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Abstract. The traditional average evoked response is
compared and contrasted with several alternate es-
timates, derived from frequency domain consider-
ations, for a model of evoked responses superimposed
upon a stationary noise series. Further, a means of
constructing approximate confidence intervals for the
values of an evoked response is indicated. The case of
several simultaneously recorded series is also
considered.

1. Introduction

Consider a situation in which stimuli are applied at
times ¢, <0,<0;<... and simultaneously a con-
tinuously varying response function Y(t) is recorded.
Suppose that it is reasonable to model the series Y(z)
by

Y(t)=Y s(t—a ;) +e)

i

1.1)

with s(t) an evoked response function and with &(t) a
stationary, zero mean, error serics. In many cases the
function s(t) will vanish for <0 and will be of finite
duration. In the classical evoked response experiment,
see for example Donchin and Lindsley (1969), the
successive o are taken farther apart than the length of
the interval where s(t) is non-zero and s(z) is estimated

by the average evoked response

M
S50= Y Y(t+o)M

J=1

(1.2)

where g, 05, ...,0, are the times at which stimuli were
applied during the time interval [0, T]. It is apparent
that if the interval between the o; is not sufficiently
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large, then the estimate (1.2) will be biased. It is
plausible that with autocorrelation in the error series
&(t) the equal weighting of the M terms of (1.2) will not
be efficient. It is not obvious how to set confidence
intervals for the estimate, in the presence of autocor-
relation. This paper is concerned with certain statisti-
cal properties of the estimate (1.2), with developing
estimates of s(r) that place no a priori restriction on
how close the o; may be to each other, and with
developing efficient estimates of s(t) in the presence of
autocorrelation.

We assume that s(t) is a fixed, unknown function
defined for —oo<t<oo. We assume that &f) is a
stationary time series with mean Ee(t) =0, with autoco-
variance function

cov{e(t+u), ()} =c,(u), (1.3)
with power spectrum
L) =02n)~? T ¢, (u)exp{ —ilu}du (1.4)

— oo

and satisfying the asymptotic independence or mixing
Assumption] of the Appendix. Let M(t) count the
number of ¢; in the interval [0, ¢]. Then M(7) is a step
function increasing by 1 each time a o; occurs. We

assume that the following limits exist forJ M(2)

Py = Jim M(T)/T (1.5)
and
T
Pyp(t) = Jim [ [M(t+w) — M(DTdM(O/T . (1.6)
® 0

The parameter p,, specifies the (asymptotic) rate with
which stimuli are being applied. The parameter (1.6)
provides information concerning the relative spacings
of the o, We further require M(t) to satisfy
Assumption IT of the Appendix.
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~ With the point process M(t) defined in the above
fashion, the model (1. 1) may be written

CY(0)= | st —u)dM(u )+ e(t) (1.7)

and the estimate (1.2) may be written

T-1t

so®)=|

0

Y(t + u)dM(u)/M(T). (1.8)

We turn to a statistical investigation of the average
evoked response, (1.8).

I1. The Average Evoked Response
Because the noise series has 0 mean,
EY(t)= { s(t—u)dM(u)= ) s(t—a)

i
and

Esl) j- [ s(¢—u+v)dM(u)dM(v)
0

=Y. 2 s(t—o;+0)/M(T). (2.1)
j ok

From the last expression here it is apparent that Esl(1)
=s(f) provided t<T—ayy, and provided |o;—0,l,
j=k, is greater than the interval length of non-zero s(t)
for all j, k. In the general case

Esg([) js(t u)dP g\ (1)/ Py (2.2)

as T— oo, using expressions (1.5), (1.6), and this is not
generally s(t). Clearly an alternate estimate is called for.

