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      Abstract
In bagging, predictors are constructed using bootstrap
samples from the training set and then aggregated to form
a bagged predictor.  Each bootstrap sample leaves out
about 37% of the examples.  These left-out examples can
be used to form accurate estimates of important
quantities.  For instance, they can be used to give much
improved estimates of node probabilities and node error
rates in decision trees.  Using estimated outputs instead
of the observed outputs improves accuracy in regression
trees.  They can also be used to give nearly optimal
estimates of generalization errors for bagged predictors.

   * Partially supported by NSF Grant 1-444063-21445

 Introduction:   We assume that there is a training set T= {(yn,xn), n=1, ... ,N} and a method for

constructing a predictor Q(x,T) using the given training set.  The output variable y can either be
a class label (classification) or numerical (regression).  In bagging (Breiman[1996a]) a sequence
of training sets TB,1, ... , TB,K are generated of the same size as T by bootstrap selection from T.

Then K predictors are constructed such that the kth predictor Q(x,Tk,B) is based on the kth

bootstrap training set.  It was shown that if these predictors are aggregated--averaging in
regression or voting in classification, then the resultant predictor can be considerably more
accurate than the original predictor.

Accuracy is increased if the prediction method is unstable, i.e. if small changes in the training
set or in the parameters used in construction can result in large changes in the resulting
predictor.  The examples generated in Breiman[1996a] were based on trees and subset selection in
regression, but it is known that neural nets are also unstable, as are other well-known prediction
methods.  Other methods such as nearest neighbors, are stable.

It turns out that bagging, besides its primary purpose of increasing accuracy, has valuable by-
products.  Roughly 37% of the examples in the training set T do not appear in a particular
bootstrap training set TB.  Thus, to the predictor Q(x,TB) these examples are unused test

examples.  Thus, if K = 100, each particular example (y,x) in the training set has about 37
predictions  among the Q(x,Tk,B) such that Tk,B  does not contain (y,x).  The predictions for

examples "that are out-of-the-bag" can be used to form accurate estimates for  important
quantities.

For example, in classification, the out-of-bag predictions can be used to estimate the
probabilities that the example belongs to any one of the J possible classes.  Applied to CART
this gives a method for estimating  node probabilities more accurately than anything
available to date.  Applied to regression trees, we get an improved method for estimating the
expected error in a node prediction.  In regression, using the out-of-bag estimated values for the
outputs instead of the actual training set outputs gives more accurate trees.  Simple and accurate
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out-of-bag estimates can be given for the generalization error of bagged predictors.  Unlike
cross-validation, these require no additional computing.

In this paper, we first look at estimates of node class probabilities in CART (Section 2), and
then at estimates of mean-squared nodes errors in the regression version of CART (Section 3).
Section 4 looks at how  much accuracy is lost by using estimates that are averaged over terminal
nodes.  Indications from synthetic data are that the averaging can account  for a major
component of the error.  Section 5 gives some theoretical justification for the accuracy of out-of-
bag estimates in terms of a pointwise bias-variance decomposition.   Section 6 gives the effect of
constructing regression trees using the out-of-bag output estimates. In Section 7  the out-of-bag
estimates of generalization error for bagged predictors are defined and studied.  The Appendix
gives some statistical details.

The present work came from two stimuli.  One was the dissatisfaction, over many years, but
growing stronger more recently, with the  biased node class probability and error estimates in
CART.  The other consisted of two papers.  One, by Tibshirani[1996],  proposes an out-of-bag
estimate as part of a method for estimating generalization error for any classifier.  The second,
by Wolpert and Macready [1996], looks at a number of methods for estimating generalization
error for bagged regressions--among them, a method using out-of-bag predictions equivalent to
the method we give in Section 6.

2.  Estimating  node class probabilities

Assume that the training set T consists of independent draws from an Y,X distribution where Y
is a J-class output label and X is a multivariate input vector.  Define p*(x) as that probability
vector with components p*(j|x) = P(Y=j|X=x).  Most classification algorithms use the training
set T to construct a probability predictor pR(x,T) that outputs a nonnegative sum-one J-vector

pR(x,T) = (pR(1|x), ...  ,pR(J|x)) and then classify x as that class for which pR(j|x) is maximum.
In many applications, the components of pR as well as the classification is important.  For
instance, in medical survival analysis,  estimates of the survival probability is important.

In some construction methods , the resubstitution values  pR(x) are intrinsically biased estimates
of p*(x) .  This is true of methods like trees or neural nets where the optimization over T tries to
drive all components of pR to zero except for a single component that goes to one.  The resulting
vectors  pR are poor estimates of the true class probabilities  p*.

With trees, the  pR  estimates are constant over each terminal node t and are given by the
proportion of class j examples in the terminal node.  In Breiman et. al. [1984] two  methods were
proposed to improve estimates.  In his thesis, Walker[1992] showed that the first of the two
methods worked reasonably well on some synthetic data.  However, the method only estimates
maxjp*(j|t), and the results are difficult to compare  with those given below.

