
Brazilian Journal of Probability and Statistics (2004), 18, pp. 163–182.

c©Associação Brasileira de Estat́ıstica

Some data analyses using mutual information

David R. Brillinger

University of California

Abstract: This paper presents a number of data analyses making use

of the concept of mutual information. Statistical uses of mutual information

are seen to include: comparative studies, variable selection, estimation of pa

rameters and assessment of model fit. The examples are taken from the fields

of sports, neuroscience, and forest science. There is an Appendix providing

proofs.
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1 Introduction

“... . This shows that the notion of information, which is more closely
related to the mutual information in communications theory than to the
entropy, will play the most fundamental role in the future developments
of statistical theories and techniques.” Akaike (1972)

This paper is a study of the usefulness of the coefficient of mutual information in
statistical data analysis. The paper examines the utility in practice of estimates.

Mutual information (MI) is a measure of statistical dependence. The concept
was introduced by Shannon (1948). Since then there has been substantial theoret-
ical and practical development of the concept. For example MI has been proposed
as a criterion on which to base a test of independence, Fernandes (2000) and as a
quantity to maximize in order to estimate lag, Li (1990), Granger and Lin (1994)
and in the spatial case to register images, Viola (1995). In particular in the bi-
variate case MI is the Kulback-Liebler distance between a joint distribution and
the product of its marginals, see Joe (1989a,b), Cover and Thomas (1991) and
the references therein. Dependence and association analysis are basic to statistics
and science. In particular regression analysis and canonical correlation analysis
may be mentioned. Some other questions to which MI would seem able to usefully
contribute are: change? trend? serial correlation? dimension? model fit? variable
selection?, model?, efficiency?, strength of association?

Re the last, the correlation coefficient is a long-standing measure of the strength
of statistical dependence; however MI has advantages over it. These include that
the variates involved do not have to be euclidian and that MI measures more than
linear dependence.
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There seems to have been substantial practical investigation of the related
concept of entropy, including the introduction of some novel estimators. Papers
concerned with the properties and estimation of entropy include: Miller (1955),
Parzen (1983), Moddemeijer (1989, 1999, 2000), Hall and Morton (1993), Robin-
son (1991).

The paper begins with a brief discussion of the coefficient of determination,
ρ2, to contrast its properties with the coefficient of mutual information. Three
empirical analyses are presented. There is discussion and then some formal devel-
opment in an Appendix. This paper focuses on the case of independent identically
distributed variates. It further concerns distributions described by a finite dimen-
sional parameter.

2 Correlation analysis

Science studies relationships generally, while regression analysis studies the depen-
dence of a variate Y with X . One can ask the question: what is the strength of
a particular relationship? A common answer is the following: given the bivariate
random variable (X,Y ) employ the coefficient of determination,

ρ2
XY = corr{X,Y }2 (2.1)

This measure is is symmetric and invariant and useful for studying: 1) impli-
cations of statistical independence, 2) explained variation, 3) strength of linear
dependence, and 4) uncertainty of estimates.

For real-valued variates, X and Y , ρ2
XY has long been estimated by

r2 = [
∑

(xi − x̄)(yi − ȳ)]2 /
∑

(xi − x̄)2
∑

(yi − ȳ)2

There appears to be no such natural estimate for mutual information although
several will be proposed.

3 Mutual information

3.1 Definition and properties

For the bivariate r.v. (X,Y ) with pdf or pmf p(x, y) the MI is defined as

IXY = E{log p(X,Y )

pX(X)pY (Y )
} (3.2)

The units of MI are sometimes referred to as nats.
In the case of a bivariate discrete distribution with pmf

Prob{Xj = j, Yk = k} = pjk, j = 1, ..., J ; k = 1, ...,K,
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expression (3.2) becomes

IXY =
∑

j,k

pjk log
pjk

pj+p+k

where pj+ = Prob{X = j} and p+k = Prob{Y = k} and the sum is over pjk 6= 0.
Consider a hybrid discrete-continuous variate with pj(y) given by

