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Abstract

Point processes may be described by conditional intensity
functions and moments. Wavelet analysis provides a means
of parameterizing such quantities in the nonstationary case.
The parameters of the wavelet expansion may themselves be
estimated by the method of moments or likelihood analysis.
These ideas are illustrated for data sets arising from nerve
cells firing and earthquakes occuring. In particular wavelet
parameterized rate, autointensity and conditional intensity
functions are estimated. 1

1. Introduction

Statistical aspects of wavelet analysis for time series and
images, both first- and second-order analysis now are fairly
well-developed, see [9, 13]. Among the uses of wavelet anal-
ysis are: smoothing, estimation, trend analysis, detection of
change, detection of jumps, classification, data compres-
sion, exploratory analysis, assessing long term dependence
and model validation. Basic inferential aspects include re-
gression modelling, perhaps followed by improved estima-
tion via shrinkage. This modification has the property of
damping down highly variable terms occurring in an expan-
sion of a function in terms of elementary functions. The
idea of shrinkage was employed effectively for crystalogra-
phy in [1]. There are a variety of ways to introduce wavelet
analysis into work with random processes. One is to make
parameters appearing time dependent with representations
by wavelet expansions. This approach will be employed
below.
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2. Wavelets for time series

2.1. Introduction

By wavelet analysis will be meant the expansion of func-
tions in the formS(t) = Xj Xk �jk jk(t) (1)

where  jk(t) = 2j=2 (2jt� k) (2)

and 0 < t < T . The function  (:) is called the mother
function. In the analyses of this paper it will be taken
to be the Haar function  (t) = 1 0 � t < T=2 and�1 T=2 � t < T . In the case of continuous time and with
the  jk functions orthogonal�jk = Z T

0
 jk(t)S(t)dt= Z T

0
 jk(t)2dt (3)

Step (3) expresses analysis and step (1) synthesis.
In practice one may assume the modelY (t) = S(t) + noise, and then evaluate the estimate�̂jk and employ a restricted number of terms in the sam-

ple analog of (1). In the empirical case it may be useful
to include shrinkage of the coefficients, that is to replace a
coefficient �̂jk by a shrunken version.

There are also expansions for function of two variables,
see [6, 10] and Section 4.2 .

3. Point processes

A univariate temporal point process refers to a sequence
of irrregularly distributed times, often corresponding to the
moments of occurrence of some particular event of interest.

Supposing that N (t) counts the number of points in the
interval (0; t] and that the points of the process are distinct,



it is often convenient to represent the process via the differ-
ential elementdN (t) = 1 if a point in (0; 0 + dt] (4)= 0 otherwise (5)

3.1. Ways to describe point processes

A fundamental description of a point process is provided
by the conditional intensity functionProbfdN (t) = 1jHtg = �(tjHt)dt (6)

where Ht = fN (u); u � tg. The function �(:) provides
the intensity with which points are occuring just after time t,
given what has already occurred. This function is discussed
in [11] for example.

A function describing the first order properties of a point
process is provided by the rate or intensity function, pN (t)
of EfdN (t)g = pN (t)dt (7)

The autointensity function is defined byProbfdN (t+ u) = 1jdN (t) = 1g = hNN (u)du (8)

in the stationary case u > 0. Higher-order moment and
cumulant functions may be similarly introduced, see [2, 3].

3.2. A particular case

A direct way to introduce serial dependence into a point
process model and to be able to use existing computer pack-
ages is the following. For some small � approximate the
point process by an integer-valued discrete time series. Then
given the history,Hl = fYm;m � lg, suppose for example
that Yl+1 is Poisson with parameterexpf + MXm=1

�mYl�mg (9)

where Yl = N ((l + 1)�) � N (l�). Likelihood analysis
and programs such as glm() of Splus, [6], may be employed
to estimate these �’s. Phenonena such as clustering and
approximate periodicity may be introduced by choice of the�’s andM . For � small, the process will be essentially 0�1
valued, [4].

Other link functions than exp might be employed in (9).

