r) with ¢ indexing the video frames
and ¢ the Dirac delta. The term I, represents a stationary



background and r(¢) the location of an object moving around
in the scene [11].

This letter presents an estimation method for handling
moving objects. The computations may be implemented by
the least-squares algorithm. The model may be viewed as
parametric or nonparametric.

APPENDIX

Because of the statistical dependence of the location of the
object at time ?; on past locations, one needs special arguments
to get the asymptotic distribution. For the simple cases of the
letter, results based on martingale arguments are available
in [9]. A result is [9, Theorem 3]. Consider the regression
model y; = z} B +¢;,j = 1,2,... with the {e;} martin-
gale differences with respect to an increasing sequence of
o-fields {Fn}. Suppose that sup ,E(|len||*|Fn-1) < o0
almost surely for some @ < 2. Suppose further that lim ,_,
var(ey|Fy_1) = o2 almost surely for some nonstochastic
o. Define Xy = [z1...zn]". Assume that z; is a Fj 4
-measurable random variable and that there exists a nonrandom
positive definite symmetric L by L matrix By for which
ByNXEXN)1V2 = I sup 1icnl|By'en || — 0 in proba-
bility. Then as N — oo

(XRXn)Y2(b—B) — N(0,0°1)

in distribution.

Note that zero-mean independent observations like the suc-
cessive entries of €, of (9) form a martingale difference se-
quence with respect to the o-field generated by the preceding
locations.

Reference [15] shows that under the further assumption, lim
log Amax (Xan)/n — 0 almost surely, one has s,, — o
almost surely.
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