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Abstract. Motions of particles in fields characterized by real-valued poten-
tial functions, are considered. Three particular expressions for potential func-
tions are studied. One, U , depends on the ith particle’s location, ri (t) at
times ti . A second, V , depends on particle i’s vector distances from oth-
ers, ri (t) − rj (t). This function introduces pairwise interactions. A third, W ,
depends on the Euclidian distances, ‖ri (t) − rj (t)‖ between particles at the
same times, t . The functions are motivated by classical mechanics.

Taking the gradient of the potential function, and adding a Brownian term
one, obtains the stochastic equation of motion

dri = −∇U(ri ) dt − ∑
j �=i

∇V (ri − rj ) dt + σ dBi

in the case that there are additive components U and V . The ∇ denotes the
gradient operator. Under conditions the process will be Markov and a diffu-
sion. By estimating U and V at the same time one could address the question
of whether both components have an effect and, if yes, how, and in the case
of a single particle, one can ask is the motion purely random?

An empirical example is presented based on data describing the motion of
elk (Cervus elaphus) in a United States Forest Service reserve.

1 Introduction

An analytic method is presented for describing the motion of particles ranging
about in a possibly confined region. The motion of a particle is described as pos-
sibly being affected by its physical location and also its relative distances to other
particles.

The work may be motivated by concepts and methods from physics. Landau
and Lifshitz (1969) write, page 1:

“One of the fundamental concepts of mechanics is that of a particle. By this we mean a
body whose dimensions may be neglected in describing its motion.”

This work will view elk as particles. Skorokhod (1983, 1993, 1996, 2003) has
prepared a sequence of pertinent works concerning gradient systems. In particular
Chapter 2 of his 1982 book is titled “Randomly interacting systems of particles”.
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The research is assisted by the fact that advances in radio-telemetry tracking
of animals allow high-frequency and highly accurate monitoring of their move-
ments. These advances provide novel opportunities for development and applica-
tion of new analytical methods to characterize animal movements and landscape
use. References include Brillinger et al. (2001a, 2001b, 2002), Cooke et al. (2004),
Coulombe et al. (2006) and Preisler et al. (2004, 2006).

2 Stochastic particle processes

The concern is particle systems, that is collections of particles moving about in
some space, for example, Rd . The particles may be interacting perhaps because of
others or perhaps due to common influences. Several models and methods will be
emphasized in this work having in mind a particular animal biology example.

2.1 Model I

Consider a particle, labeled i, at location ri (t) at time t whose motion may be
described by

dri = −∇U(ri ) dt + � dBi , (2.1)

where ∇ = (∂/∂x, ∂/∂y) is the gradient operator, and Bi is a standard vector-
valued Brownian motion. The potential function U is real-valued which inciden-
tally makes it easier to model directly rather than working with the components
of ∇U themselves. Under regularity conditions, for example, Lipschitz ones, the
solution of a system of equations like (2.1) for i = 1, . . . , I will be Markov and
be stationary. Further there may be an invariant distribution, sometimes called a
Gibbs distribution,

C exp{−2U(r}/σ 2
0 (2.2)

in the case that � in (2.1) is σ 2
0 I. There are some results for the case that � is not

diagonal and depends on r. Specifically Ait-Sahalia (2008) presents conditions
under which a process described by

dr = μ(r) dt + �(r) dB

can be transformed into one satisfying

dr = μ(r) dt + dB

by an invertible infinitely differentiable function γ satisfying ∇γ (r) = �−1(r).
This has the implication that after finding a suitable γ , one can use the simpler
form above. In particular this shows the difficulty in simply working directly with
empirical density estimates and their hotspots.

The minus sign in (2.1) comes from classical mechanics and is traditional. One
notes then that depressions in U correspond to points of attraction, while ridges
lead to repulsion at least when formula (2.2) holds. The Ornstein–Uhlenbeck pro-
cess is a particular case.
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2.2 Model II

One assumes that the motion of the particle is described by

dri = −∑
j �=i

∇V (ri − rj ) dt + � dBi , (2.3)

that is, that the next small movement depends on the vector distances, ri − rj from
particle i to the others. Here V thereby introduces interactions.

