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LOCALLY WEIGHTED ANALYSIS OF SPATIALLY AGGREGATE
BIRTH DATA: UNCERTAINTY ESTIMATION AND DISPLAY

D.R. Brillinger!

ABSTRACT

The concern is the analysis and display of data that is aggregate over geographic regions (such
as census divisions) for phenomena that are felt to vary smoothly in space. In Brillinger
(1990b) some spatial locally weighted analyses were provided for births taking place to women
aged 25 to 29 in the years 1986 and 1987 for the province of Saskatchewan at the census
division level. Various results were displayed via contour plots. The present work develops
these ideas further and is, in particular, concerned with the computation and display of
appropriate uncertainty levels for contour plots. A weekday effect is noted, but it does not vary
appreciably with space. The approach provides an alternative to the empirical Bayes methods
that have been proposed for similar problems.

KEY WORDS: Aggregate data; Binomial-logitnormal distribution; Contouring; Extra-
variation; Interpolation; Locally weighted analysis; Logitnormal distribution;
Maps; Simulation; Spatial data; Uncertainty presentation; Unmeasured
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1. INTRODUCTION

The concern is with analyzing smoothly varying
spatial phenomena and with the provision of some
indication of the uncertainty of the results of the
analysis.

The data studied is spatially aggregate, representing
totals over census divisions. The province of concern
is Saskatchewan with 18 census divisions. Census
division aggregate daily totals of births to women
aged 25-29 for the two year period 1986-1987 are
available for analysis. Also available are the census
population totals for Census Day, 3 June 1986. It is
desired to study and display the spatial structure of
this data.

Figure 1 shows the Saskatchewan census divisions
and the observed annual birth rate for each division.
The letters R and S indicate the locations of the
cities of Regina and Saskatoon respectively. The
rates are estimated directly from the counts for the
two years. More details concerning this data set
may be found in Brillinger (1990a,b).

Figure 1

Saskatchewan: 1986-87 births, ages 25 to 29

annual birth rate
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2. WEIGHTS AND ESTIMATION

The goal is spatial analysis and display, by means of contour plots. It is usual, in preparing contours from
function values at scattered points, to first interpolate the values to a regular grid, see Pelto et al. (1968). Given
(xp¥p2), i=1,....,n with z, representing the valpe of a variate measured at location (x,y,) a varicty of methods
have been proposed for this interpolation. A ‘popular scheme is due to Shepard (1968). He computes z at
(x,) via:
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where w,(x,y) = [(x-x) + (y-y,)zl"‘ with u > 0. The points are weighted inversely with their distance to (x,y).
Other schemes are described in Franke (1982) and Sabin (1985).

In the present case, sampling fluctuations are present and one cannot simply interpolate. Further the data are
counts, and proportions are computed from these, so the fluctuations are not clementary. Locally weighted
likelihood analysis is a pertinent estimation technique for nonelementary distributions varying in space, see for
example: Gilchrist (1967), Brillinger (1977), Tibshirani and Hastie (1987), Cleveland and Devlin (1988),
Staniswalis (1989), Brillinger (1990a,b). Suppose a variate Z has probability function p(z | 6) depending on an
unknown parameter 8. Let ¥(z |6) denote the score function, dlog p/ 30, and chose 8, the estimate of 0 at
location (x,y), to satisfy
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for some weight function w,(x,y). As in Shepard’s method, w,(x,y) depends on the distance of the point(x,y)
to the location (x,y).

As a simple example of a locally weighted estimate, consider the case of B; binomial with parameters %, N,. One

computes directly the estimate

3w B,
R @y s F—— 23
E w; (x)) N,
i
This estimate is a natural extension of (2.1).
In the present case, where the data is aggregate over regions R, the choice for the weight is
wxy) = —I%l— [, [ #a-wy-ndudv, @9
with W(.) the biweight,
Wixy) = A-u?? for |x] <1 25

and equal O otherwise where u = b yx?+y? for some b > 0. In (2.4) | R, | is the area of division i . One can

view w,(x,y) here as representing the influence of census division i on a person at location (x.y), the influence .

resulting from items like travel, nutrition, climate, ethnicity, education, television, laws. These weights are
evaluated via a Fourier transform, taking advantage of the convolutional form. A naive weight would be
w,(xy) = I/|R]| for (x,y) in R; and = O otherwise. This corresponds to W{) a delta function.