4. Wavelets for point processes

There are several ways to introduce wavelet techniques
into point process analysis. One is to simply work with
the sequence of intervals between events. This paper will
not direct attention to this case as time series techniques are
immediately available and because of lack of space.

4.1. The rate function

Consider the problem of estimating the functionpN (t) of
(7). This is analagous to the problem of estimating a density
function, which has been addressed in [8], for example.

One can proceed by expanding the rate function asEfdN (t)dt g = pN (t) = Xj Xk �jk jk(t) (10)

and then estimating the �’s via�̂jk = Z T
0
 jk(t)dN (t)= Z T

0
 jk(t)2dt (11)

following (3). The �̂jk may be shrunk, that is replaced byw(�̂jk=sjk)�̂jk (12)

where sjk is an estimate of the standard error of �̂jk andw(u) is a tapering function. In the examples presented the
Tukey function, (1 � u�2)+, of [5] is employed.

4.2. The autointensity function

For the stationary case, the autointensity function was
defined at (8) and its estimation considered in [2, 3] for
example. In the nonstationary case one can consider an
expansion forhNN (t; u) = ProbfdN (t+u) = 1jdN (t) = 1g=du (13)

based on the functions jk(t) j0k0(u) (14)

See [10] for details on wavelet expansions of functions of 2
variables.

4.3. Modeling the conditional intensity

Supposing a point process to have conditional inten-
sity �(tjHt; �) including a parameter �, one can develop
a wavelet variant by employing a wavelet expansion for �.

For example to introduce a wavelet approach into the
model (9) one can write the coefficients as�m(l) = Xj Xk �mjk jk(l) (15)

It can be interesting to see how the �’s evolve with time, l.



5. Some examples

5.1. An example from neurophysiology

Figure 1 presents part of the sequence of firing times
collected in a neurophysiological experiment. (The exper-
iments in which the data were collected are described in
[7].) Figure 2 shows the cumulative count function, N (t),
for the whole data set. The figures present an interesting
firing behavior; there are periods of silence, then the neuron
fires at an increasing rate for a period of time. A prelim-
inary wavelet study is now provided. Figure 3 shows

Neuron L10 bursting with accelerando
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Figure 1. The times an Aplysia neuron fired.
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Figure 2. The number of firings at times � t
wavelet estimates of the time varying rate function of (10).
It employs the estimates based on (11) and (12). The lower
figure provide approximate marginal �2s.e. limits. One
sees fluctuations about the overall rate level, with a drop in
one interval towards the end.

The autointensity in the stationary case was defined at
(7). Figure 4 provides an estimate and also a time varying
estimate based on the Haar functions in (14). The top figure
highlights the fact that the clusters of firing start about 25 sec,
apart with slow variation around this. The lower suggests

the interval shrinks towards 20 sec. in the middle. No
shrinkage was employed in the estimates here.

5.2. An example from seismology

This section repeats the previous data analyses, but now
for a point process taken from seismology.

Figure 5 graphs N (t) versus t for the sequence of oc-
curence times of earthquakes of magnitude 5 or greater as
recorded in Northern California for the period 1932-1992.
One sees overall stationarity with a crude indication of a
higher rate in the middle years followed by a lower rate.

The statistics displayed in Figure 6 are analagous to those
of Figure 3 above except that now the autointensity estimate
has been further smoothed. On examination one sees a
period of higher activity, again followed by one that is lower.
Figure 7 shows estimates of the autointensity function in the
stationary case and then provides a nonstationary estimate
based on Haar wavelets. Again higher levels in the middle
are followed by lower later.

In the final computations of this work a model and like-
lihood analysis of the discrete approximation to the earth-
quake series is investigated. Specifically the �m of (9) are
replaced by �m(l) and these are expanded as in (15). Figure
8 graphs the estimated �m(l) and �2 s.e. limits about 0.
There is little evidence tha the �’s are not all 0.

6. Discussion and summary

Motivated by practical problems, some wavelet based
techniques have been suggested for the analysis of point
process data. The ability of wavelet analysis to smooth,
with a variable binwidth, is a basic characteristic invoked
here.