Prob{X = j, Y ǫ ∆} ≈ pj(y)|∆|

with ∆ a small interval including y of length |∆|. Then the MI is

IXY =
∑

j

∫

pj(y) log
pj(y)

pj+pY (y)
dy, pj(y) 6= 0 (3.3)

pj+ and pY (.) being the marginals.
Properties of IXY include:

1. Non-negativity, IXY ≥ 0;

2. Invariance, IXY = IUV if u = u(x) and v = v(y) are individually 1-1
measureable transformations;

3. Measuring strength of dependence in that,

i) IXY = 0 iff X is independent of Y ;

ii) For the continuous case, IXY = ∞ if Y = g(X);

iii) IXZ ≤ IXY if X independent of Z given Y ;

iv) For the bivariate normal, IXY = − 0.5 ∗ log(1 − ρ2
XY );

v) There are ANOVA like decompositions.

A conditional form

IXY = E{log pY |X(Y )

pY (Y )
}

is sometimes employed.
A useful inequality is,

E{Y − g(X)}2 ≥ 1

2πe
exp{2(IY Y − IXY )} (3.4)

where g is measurable and IY Y is the entropy of Y , E{log pY (Y )}, see Cover
and, Thomas (1991) supplementary problems. An implication of (3.4) is that the
larger IXY the smaller will be the lower bound for predicting Y via a function
g(X) of X . It is thus useful for investigating the efficiency of proposed estimates.

Joe (1989a,b) proposes the use of

1 − exp{−2IXY } (3.5)

as a ρ2 or R2 like measure.
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3.2 Estimation

In a study of model identification Akaike (1972, 1974) has shown that there are
important connections between the likelihood function and the Kullback-Liebler
“distance”, from the true model to any model. Taking the K-L distance from the
model of independent marginals leads to the coefficient of mutual information, the
K-L ‘distance” of p to q being

EU{log p(U)/q(U)}

where U is a random variable with density or pmf p(u).

3.2.1 The parametric case

Consider a parametric model p(x, y|θ) where p is a pdf or a pmf or a hybrid
depending on the circumstance. For the bivariate r.v. (X,Y ) suppose realizations
(xi, yi), i = 1, ..., n are available. Suppose that one wishes to estimate the mutual
information of X and Y ,

IXY (θ) = E

{

log
p(X,Y |θ)

pX(X |θ) pY (Y |θ)

}

(3.6)

With θ̂ an estimate of θ, e.g. the mle, a natural estimate of the MI is

IXY (θ̂) (3.7)

This estimate has in mind that the expected value (6) can be well-evaluated
numerically for any given θ.

3.2.2 Two particular examples

To begin consider two particular cases. The first example involves a bivariate
discrete chance quantity (X,Y ) with X taking on the values 1, ..., J and Y the
values 1, ...,K and

Prob{X = j, Y = k} = pjk

Write the marginals as pj+, p+k. The MI here is

IXY (θ) =
∑

j,k

pjk log
pjk

pj+p+k
(3.8)

Represent the variate (X,Y ) by V = {Vjk} with Vjk = 1 if the result (j, k)
occurs and Vjk = 0 otherwise. The probability mass function is

1
∏

j,k vjk!

∏

j,k

pjk
vjk , vjk = 0 or 1,

∑

j,k

vjk = 1

Suppose next that there are n independent realizations, {vjkl, l = 1, ..., n}, of
V . Suppose that θ, the unknown parameter, is {pjk}. The maximum likelihood
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estimates of the pjk are the p̂jk =
∑

l vjkl/n and the plug-in estimate of the MI
is

IXY (θ̂) =
∑

j,k

p̂jk log
p̂jk

p̂j+p̂+k
(3.9)

Some statistical properties will be considered below.
Next consider now the likelihood ratio test statistic of the null hypothesis of

the independence of X and Y , namely

G2 = 2n
∑

j,k

p̂jk log
p̂jk

p̂j+p̂+k
(3.10)

see Christensen (1997). The quantity G2 is seen to be proportional to the estimate
(3.9). Further from classical statistical theory in the case that X and Y are
independent the asymptotic null distribution of (3.10) is χ2