2.3 Model III

One assumes that the V above has the form

W(‖ri − rj‖), (2.4)

with the ‖ri (t) − rj (t)‖ the Euclidian distances between the ith and j th particles
at time t .

A specific example of this last is provided by the case of gravitation where W

is given by

−GM0/‖r0 − r‖
with r0 the location of an attracting object of mass M0 and r the location of the
particle of concern.

A second example is developed in the work of Zohdi (2003, 2009). He employs
the functional form

α1‖ri − rj‖β1 − α2‖ri − rj‖β2

with the α’s and β’s to be estimated. This form allows both attraction and repul-
sion depending on the distances between the particles. Zohdi uses this model to
simulate “swarms” of particles.

2.4 Model IV

One considers a hybrid process defined by

dri = −∇U(ri ) dt − ∑
j �=i

∇V (ri − rj ) dt + σ dBi . (2.5)

The potential here is a sum U + V and this model includes Models I, II and III as
particular cases.

There is a substantial theoretical literature on the models just set down. One can
mention the papers Skorokhod (1983, 1993, 1996, 2003), Skrypnik (1984), Spohn
(1986), Cepa and Lepingle (2000) and Fritz (1987). Often the theoretical work is
getting limiting results, laws of large numbers and central limit theorems.

The potential functions might be represented via basis functions as in

U(r) = ∑
j

αjφj (r) and V (r − rl) = ∑
k

βkψk(r − rl) (2.6)
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with rl denoting location of the lth elk and the α’s and β’s parameters to be esti-
mated. The basis functions are given and might be monomials, thinplate splines,
cosinusoids or Gaussians densities, for example.

In the work of this paper Models I, II, III will be fit in an animal biology ex-
ample. In Brillinger et al. (2006) polynomials of orders 2 and 3 in x and y were
employed with (x, y) denoting the location of a particle in the plane. There was
also a boundary, but this will not be taken specific account of here.

When appropriate one can set down SDEs or their approximations with non-
Gaussian and autocorrelated stimulation as well.

3 Inference methods

The Model I will be approximated by

ri (tk+1 − tk) = −∇U
(
ri (tk)(tk+1 − tk)

) + �Zik, (3.1)

k = 1,2, . . . in the case of elk i. The Zi will be independent standard bivariate
normals. This is a form of Euler scheme; see Kloeden and Platen (1995). To be-
gin α and β of (2.6) will be estimated by multiple regression with the response the
empirical velocity (

ri (tk+1) − ri (tk)
)
/(tk+1 − tk)

and the explanatories partial derivatives of the functions φ and ψ . Then, following
the Gauss–Markov theorem estimable linear functions may be learned by plugging
in estimates α̂ and β̂ . The potential function U of (3.1) may be estimated by

Û (r) = ∑
j

α̂jφj (r),

for example.
Discrete approximations need to be employed for the models I–III as the data

are available only at discrete times. These approximations become the models of
record.

In some of the paper’s work the {tk, r(tk)} values need be interpolated to the
same equally spaced times for all the animals.

Monnomials will be employed for the basis functions and parameters will be
estimated by ordinary least squares. � may be chosen to have a variety of forms,
but the form σ I will be used in the computations of this paper. Statistical details
of this approach are provided in Brillinger et al. (2001b) and Brillinger (2007).
Specifically the large sample properties of the least squares estimates may be set
down using existing results, making use of the fact that the values

r(tk+1) − E{r(tk+1)|Fk},
k = 0,1,2, . . . form a martingale difference series. Here Fk is a pertinent increas-
ing sequence of σ -fields. See Lai and Wei (1982), Lai (1994) and Chang and Lin
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(1995) for the case of a finite dimensional parameter. The results look very much
like those of generalized least squares estimates in the independent identically dis-
tributed case.