Figure 2 shows the effect of varying the parameter b for Census Division 18, the northern half of the province.
The values of b for the three cases illustrated in Figure 2 correspond to no smoothing, a small amount of
smoothing, and a moderate amount. This last value is employed in the computations of the paper. Figure 3
gives a plot of (2.4) for all of 18 of the divisions.
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Figure 2

Census division 18 - effect of smoothing
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Alternate weights that might be employed are given in Tobler (1979) and Dyn and Wahba (1982). An advantage
of the present weights is that they are local in character.

3. ESTIMATION: BINOMIAL CASE

Let By, denote the number of births to women ages 25 to 29 in census division i and year j with k = 1, 2
depending on whether data is for a weekday or weekend. Let N, denote the census population of census divisioni
for the age group. The count By may be thought of as the number of births from this population. Its
distribution may be apprommated by a binomial. (This seems a better approximation than the Poisson used in
Brillinger (1990a,b), since the chance that a woman has a baby in a year appears to be able to be as high as 2)
Set x; = 2 and x, = -5. This will make the estimates orthogonal. It will be assumed specifically that By, is
binomial with parameters %, and N, where

logit x, = log (x,/(1-%)) = a + Px,. €BY)
The left-hand panel of Figure 4 provides contour plots of the annual birth rate estimated by the expression
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where fi, = & +Bx,, for k = 1, 2 and it is to be remembered that & = &(x,y) and § = P(x,y). The first term
in (3.2) corresponds to weekdays, the second to weekends. One notes contours rising up and out from the census
divisions including Regina and Saskatoon. The right-hand panel graphs the weekday effect estimate f(x,y). All
contours are seen to be positive, corresponding to an increased number of births on weekdays. It must be
remarked that these quantities are all subject to sampling fluctuations. The provision of an indication of
sampling fluctuations will be discussed in Section 5.
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Binomial fit Binomial fit

e,

in 5
£ 6‘. ‘J_

annusal rate

4. ESTIMATION: BINOMIAL-LOGITNORMAL CASE ‘

It is argued in Brillinger (1990a,b) that a variety of pertinent explanatory variables, e.g. diet, lifestyle, weather,
environment, holidays, age structure, urbanicity, will have gone unmeasured. This will lead to extravariation in
the number of births beyond that of a binomial. One way to proceed is to introduce a random effect, oz, and
replace (3.1) by

logit x, = & + Px, + oz 4.

where z is a standard normal variate. The model is now binomiallogitnormal. The z’s for the different census
divisions are assumed independent. This model could be fit making use of numerical integration, see Bock and
Lieberman (1970), Pierce and Sands (1975), Sanathanan and Blumenthal (1978), Brillinger (1990a,b) for example.
In the present case the N, are large and one can approximate the model by a logitnormal, i.e. by assuming the §
logits of the By/N, are normal. Specifically this model may be written :

log Ba/(N, - bp) = a + Bx, + €, “42)
with the €, independent normals of mean O and variance 0. The assumption here may be checked, in part, g
by fitting the logitnormal and examining probability plots of the residuals. This was done for the data consisting J
of the annual totals for each day of the week and census division. No strong departure was noted although there -4

was an intriguing outlier.

The annual birth rate is now estimated via
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where n, = & +fx,+8z for k = 1, 2 and with ¢(.) the normal density. The first term corresponds to weekdays,
the second to weekends, as in (3.2). Crouch and Spiegelman (1990) discuss the numerical evaluation of integrals
such as those appearing in (4.3). In the present case Gaussian integration with 21 nodes is employed.

The top left-hand panel of figure 5 provides the estimated rate function (4.3). As compared with the binomial
fit of Figure 4, the birthrate surface estimate appears flatter. The top right-hand panel is f (x,y). This surface
appears less flat. The final panel gives the estimate 3(x,y). It appears less in the region around Saskatoon, but
of course is subject to sampling fluctuations.
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Figure §
Logitnormal fit

Logitnormal fit
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5. UNCERTAINTY COMPUTATION AND DISPLAY

Simple maps are flaunt with difficulty of presentation and inte

rpretation, see for example Monmonier (1991).

The provision of associated indications of uncertainty seems even more difficult. This section presents a few

procedures for the case of contours.