From expressions (1.3) and (1.8) the variance of this
estimate is given by

varsii= | [ c.lu—o)dM(u)dMe)/ MY
4] 4]
=2 ;cu(aj 7 )/M(T) (2.3)
~ j €4 APy, () Tl - (2.4)

In the case that the noise values have correlation zero
at lag equal and beyond the minimum spacing of the
o, it is apparent from (2.3) that the variance is
¢,(0)/M(T) and so an estimate of the variance may be
constructed readily. In the general case a variance
estimate is not readily available.

Finally it may be remarked that, under the con-
ditions of the Appendix, the statistic s§(t) is asymptoti-
cally normal with the indicated mean and variance.
(See Brillinger, 1973) Provided a consistent estimate of
the variance is available, approximate confidence in-
tervals may therefore be constructed directly for Es).

II1. Alternate Estimates

When written in the form (1.7) the model is seen to

" have the structure of a linear time invariant system

carrying an. input process, M, over into an output
process Y. Such systems are generally investigated by
means of cross-spectral analysis, see Brillinger (1974a)
and Brillinger (1975), Chap.6. The steps involved in
such an analysis follow.

Define

S(4)= Ofc s(t)exp{—iit}dt, . (3.1)

— o

the system transfer function. Define
T .
dy(2)= {exp{—iit} Y(t)dt
0
with a similar definition for d7(2). Define

T
dT(2)= [exp{—iit}dM(r)= ) exp{—iic;}
0 j

with the last sum over the available G 1t now follows
from (1.7) that
df(/i) = S(/'.)d{,(/‘.) + dET(/Z) )

and further
ar <2nk S(an i, 2nk car(Fk 2mk
T T T T
=50y, 27tk LT 2nk>
T T,
for k an integer with 2nk; T= /. If a number of distinct

frequencies 2mk/T are considered with 27nk/T near /.
then under the assumptions of the Appendix, the

. : 2nk
corresponding Fourier transforms df(%—) will be

asymptotically complex normal variates with mean 0
and variance 2nTf,,(/). (See for example Brillinger,
1974b) Expression (3. 2) suggests estimating S(1) by

e
= i) fne(%) (3.3)

with the sums in (3.3) over say K distinct frequencies
2nk/T near / and where

_ 2mk 2nk
fYM }=(2nT) Zaﬂ( ; )dﬂ< ;)

with a similar definition of £} ,,(%).

The estimate (3.3) parallels the usual estimate of
cross-spectral analysis considered for continuous series
in Brillinger (1974b), for example, and for point pro-




cesses in Brillinger et al. (1976). In the manner of Sect.
6.3, Brillinger (1975), the statistic (3.3) will be asymp-
totically complex normal with mean S(/) and va-
riance £, (Z)/KfF (7). Confidence intervals may be set
in the manner of that reference.

As in Sect. 6.8, Brillinger (1975), the evoked re-
sponse s(t) may now be estimated by

z)-ipzlsf< ) p{izlpt} (3.4)

for some integer P. The estimate (3.4), in contrast to the
estimate (1.2), remains valid even when the individual
evoked responses overlap. The variance of the estimate
(3.4) is given, approximately, by

1P1

) ]r“(z”p)fMM(z”p) /P, (3.5)

This latter may be estimated once an estimate of the
error spectrum, f, (A}, 1s available. In the manner of
Chap. 6, Brillinger (1975) an estimate of the error
spectrum is provided by

NGRS VN A AV OR (3.6)

Approximate confidence intervals may now be con-
structed for the value s(1).

From expression (2.3) it is apparent that the es-
timate s (f) has variance proportional to

- 2_n le 1. (2np)fMM (27[[7).

Using the statistic (3.6) this variance may be estimated.
It must be remembered however that the estimate si(z)
is appropriate only when the ¢; are spaced sufficiently
far apart, in contrast to the estimate s7(r) that is valid
generally.

In practice an experimenter will often be willing to
assume that the function s(tf) vanishes for r<0. The
estimate sI(r) involves no such assumption in its
derivation. Wiener (1949) has developed factorization
procedures for handling functions that vanish for
negative arguments. These procedures may be paral-
leled with data in the present situation in the manner
that Bhansali (1973) dealt with the case of a pair of
discrete time series. Bhansali’s results suggest that
there is no real improvement, in terms of variability, of
proceeding to the more complicated estimate however.