4 The Starkey experiment and the data

In a continuing large-scale experiment data are collected to evaluate responses of
elk (Cervus elaphus) to recreation activities; see Wisdom et al. (2004) and Preisler
et al. (2006). Movements were monitored for radio-collared animals in the absence
of any human activities during an extended control period in 2005. These are stud-
ied in this paper. The data were obtained with the use of telemetry systems that
collect values frequently (here time spacings of about 5 minutes) and accurately
(location error often less than 10 meters). The high volume and high quality of
these data, in the absence of any confounding human activities, provide an oppor-
tunity to explore the development of new models and to fit existing ones to certain
animal movements.

The data of this research were collected in the period April–October 2005 at the
USDA Forest Service Starkey Experimental Forest and Range (Starkey) in Oregon,
United States [Rowland et al. (1997); Wisdom et al. (2005)]. The data were for its
Northeast Pasture [Wisdom et al. (2005)]. The vegetation there was a mosaic of
forests and grasslands. This study area has a tall fence about it whose shape and
size are shown in Figures 2 and 3 below. See Rowland et al. (1997), Wisdom et
al. (2005) and Preisler et al. (2006) for additional details about the study area and
related elk research.

The data were collected via a global positioning system (GPS) with telemetry
systems programmed to obtain one location per radio-collared elk about every 5
minutes in the months May through October, 24 hours a day for weekdays.

For the analyses presented six elk having the same general periods of observa-
tion were chosen for the study.

A variety of questions arise. These include: Is the movement of a particular an-
imal associated with distances to the others or to the terrain they are located in
at the moment? Are animals moving jointly? Is joint movement driven by pres-
ence of other elk or by exogenous variables? Is there an effect of other elk on an
elk’s location and if yes, at what distance does it appear? Can one characterize
elk movement in the absence of disturbances? (The latter is important for use as a
baseline control in studies of effects of disturbances, e.g., hikers.)

References to such work include: Dunn and Gipson (1977), Dunn and Brisbin
(1985), Brillinger et al. (2004), Preisler et al. (2004), Lasiecki (2006).

5 Some exploratory data analysis

Elementary displays are extremely useful at the beginnings of empirical studies.
One concern here was that because of the measurement process employed the time
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Figure 1 Histogram of the spacings, tk+1 − tk , and of the speeds. First week’s data.

intervals {ti,k+1 − ti,k} between location estimates are not equally spaced. They
do vary around 5 minutes. An elementary histogram is useful for learning details
of this temporal sampling circumstance and for deciding on appropriate analysis
procedures. Figure 1 provides the histogram of all the time intervals and also of
the empirical speeds for the first week’s data for the group of six animals. There
are outliers to the right in each case, so in the computations that follow the cases
with the top 1% of the velocities are trimmed out. (A distinction is being made
here between speeds and velocities. Briefly, speed is a scalar whereas velocity is a
2-vector.)

Figures 2 and 3 show the tracks of six of the animals during the first week of
the experiment. These animals were numbered 280, 281, 395, 396, 397 and 398
by the Starkey researchers. The “o” in the figure denotes the start of the track.
Similarities of the paths may be noted, particularly of animals 395 and 396. The
particular animals all go to the SE corner at some point in the first week.

Figures 2 and 3 suggested that simple linear interpolation between adjacent time
points might suffice. This was done to get estimated locations every 5 minutes
exactly, the same times for all the animals. A comparison of the original data paths
and the interpolated ones showed little difference.
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Figure 2 Superposed paths of six animals for the first week.

Even before Figures 2 and 3 were examined there was interest in whether these
animals moved about in groups. The results of two exploratory methods follow.
The methods employed were: studying the paths plotted, hierarchical clustering
and coherence analysis. The analyses presented in Figure 4 and Tables 1 and 2 are
for the first week of data.

As may be seen in Figure 3 the animals’ range has changed for the second week.
The modelling will need to take note of this.

5.1 Example A

A cluster analysis of the vectors ri; i = 1, . . . ,6 was carried out employing the
R/Cran function hclust(method = “single”) for the week’s data. The resulting den-
drogram is displayed in Figure 4. One sees the triplet (395,396,398) standing out
for consideration as co-movers as does the pair (281,397). Tracks similarities are
also apparent in Figure 3 showing the second week’s data.