(J−1)(K−1). One can

conclude that the large sample distribution of the estimate (3.9) is χ2
(J−1)(K−1)/2n

in the null case of independence.
The non-null large sample distribution is more complicated. It is normal with

mean (3.8) and variance

1

n





∑

j,k

pjk[log
pjk

pj+p+k
]2 − [

∑

jk

pjklog
pjk

pj+p+k
]2



 (3.11)

according to Moddemeijer (1989). One notes that expression (3.11) is 0 when the
variables are independent, consistent with the χ2 expression above. The non-null
distribution arises in power computations. There are a number of studies of power
considering Pitman alternatives, see for example Mitra (1958).

As a second example consider the vector Gaussian case. Let Σ be the covari-
ance matrix of the column variate V = (X ′, Y ′)′ with X r-vector-valued and Y
s-vector-valued. The (differential) entropy is

E{log pV (V )} =
1

2
log(|2πeΣ|) (3.12)

with |.| denoting the determinant, see Cover and Thomas (1991).
From (3.12) then the MI of X and Y is

IXY (θ) = − 1

2
log(|Σ|/|ΣXX ||ΣY Y |) (3.13)

having partitioned Σ as
[

ΣXX ΣXY

ΣY X ΣY Y

]

One can write
|Σ|/|ΣXX ||ΣY Y | =

∏

i

(1 − ρ2
i )
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with the ρi the canonical correlations and expression (3.13) becomes

−1

2

∑

i

log(1 − ρ2
i ) (3.14)

The absence of much of the structure of Σ from (3.14) is to be noted. This follows
from the invariance of IXY (θ) under linear transformations of X and Y indicated
in Section 3.1 above.

In what follows let the parameter θ be Σ. When the experiment is repeated n
times the maximum likelihood estimate of Σ is

Σ̂ =
1

n

n
∑

i=1

(vi − v̄)(vi − v̄)′

and the plug-in estimate (3.13) becomes

ÎXY (θ) = − 1

2
log(|Σ̂|/|Σ̂XX ||Σ̂Y Y |) (3.15)

whose statistical properties will be considered below.
For this Gaussian case, consider the log-likelihood ratio criterion for testing

the independence of X and Y . It is

n

2
log |Σ̂|/|Σ̂XX ||Σ̂Y Y | (3.16)

see Kendall and Stuart (1966), section 42.12. From classical likelihood ratio test
theory the large sample null distribution of (3.15) is χ2

rs. (It may be worth noting
that some ‘better” approximations have been proposed, ibid.) The statistic (3.16)
is proportional to the plug-in estimate (3.15).

Turning to the large sample distribution in the non-null case, using (3.14) the
statistic (3.15) may be written

−1

2

∑

i

log(1 − ρ̂2
i )

with the ρ̂i’s the sample canonical correlations. In the case that they are distinct
and non-zero the ρi’s are asymptically independent normal with means ρi and
variances 1

n (1 − ρ2
i )

2, see Hsu (1941). It follows that, in this case, the estimate

(3.15) is asymptotically normal with mean IXY (θ) and variance
∑

i ρ
2
i /n.

In summary, for these two circumstances the plug-in estimate of the MI is
essentially the likelihood ratio statistic for testing independence. Distributional
results that are available for the latter are directly applicable.
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3.2.3 Approximate distributions

There are some general results.
Suppose that a sample of values (xi, yi), i = 1, ..., n is available. Let θ0 denote

the true parameter. Let θ̂ denote the maximum likelihood estimate. Write I0 for
IXY (θ0) and ∂I0/∂θ

′ for ∂IXY (θ)/∂θ′ evaluated at θ0. Write JXY for the Fisher
information of (X ′, Y ′)′ at θ0 and JX , JY for that of X and Y respectively.

Both the cases of independent and dependent X and Y are considered in the
theorem. Assumptions and derivations are provided in Appendix A.