§ fedo) fiaa@0)

1V. Further Remarks

On occasion it will be of interest to ask whether any
response has been evoked at all by applying the
stimuli. This question may be formalized to asking
whether s(t) of (1.1) or whether S(Z)of (3.1) is identically
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zero. A useful test statistic is provided by the coherence
function

IR) (A= IfYTM(’)IZ/[f}T)(’)

In the case that S(2)=0 and that the f7T are constructed
as in the previous section, the upper 100a % point of the
distribution of |RT|> is given approximately by
1—(1—o)"®*~ Y and tests may be constructed.

In EEG analysis several series, Y1), j=1,...,J are
recorded. An interesting question that comes up in this
case is whether the evoked responses, for two sym-
metrically placed leads, are the same (see John and
Thatcher, 1977). A model for the situation is

Y ()= Zs(t—o'j)-l—gl(t)

S (4.1)

’ (4.2)
Y,(t)= Z s(t— ;) +&,(1)
leading to

Y(0) = Y,(0)— Y(0) =e,(1) —,(0)

which may be examined using the statistic of (4.1).

A question that comes up is how the stimulation
times ¢; should be chosen in practice. We have seen
that if the average evoked response is to be taken as the
estimate, then the o; should be taken sufficiently far
apart. Examination of expression (2.2), [or alter-
natively of expression (3.3)], indicates that the average
evoked response will be satisfactory when the point
process M(r) is such that dP,,,(u)ad(u)du, with 6(u)
the Dirac delta function. This will be the case if M(r) is
a realization of a stationary Poisson process. The
expression for the variance of the estimate, (2.4),
indicates that the rate of the Poisson, p,,, should be
taken as large as possible. In the case that the shape of
the error spectrum, f,,(%), is known one can consider
choosing M to minimize the variance (3.5) subject to

Zl i (2np)

given (as essentially corresponds to given total number
of points, M(T).) The solution to this problem is to
take M(r) such that fI, (2)a[f.(4)]*% One would
further take the overall number of points, M(T), to be
as large as possible.

Of course, the above remarks are based upon the
assumption that the model (1.1) is reasonable. It will
often be the case that if the ¢; are too close to each
other, then the response is no longer linear, in the
manner of (1.1). The system is thrown into a non-linear
domain of operation.

Albrecht and Radil-Weiss (1976), Indra et al
(1976), Albrecht et al. (1977) consider a different model
for the investigation of evoked responses. It may be
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viewed as of the form of (1.1), but with s(r) a stationary
process uncorrelated with the noise process &t). The
stylized forms of evoked response obtained in practice
suggest that stationarity will not often prove a reason-
able assumption.

Appendix

The degree of dependence of a collection of random
variables is conveniently measured by their joint cu-
mulants, see Brillinger (1975) for example. Given the
random variate {Y,, ..., Y;} denote its joint cumulant of
order I by cum{Y;, ..., ¥;}. (In the case of I=2, this is
the covariance of Y; with Y,.)

In connection with the noise process (1) set

. fuy, ..ty =cum{e(t+u,), ..., &t +uy), e(t)} -

We can now state,

Assumptionl. gt), —oo<t< 0, is a stationary pro-
cess, continuous in mean, whose cumulant functions
exist and satisfy

e, Jfuy, . u)l<Ll +ud)7t +u)~?

for some finite L, I=1,2,... .

This assumption has the implication that values of
the process at some distance from each other are only
weakly dependent, statistically.

In connection with the
require.

Assumption Il ¢,05,... is an increasing sequence
of positive numbers with the properties

[M(s)— M(t)| < A+ Bls—1]

0<s, t< oo for some finite 4, B. Also the limits (1.5),
(1.6) exist for almost all u.

point process Wwe
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