5.2 Example B

In coherence analysis one creates a setup involving complex-valued quantities.
This was done earlier in Arato, Kolmogorov and Sinai (1962) who were studying
the path of the Earth’s North Pole as the earth wobbled.
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Figure 3 Individual paths of six animals for the second week.

To begin one replaces r(t) = (x(t), y(t)) by

z(t) = x(t) + iy(t)

with i = √−1.
Basic definitions are needed. When z1 and z2 are complex-valued random vari-

ables with mean 0 it is convenient to define their covariance as cov{z1, z2} =
E{z1z̄2} and their variances by var(z) = E{|z|2}. Their coherence is also defined
as

|R12|2 = | cov{z1, z2}|2/[var{z1}var{z2}].
Estimates of the values of the quantities are given in the two tables that follow. The
first table is based on week one’s data and the second on all 14 weeks.

One notes some very high coherences values in Table 1, namely 0.997, 0.995,
0.994 and 0.897. They involve elk 396, 397 and 398. When all 14 weeks of data
are studied, Table 2, the highest values are: 0.689, 0.452, 0.438 and 0.422. Such a
drop could have been anticipated given the length of the time period.
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Figure 4 Result of the hierarchical clustering analysis. First week’s data for the six animals.

Table 1 Coherence estimates for first week of data

elk 280 281 395 396 397 398

280 1 0.416 0.466 0.472 0.471 0.477
281 0.416 1 0.343 0.349 0.897 0.356
395 0.466 0.343 1 0.995 0.415 0.997
396 0.472 0.349 0.995 1 0.424 0.994
397 0.471 0.897 0.415 0.424 1 0.427
398 0.477 0.356 0.997 0.994 0.427 1

Table 2 Coherence estimates for 14 weeks of data

elk 280 281 395 396 397 398

280 1 0.308 0.26 0.438 0.265 0.345
281 0.308 1 0.337 0.42 0.253 0.339
395 0.26 0.337 1 0.422 0.092 0.452
396 0.438 0.42 0.422 1 0.199 0.689
397 0.265 0.253 0.092 0.199 1 0.119
398 0.345 0.339 0.452 0.689 0.119 1
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6 Model fitting

The gradient models of Section 2 detail how an animal, given its location, and
those of other animals at time t , might move in the next small time interval.

The potential function form employed in the computations to be presented is

β1x + β2y + β3x
2 + β4xy + β5y

2 + β6x
3 + β7x

2y + β8xy2 + β9y
3

with (x, y) denoting location. The gradient is(
1 0 2x y 0 3x2 2xy y2 0
0 1 0 x 2y 0 x2 2xy 4y2

)

matrix multiplied by the transpose of the row vector

(β1 β2 β3 β4 β5 β6 β7 β8 β9 ) .

The result is linear in the β’s. Because of this linearity simple multiple regression
may be employed to obtain estimates. The steps of the analysis were described in
Sections 2 and 3.

7 Results

7.1 Model I results

The animals 395 and 398 will be studied principally, and the first two weeks of
data analyzed. To handle outliers in the empirical velocity the top 5% of cases are
trimmed off. The results are in Figure 5.

The model fit is

dr = −∇U(r) dt + � dB

with � = σ I. In this situation the elk’s change in location is dependent on its
current location, up to noise.

In Figure 5 one notes the low (darker) values to the right in the top two panels.
These have the implication that when the animal is there generally speaking it will
be staying and if it is not on the right it will be moving in that direction.

Some formal statistical conclusions need to be stated. One can consider the null
hypothesis that the potential function is constant, that is, the animal is moving
around purely randomly. An F test of this hypothesis may be carried out. The re-
sult is F = 2.879 with degrees of freedom 9 and 5533, and p-value 0.00215. The
large sample validity of these results may be based on work of Lai (1994) and
Brillinger (2007). In particular the p-value approximation is based on an assump-
tion of independent innovations.