Theorem 3.1. Suppose that Assumption A.2 holds.
a) In the case that X and Y are dependent and that ∂I0/∂θ is not 0, the variate√
n(IXY (θ̂) − IXY (θ0)) is asymptotically normal with mean 0 and covariance

matrix
∂I0
∂θ

′

J−1
XY

∂I0
∂θ

b) In the case of independence, nIXY (θ̂) is distributed asymptotically as

1

2
Z ′J

−1/2
XY [JXY − JX − JY ]J

−1/2
XY Z (3.17)

where the entries of Z are independent standard normals.

The variate (3.17) will be 1
2χ

2
ν when J

−1/2
XY [JXY −JX −JY ]J

−1/2
XY is idempotent

with trace ν.
In particular, the estimate, IXY (θ̂), is consistent in both cases a) and b).
A second estimate of IXY (θ) is provided by

1

n

∑

i

log
(

p(xi, yi|θ̂) / pX(xi|θ̂) pY (yi|θ̂)
)

(3.18)

with θ̂ again the overall maximum likelihood estimate. No integral needs to be
evaluated in this case; however there are difficulties in developing its proper-
ties analagous to those arising in the estimation of entropy, see Robinson (1991),
Granger and Li (1994), Hall and Morton (1993). Modified estimates of entropy
are proposed in those papers.

As indicated by the discrete and multivariate normal examples above, another
type of estimate of IXY is sometimes available. Suppose that the parameter θ
has the form θ = (φ, ψ) and that the marginal distributions px(.), py(.) only

involve φ. Let φ̂∗ denote the mle of φ under the null hypothesis of independence.
Consider the estimate

1

n

∑

i

log
(

p(xi, yi|θ̂) / pX(xi|φ̂∗) pY (yi|φ̂∗)
)

(3.19)

with θ̂ the full model mle. Expression (3.19) is the classic log(likelihood ratio)/n
test statistic for the hypothesis of independence.
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Provided φ̂∗ → φ in probability generally, the statistic (3.19) will tend to
IXY (θ0) in probability, i.e. (3.19) provides a consistent estimate of the MI. How-

ever the distinction is that the distribution of φ̂∗ is to be considered under the full
distribution of (X,Y ), not just the null.

An advantage when this situation obtains is that classical maximum likelihood
theory indicates an asymptotic null distribution of

χ2
ν / 2n, ν = dim(ψ) (3.20)

for (3.19).

Theorem 3.2. Suppose Assumption A.3 holds. Suppose that φ̂∗ converges in
probability to φ. Then,
a) the quantity (3.19) converges to IXY (θ0) in probability.
b) Suppose that X and Y are independent, then the large sample distribution of
(3.19) is (3.20).

The statistic (3.19) has the advantage of being obtainable directly from the
output of various mle programs.

3.2.4 The non-parametric case

Various inferential results have been developed for entropy. To mention one class
of estimates studied, consider p̂(x, y) an estimate of p(x, y), e.g. the histogram or a
kernel-based one. Now one can consider plug-in estimates of mutual information,
namely,

ÎXY =
∑

j,k

p̂(uj , vk) log
p̂(uj , vk)

p̂X(uj)p̂Y (vk)
, (3.21)

with (uj , vk) a grid of nodes, or

ÎXY =

∫ ∫

k(x, y)p̂(x, y)log
p̂(x, y)

p̂X(x)p̂Y (y)
dxdy (3.22)

k being a kernel introduced to improve asymptotic properties. There are difficul-
ties for p̂ near 0.