The actual computation of the uncertainties at each (x,y) seems not to be the problem. The estimates produced
by the logitnormal fitting are weighted least squares so, writing in traditional notation, the variances of & and

B may be estimated by
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and the standard deviation of & by
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Figure 6
Logitnormal fit
weekday effect ‘O’ t-statistic
75

Logitnormal fit

weekday effect ¢-statistic

(5.1)

(52)




The uncertainty estimates may be employed to examine hypotheses. Figure 6 is directed at the issue of whether
there is a weekday effect and whether or not it varies with space. The left-hand panel of Figure 6 provides the
estimate, B (x,y), divided by its estimated standard error. The values range from 1 to 6, providing evidence for
the presence of an effect. To study whether the effect varies spatially, the r -statistic is recomputed but now with
its numerator having the estimated value for the whole province subtracted. Now the. ¢ -values range from -1.5
to 1 and there is no real evidence that the effect varies spatially.

The next two figures are directed at displaying the uncertainty of the annual rate estimate given by (4.3) and
graphed in Figure 5. The standard error of the estimate (4.3) is estimated by the delta-method. The first panel
of Figure 7 is a contour plot of this estimate. Contour levels range from .004 to .010, and suggest a valley
centered at Regina and Saskatoon. The top right-hand panel of the figure is based on five east-west slices
through the province. Provided are *2 standard error limits about the estimated rate along the slice. This is a
traditional means of indicating uncertainty for functions of a single variable. The final panel graphs the .15 and
.17 birthrate contours as dashed lines and superposes the estimated standard errors at selected positions along
these contours. It appears simpler to take in the uncertainty this way, but one cannot read off the standard error
estimates for most locations.

Figure 7
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The left-hand panel of Figure 8 indicates the shift in contour lines produced by adding and subtracting one
standard error to the estimated rate function. Smooth bands appear about the estimated rate contours. The
intention of the bands is clear, but thoughtful interpretation is needed. The right-hand panel provides 10
simulations of the process. The individual estimates &(x,y), f (x,y), 6(x,y) are first aggregated over census
divisions. Then independent realizations of the process are generated according to (4.2). The model is refit for
each simulation, in bootstrap style, and the .15 and .17 contours determined. Diaconnis and Efron (1983) propose
bootstrapping of contours. The .17 contour realizations fall in an apparent band, but the .15 move about a fair
amount with some quite wild curves. The dashed lines are the original .15 and .17 contours.
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-Figure 8
Logitnormal fit Logitnormal fit
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6. DISCUSSION AND SUMMARY

The combination of the weight function, w(,), and the random effect oz, allows the estimate at location (x,y)
to borrow strength from the values of all census divisions, see for example Mallows and Tukey (1982). Hence
this approach provides an alternative to the empirical Bayes estimates developed in Clayton and Kaldor (1987),
Tsutakawa (1988), Cressie and Read (1989), Manton et al. (1989) for this type of data.

The computation of uncertainty has allowed examination of hypotheses of no weekday effect and weekday effect
constant across the province. An advantage of the graphical approach is that were there spatial variation, then
the plots might have suggested its character.

A substantial amount of work remains for the future. This includes: choice of the bandwidth, b, in (2.5), use
of other weight functions, informal and formal analysis of goodness of fit, other methods to display uncertainty,
including measured explanatory variables and finally appropriate asymptotics to employ in studying the technique.
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FIGURE LEGENDS

Figure 1. Annual birth rate for women aged 25-29, years 1986-7, by census division. R and S indicate the
locations of Regina and Saskatoon respectively.

Figure 2. Provides (2.4) for census division 18 in the cases of no, of a small amount and of a moderate amount

of smoothing.

Figure 3. (2.4) as employed for all 18 census divisions.

Figure 4. The binomial analysis. The rate estimate is from (3.2). The righthand panel gives Bxy.

Figure 5. The logitnormal analysts The rate estimate is from (4.3). The other panels give f(x,y) and §(x,)).
Figure 6. t-statistics directed at the hypothesis of no weekday effect and of spatially constant weekday effect.

Figure 7. The first panel is a contour plot of the estimated standard error of the estimated birth rate. The
second panel provides plus and minus two standard error limits about S east-west slices through the estimated
birth rate surface. The final panel plots the estimated standard errors at selected points on the .15 and .17
contours.

Figure 8. The first panel gives the .15 and .17 contours as dashed lines, then the same contours for the surface
increased and decreased by one standard error. The second panel shows the results of simulating realizations

of the process (4.2) and determining and displaying estimates in the manner of the paper. Ten simulations are
shown.
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