However, correlation and spectrum analyses of the residuals suggest this is not
the case. One could correct the degrees of freedom in an attempt to deal with the
autocorrelation, but the fact that the current potentials are linear in the parameters



Modelling particles moving in a potential field 431

Figure 5 The top row is the estimated potential for elk 398 in contour and image form. Bottom row
provides the animal’s trajectory for the first two weeks.

allows an armax models to be fit directly. This will be done when the full dataset is
being analyzed. There are known sources of variability that need to be introduced
formally. These include the time of day, the week of the year, the terrain.

A related issue is that one would like a measure of the uncertainty of the poten-
tial function estimate. One can get an estimate of the variance covariance matrix
of the estimated β’s, but there is evidence that these values are not to be trusted;
see, for example, Wood (2006). Fitting an armax model might handle this circum-
stance.

7.2 Model II results

The model is now

dri = −∑
j �=i

∇V (ri − rj ) dt + σ dBi .

It will be used to study elk 398’s motion dependence on the location of elk 395.
The function V of the model has been estimated. The analysis results are shown in
Figure 6.

From the top row of Figure 6 one sees that the next relative motion of elk 398,
and elk 395 will when their relative distance is in the band running from the NW
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Figure 6 Elk 398’s movement with respect to elk 395.

to the SE generally stay in the trough. When that point is outside the trough it will
tend to move into it.

The lower graph shows ri −rj as a function of t with i referring to elk 398 and j

to elk 395. One sees a concentration of points, a so-called hotspot, near (0,0). The
animals are often close together.

Next consider the null hypothesis that V is constant. One has F = 4.75 with
degrees of freedom 9 and 5263, and p-value 0.000235.

7.3 Model III results

The model is now

dri = −∑
j �=i

∇W(‖ri − rj‖) dt + σ dBij

for some real-valued function W of real values.
The top two panels of Figure 7 provide estimates of the function W(d), with d

Euclidian distance. One would expect the vector ri − rj to stay under the main
diagonal once it got there and if it wasn’t to move over there. One notes the rota-
tional invariance. The bottom left panel again provides the trace of the ri − rj time
series.

The analysis of variance results here are: F = 3.88 with degrees of freedom 9
and 5263 and the p-value 0.00263. If one believed the p-value one would be led
to reject the hypothesis of flatness, as would be the case for purely random motion.
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Figure 7 The results of fitting Model III with elk 398 dependent and 395 explanatory.

8 Discussion and summary

The work has been motivated by models of classical mechanics. Stochastic differ-
ential equations have been employed to motivate the discrete time models actually
used.

In particular the following general model

dri (t) = −∇Ui(ri (t)) dt − ∑
j �=i

∇Vij

(
ri (t) − rj (t)

)
dt + σ dBi (t)

was set out. Three particular cases of it have been fit to trajectories of a single elk,
and then of two elks relative distance to each other. The trajectories have been used
to help interpret the estimated potential function in each case.

The use of a potential function simplifies the fitting of a trajectory model since
it is real valued. A further simplification results when the function is linear in the
parameters as was the case for the examples of the paper. What is less usual here
is manipulating the linear regression model to another model and plugging in the
parameter estimates. This meant that one couldn’t use contemporary linear model
programs directly.

Fitting was tried with other basis functions, for example, Gaussian and thinplate
splines, but ultimately at this stage in the research it was simpler to stick with
monomials.
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There were difficulties. For example, the unequally spaced observation times
and their differing values for the various elk. This was addressed by simple inter-
polation.

Since the model is additive in the basic variables, explanatories may be included
quite directly. Pertinent explanatories include: time of day, topography and loca-
tion of a moving attractor/repellor.

One might choose to include time lags as occur in stochastic functional differ-
ential equations. In another step one might assume that the innovations come from
an ARMA process in the fitting. As the parameters in the potential are linear there
are a variety of programs for carrying out this step. One might take specific note
of the presence of a boundary, here a fence, see Brillinger (2003). One might de-
rive better approximations to the distribution of the statistics needed in drawing
inferences.
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