A variety of authors have considered properties of this and related estimates.
Antos and Kontoyiannis (2000) show that while plug-in estimates are uniformly
consistent, under mild conditions, the rate of convergence can be arbitrarily slow,
even in the discrete case. Beirlant et al (2001) provide a review of plug-in esti-
mates of entropy of the type: integral, resubstitution, splitting data and cross-
validation. Fernandes (2000) studies MI-like statistics for testing the assumption
of independence between stochastic processes. The series are mixing. Robinson
(1991) considered kernel-based estimates, as did Skaug and Tjostheim (1993). Joe
(1989b) obtained consistency results for the estimates of type 1 and 2 above and
obtained asymptotic mean-squared error results. Hall and Morton (1993) studied
properties of Joe’s estimates with emphasis on tail behavior, distribution smooth-
ness and dimensionality. Hong and White (2000) develop asymptotic distributions
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of estimates of Robinson (1991) and Granger and Li (1994). In a series of papers
Moddemeijer (1989,1999,2000) studies various large sample properties of estimates
of entropy.

3.3 Bias and statistical uncertainty

One needs statistical properties of estimates in order to make statistical inferences.
As indicated above in certain cases the approximate null distribution of ÎXY is
chi-squared. In the case of (3.9) it is

χ2
ν / 2n, where ν = (J − 1) ∗ (K − 1)

For example approximate p-values of the hypothesis of independence may be com-
puted.

Both asymptotic developments and simulation experiments have shown that
bias can be a problem in the estimation of entropy. This could have been antici-
pated because of the nonlinear character of mutual information as a function of its
parameters. Miller (1955) proposed an elementary correction to (3.9). Woodfield
(1982) studies estimate based on transforming marginals to uniforms and finds
bias problems in a simulation study.

Because of the messiness of the expressions involved, nonparametric uncer-
tainty procedures are often very helpful. These include the δ-method of propa-
gation of error, the jackknife and the bootstrap. In particular the latter two can
both reduce bias and provide estimates of uncertainty.

4 Examples

The histogram estimate (3.9) is used throughout when the data form a contingency
table and the R/Splus function kde2d when X and Y are jointly continuous. It
is assumed that the explanatory, X , is stochastic.

4.1 An example with two discrete variables

This is an example of the use of MI in a comparative study.
Soccer fans have often discussed the home team advantage and there are con-

troversies. To study an interesting aspect of this, consider the specific question:
in which country is the relationship strongest between the number of goals a team
scores and and the circumstance that it is playing at home?

Lee (1997) used Poisson regression in a study of the English Premier Division
specifically. He includes a home-away effect in the model. In contrast this paper
presents a study of countries, not teams.

Data for the world’s Premier Leagues of many countries are available at

sunsite.tut.fi/rec/riku/soccer2.html
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The analysis that follows considers the 2001-2002 season and the countries: Ar-
gentina, Brazil, Canada, Chile, France, Germany, Italy, Portugal, Spain, Uruguay.
These countries were studied because the example was developed for talks in
Brazil.

The variates, X and Y , were defined as follows: Y = 0, 1, 2, 3, 4+ gives the
number of goals a team scored in an away game while X = 1, 0 indicates whether
the team was playing at home or away. The value 4+ represents 4 or more goals
scored by a team.

The estimate (3.9) is employed and the formula for the independent identically
distributed case has been used to obtain the upper 95% level. The results are given
in Figure 1.

argentina brazil uruguay chile mexico canada england france germany italy portugal spain

0.0

0.02

0.04

Estimated MI - soccer

Figure 1 Estimated MI between goals a team scored in a game and
whether the team was playing at home or away. The heights
of the grey bars provide the approximate 95% of the null
points. The Canada value is below the line because it would
have been hidden by the grey shading above.

One sees France standing above all the other countries with a strong home
effect and Canada showing none to speak of.. One colleague suggested that France
stood out because its stadiums were such that the fans were particularly close to
the field. In the case of Canada, its Premier Division is minor league.

The assumption of independence may be problematic because often a suite of
games is played on a given day and, for example, weather conditions may be in
common.
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4.2 A real-valued time series example

This example involves checking a real-valued stationary time series for indepen-
dence.

The data studied are based on a spike train of 951 firings of the neuron L10
of the sea hare, Aplysia californica, when it was firing spontaneously. Supposing
the times of the spike train to be {τk} Let {Zk = τk+1 − τk} denote the intervals
between the firings.