The work of this paper has been concerned with the case
of a temporal point process. A variety of extensions are
possible to related types of phenomena: eg. spatial point
processes, spatial-temporal point processes, marked point
processes, hybrids, systems. There are also extensions to
wavelet treatments of derived statistics such as the peri-
odogram of spectrum estimation, see [6]. The paper has not
provided theory, nor specific asymptotic approximations.
Nor have higher-order moments (product densities) been
considered, or processes with points of several types, but
approaches are possible. It is further remarked that the es-
timates are preliminary. Parameter choices remain to be
investigated, and other data sets to be studied. Standard er-
ror limits remain to be computed for some of the estimates.

There is some previous work on point processes using
linear expansions in wavelets in searching for long range
dependence, see [12].



7. Acknowldegements

This work was carried out with the support of the National
Science Foundation Grants DMS-9625774, INT-9600251
and the CLC Grant 1-444063-69895. Professor Pedro
Morettin, Universidade de São Paulo, made some helpful
comments.

References

[1] D. M. Blow and F. H. C. Crick. The treatment of errors in
the isomorphus replacement method.Acta Crystalographica,
12:794–802, 1959.

[2] D. R. Brillinger. Statistical inference for stationary point
processes. Stochastic Processes and Related Topics, 1:55–
99, 1975.

[3] D. R. Brillinger. Comparative aspects of the study of ordinary
time series and point processes. Developments in Statistics,
1:33–133, 1978.

[4] D. R. Brillinger. Time series, point processes and hybrids.
Canadian J. Statistics, 22:177–206, 1994.

[5] D. R. Brillinger. Some uses of cumulants in wavelet analysis.
J. Nonparametric Statistics, 6:93–114, 1996.

[6] A. Bruce and H.-Y. Gao. S+Wavelets: User’s Manual.
StatSci, Seattle, WA, 1994.

[7] H. L. Bryant, A. Ruiz Marcos, and J. P. Segundo. Corre-
lations of neuronal spike discharges produced by monosy-
naptic connections and common inputs. J. Neurophysiology,
36(2):205–225, March 1975.

[8] D. L. Donoho, I. M. Johnstone,G. Kerkyacharian, and D. Pi-
card. Density estimation by wavelet thresholding. Preprint,
1993.

[9] D. L. Donoho, I. M. Johnstone,G. Kerkyacharian, and D. Pi-
card. Wavelet shrinkage: asymptopia? J. Royal Stat. Soc.
B, 57:301–369, 1995.

[10] S. Jaffard. Wavelets and nonlinear analysis. Wavelets: Math-
ematics and Applications (Eds. J. J. Benedetto and M. W.
Frazier) CRC Press, New York, pages 467–504, 1994.

[11] D. L. Snyder. Random Point Processes. Wiley, New York,
NY, 1975.

[12] M. Teich, C. Henegan, S. B. Lowen, and R. G. Turcott.
Estimating the fractal exponent of point processes in biolog-
ical systems using wavelet- and fourier transform methods.
Wavelets in Medicine and Biology (Eds. A. Aldroubi and M.
Unser) CRC Press, New York, pages 383–412, 1996.

[13] R. von Sachs. Modelling and estimation of the time-varying
structure of nonstationary time series. Brazilian J. Prob.
Statist., 10:181–204, 1996.

Neuron L10 Haar fit

time (sec)

ra
te

 (f
irin

gs
/se

c)

0 200 400 600

0.5

1.0

1.5

2.0

2.5

3.0

Shrunken fit

time (sec)

ra
te

 (f
irin

gs
/se

c)

0 200 400 600

0.5

1.0

1.5

2.0

2.5

3.0

Figure 3. Estimate of time varying rate.
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Wavelet dynamic autointensity estimate
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Figure 4. Estimate of time varying autointen-
sity.



California earthquakes - cumulative count
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Figure 5. Times of California earthquakes.

California earthquakes - Haar fit to rate
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Figure 6. Estimate of time varying rate.
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Wavelet dynamic autointensity estimate
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Figure 7. Estimate of time varying autointen-
sity.
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Figure 8. Estimates of the �’s of (19).