When a neuron is firing spontaneously many of the proposed models imply
that intervals are independent and identically distributed, i.e. the point process is
renewal. An estimate of the MI was computed to address the question of whether
the series of interspike intervals may be viewed as white noise.

Supposing Xi = Zi and Yi = Zi+h the MI is estimated as a function of lag
h. The results are shown in Figure 2.

The 99% critical level is estimated by repeating the MI estimation for random
permutations of the intervals. It is the dashed line in the second panel.

The figures provide evidence against the assumption of a renewal process.
Specifically there is a suggestion in both the top two panels of relationship at the
very low lags.

What is different here from traditional studies is that serial association of the
interval sequence has been examined over a broader range of possibilities.

4.3 A discrete-continuous example

This example involves selecting the variable most strongly associated with a given
binary response variate and checking on the efficiency of some parametric models..

Estimates of the risks of wildfires are basic to governments’ preparations for
forest fires and their handling once detected. The problem is important because
in many cases there are deaths and very large financial losses.

In dealing with the problem so called fire indices are often computed and pro-
mulgated. For example there are the Keetch-Byram Drought, the Fire Potential,
the Spread Component and the Energy Release Component Indices, see Preisler
et al. (2004).

One question of concern is whether a fire once started will become large. Mu-
tual information will be employed to infer which of the four indices is most highly
associated with a fire becoming large. Further the efficiencies of three parametric
models of generalized linear model form will be studied.

The data employed are for the federal lands in the state of Orgeon for the years
1989 to 1996. They are discussed in Brillinger et al. (2003), Preisler et al. (2004).
The state is divided into 1km by 1km pixels. The times and pixels in which fires
occurred are recorded. Further the size of the fire is estimated.

For the mutual information analysis the response variable, Y , is defined to be
1 if a fire becomes large and 0 otherwise. The explanatory variable, X , is the
value of the 4 indices in turn, i.e. four separate analyses are carried out.

The results are provided in Figure 3. The final panel is the nonparametric
estimate while the previous three refer to the specific Bernoulli models employing
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Figure 2 From the bottom, the panels are respectively: a plot of the
series, the estimated mutual information as a function of
lag and the estimated coefficient of determination.
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the probit, logit and the complimentary loglog link respectively. The third, the
so-called spread index lives up to its name and appears the most pertinent for
inferring whether a fire becomes large. Turning to the question of the efficiency
of the three parametric models, when their estimated MIs are compared with
those of the nonparametric, they all appear to have performed reasonably. When
focus is on the spread index, the complimentary loglog link looks the better. The
dashed line in the final panel represents the approximate 95% point of the null
distribution. The MIs for the parametric models are estimated via expression
(3.19).

4.4 Discussion of the examples

A range of questions motivated the work carried out. The first example was
a comparative study. The second involved model assessment. The third was
concerned with both prediction and the efficiency of some specific parametric
models.

Analyses might have been carried out using second-order moments; hypotheses
of dependence have been examined against a much broader class of possibilities.
Further the efficiencies of some parametric models have been examined.

5 Discussion and summary

Mutual information is a concept extending correlation, substituting for ρ2 and R2.
It has a simple definition and a variety of uses.
Conclusions such as

“The hypothesis of independence is rejected.”

become

“The estimated strength of dependence is M̂I.”

The mutual information provides another motivation for the use of ρ2 in Gaussian
case and for G2 in the contingency table case. The efficiency of an estimate may
be studied by considering parametric and nonparametric estimates as in Example
3.

There are some operational questions. Various estimates of MI have been pro-
posed. Their practical properties need to be studied, in particular bias. Simulation
studies can provide some guidance.

The mutual information is ‘just” a non-negative number. In the examples it
seemed that functional forms were to be preferred - MI as a function of country,
or of lag, or of index, or of speed. Such thoughts can suggest new parameters for
consideration.

The analysis is not complete for once a large value of the MI has been found
in many cases one needs to look for an expression of the cause of the relationship,
i.e. a model.
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Figure 3 The estimated MI as a function of four fire indices used in
practice. The problem is that of infering which of these in-
dices is most strongly associated with a fire becoming large.
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There are lots of problems to be worked upon. These include practical aspects
of extensions to X in Rp and Y in Rq, higher-order analogs, robust/resistant
variants for example based on M-estimates of θ.

There are other measures of independence and entropies, see Fernandes (2000),
Hong and White (2000).

Joe’s measure
1 − exp{−2IXY }

has been mentioned. Nagelkirke (1991) proposes the use of an expression like
this with 2IXY replaced by the deviance. The discussion around Theorem 2 sug-
gests that this may not be a reasonable quantity generally for the null estimate’s
distribution needs to be considered under the full distribution, not just the null.

Appendix A

A single variable problem is considered to begin.
Let V be a random variable with distribution depending on a finite dimensional

parameter θ. Consider the problem of estimating

Ψ(θ) = E{g(V |θ)}

for some measureable function g. Assume that for given θ this expected value
can be approximated numerically arbitrarily closely. (There is no problem in the
finite discrete case.)

Assuming that the derivative involved exists, let JV denote the Fisher infor-
mation,

−E{∂
2l(V |θ)
∂θ∂θ′

}

evaluated at the point θ0 where l(v|θ) denotes the log of the pdf (or the pmf) of
the variate V .

Suppose that a sample of values, {v1, ..., vn}, is available and that θ̂ is the
maximum likelihood estimate of θ. Consider as an estimate of Ψ(θ)

Ψ(θ̂), (A.1)

where θ̂ is the maximum likelihood estimate of θ. Large sample properties of (A.1)
may be studied via the Taylor approximation

Ψ(θ̂) ≈ Ψ0 +
∂Ψ0

∂θ

′

(θ̂ − θ0) +
1

2
(θ̂ − θ0)

′ ∂
2Ψ0

∂θ∂θ′
(θ̂ − θ0) (A.2)

with θ0 the true parameter value, Ψ0 = Ψ(θ0), ∂Ψ0/∂θ is the first derivative
evaluated at θ0, and ∂2Ψ0/∂θ∂θ

′ is the matrix of second derivatives evaluated at
θ0.

Assumption A.1. The second derivatives of Φ exist and are continuous
except in a set whose measure is 0. The matrix JV is nonsingular. Further



178 David R. Brillinger

the large sample distribution of θ̂ is normal with mean θ0 and covariance matrix
JV

−1/n.
Now one has as n → ∞,
Theorem A.1. Let the true parameter value be θ0, and suppose that Assump-

tion A.1 holds. Then
a) In the case that the ∂Ψ0/∂θ is not 0, the variate

√
n(Ψ(θ̂) − Ψ(θ0)) is asymp-

totically normal with mean 0 and covariance matrix

∂Ψ0

∂θ

′

JV
−1 ∂Ψ0

∂θ

b) In the case that ∂Ψ0/∂θ is 0, (as it is in the case of independence), the variate

n(Ψ(θ̂) − Ψ(θ0)) has as large sample distribution that of

1

2
Z ′J

−1/2
V

∂2Ψ0

∂θ∂θ′
J
−1/2
V Z, (A.3)

Z being a vector of independent standard normals.
Corollary. Under Assumption A.1, the estimate (A.1) is consistent.
Consideration now turns to the mutual information case V = (X,Y ). Here

Ψ(θ) = IXY (θ) = E

{

log
p(X,Y |θ)

pX(X |θ) pY (Y |θ)

}

. (A.4)

Note that because IXY (θ) is invariant under 1-1 transforms ofX and Y , IXY (θ)
will sometimes not depend on all the coordinates of θ, i.e. ∂I/∂θ will be of reduced
rank.

Assumption A.2. Derivatives up to order 2 exist. One can interchange the
orders of integration and differentiation as necessary. The large sample distribu-

tion of the maximum likelihood estimate, θ̂, is normal with mean θ0 and covariance
matrix J−1

XY /n.
Then one has,
Lemma A.1. Under Assumption A.2 and with Ψ given by (A.4) the gradient

∂Ψ/∂θ vanishes in the case that X and Y are independent. Also in that case the
Hessian matrix, ∂2Ψ/∂θ∂θ′, is given by JXY − JX − JY , where the J are Fisher
information matrices of the distributions (X,Y ), X, Y respectively.

The quantity JXY − JX − JY has an interpretation as the Fisher information
re θ in (X,Y ) minus that in X and further minus that in Y .

Proof of Lemma A.1. That the gradient vanishes is no surprise since the
MI is minimized at independence. Still a proof is given. There is much changing
of the order of differentiation and integration.

Consider the case that the random variable (X,Y ) is continuous. The other
cases follow similarly. Write, with abbreviated notation, pX(x)dx as p. The
quantity in question, (A.4), may be written

∫ ∫

p log p −
∫

pX log pX −
∫

pY log pY
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with derivative
∫ ∫

∂p

∂θ
[log p + 1] −

∫

∂pX

∂θ
[log pX + 1] −

∫

∂pY

∂θ
[log pY + 1]. (A.5)

Since
∫ ∫

p,
∫

pX ,
∫

pY = 1 one has

∫ ∫

∂p

∂θ
,

∫

∂pX

∂θ
,

∫

∂pY

∂θ
= 0

and the +1 terms drop out. Next from
∫

pdy = pX

∫

∂p

∂θ
=

∂pX

∂θ
(A.6)

and so
∫ ∫

log pX
∂p

∂θ
=

∫

log pX
∂pX

∂θ
. (A.7)

There is a similar result for pY . The gradient is thus
∫ ∫

∂p

∂θ
[log p − log pX − log pY ] (A.8)

which is 0 at independence as p = pXpY .
Turning to the Hessian, taking ∂/∂θ′ of (A.5) leads to

∫ ∫

∂2p

∂θ∂θ′
[log p − log pX − log pY ] +

∂p

∂θ
[
1

p

∂p′

∂θ
− 1

pX

∂pX
′

∂θ
− 1

pY

∂pY
′

∂θ
]

and from (A.6)

∫ ∫

∂p

∂θ

1

pX

∂pX
′

∂θ
dxdy =

∫

1

pX

∂pX

∂θ

∂pX
′

∂θ
dx

So when p = pXpY

∂2Ψ

∂θ∂θ
=

∫ ∫

[
1

p

∂p

∂θ

∂p′

∂θ
− 1

pX

∂pX

∂θ

∂p′X
∂θ

− 1

pY

∂pY

∂θ

∂p′Y
∂θ

]

i.e.
JXY − JX − JY

as claimed.
Proof of Theorem A.1. Both parts follow from the representation (A.3)

and Corollary 3 of Mann and Wald (1943).
Proof of Theorem 3.1. Part a) follows directly from Theorem A.1 part a).
Consider next part b). In the case of independence, following Lemma A.1, the

estimate nIXY (θ̂) is asymptotically distributed as

1

2
Z ′J

−1/2
XY [JXY − JX − JY ]J

−1/2
XY Z, (A.9)
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where Z is a vector of independent standard normals. In the case that the inner

matrix of (A.9) is idempotent the large sample distribution of IXY (θ̂) is

χ2
ν / 2n

with ν = the trace of J
−1/2
XY [JXY − JX − JY ]J

−1/2
XY .

Assumption A.3. Suppose that Assumption A.2 holds and that θ has been
parametrized as (φ, ψ) and that the marginals of X and Y only depend on φ.

Proof of Theorem 3.2.

In the case that X and Y are independent the asymptotic distribution of (3.19)
is χ2

ν/2n with ν = dim(ψ). In the case that they are not

expression (9) → E{log p(X,Y |θ)} − E{log pX(X |φ∗)pY (Y |φ∗)}

in probability where φ∗ maximizes

E{log pX(X |φ)pY (Y |φ)}

and one has the stated theorem.
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