To define the problem better--here is the target:  assume again  that the training set T consists
of independent draws from an Y,X  distribution.   Assume that a tree C(x,T) with terminal nodes
{t} has already been constructed.    For a given terminal node t,  define p*(j|t) = P(Y=j|X ∈  t) .
The vector p*(t) is what we want to estimate.  The resubstitution probability estimate pR(x, T)
is constant over each terminal node t  and consists of the relative class proportions of the
training set examples in t.

The out-of-bag estimate pB is gotten as follows:  draw 100 bootstrap replicates of T  getting
T1,B,  ...  ,T100,B.  For each k, build the tree classifier C(x,Tk,B).  For each (y,x) in T, define

pB(x) as the average of the pR(x, Tk,B) over all k such that (y,x) is not in Tk,B.  Then for any

terminal node t , let pB(t) be the average of pB(x) over all x in t.
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2.1  Experimental results

We illustrate, by experiment, the improved accuracy of the out-of-bag estimates compared to
the resubstitution method using synthetic and real data.  For any two J-probabilities p  and p'
denote

p−p' = |p( j)−p' ( j)|
j

∑

p−p' 2 = ( p( j)−p' ( j))2

j
∑

Let q*(t)  = P(X ∈  t) be the probability that an example falls into the terminal node t .  For any
estimate  {p(t)]  of the {p*(t)}  define two error measures:

E1 = q* t( )
t
∑ |p*(t)−p(t)|

E2 = ( q*(t) p*(t)−p(t)
t
∑ 2 )

1
2

The difference between the two measures is that large differences are weighted more heavily

by E2.  To simplify the interpretation we divide E1 by J and E2 by J . Then E1 measures the

absolute average error in estimating each component of the probability vector, while E2
measures the corresponding rms average error.

We use a test set to estimate q*(t) as the proportion q'(t) of the test set falling into node t  and
estimate p*(t) by the proportions of classes p'(t) in those test set examples in t.  This lets us
estimate the two error measures.  With E2, it is possible to derive a correction that adjusts for

the error in using p'(t) instead of p*(t).  The correction is generally small if the test set is large
and is derived in the Appendix.

Synthetic Data  We give results for four sets of synthetic data (see Breiman[1996b]) for specific
definitions):

Table 1 Synthetic Data Set Summary

Data Set       Classes              Inputs              Training  Test

waveform 3 21 300 5000
twonorm        2 20 200 5000
threenorm 2 20 200 5000
ringnorm        2 20 200 5000

In all cases, there were 50 iterations with the training and test sets generated anew in each
iteration and 100 replications in the bagging.  The results given are the averages over the 50
iterations:

Table 2  Node Probability Errors

Data Set EB1 ER1   EB1/ER1              EB2 ER2  EB2/ER2

waveform ,048 .131 .37 .066 .171 .38
twonorm .061 .215 .28 .083 .221 .36
threenorm .069 .263 .26 .085 .278 .30
ringnorm .085 .202 .42 .123 .230 .54

The ratios of errors in the 3rd and 6th columns shows that  the out-of-bag estimates are giving
significant error reductions. 
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Real Data The data sets we used in this experiment are available in the UCI repository.  We
used some of the larger data sets  to insure test sets large enough to give adequate estimates of q*
and p*.

Table 3  Data Set Summary

Data  Set         Classes     Inputs        Training Test

breast-cancer         2         9 200 499
diabetes 2         8 200 568
vehicle 4       18 400 446
satellite 6       36 600            5835
dna  3       60 300            2886

The data sets listed in Table 3 consisted examples whose number was the total of the test and
training set numbers.  So, for example, the breast-cancer data set had 699 examples.  The last
two data sets listed came pre-separated into test and training sets.  For instance, the satellite
data came as a 4435 example training set and a 2000 example test set.  These were put together
to create a single data set with 6435 examples.  Note that the training set sizes are 100 per
class.

There were 50 runs on each data set.  In each run, the data set was randomly divided into
training and test sets with sizes as listed in Table 3, and 100 bootstrap replicates generated
with each training set.  The results, averaged over the 50 runs, are given in Table 4.

Table 4  Node Probability Errors

Data Set EB1 ER1   EB1/ER1              EB2 ER2    EB2/ER2

breast cancer .037 .046 .80 .069 .084 .82
diabetes .063 .124 .56 .063 .156 .41
vehicle .054 .091 .60 .058 .151 .39
satellite .025 .044 .56 .049 .100 .49
dna .054 .050     1.08 .084 .106 .79

The results generally show a significant decrease in estimation error when the out-of-bag
estimates are used.

3.  Estimating  node error in regression

Assume here that the training set consists of independent draws from the distribution Y,X
where Y is a numerical output, and X a multivariate input.  Some methods for constructing a
predictor f(x,T) of y using the training set  also try to construct an estimate of the average error
in the prediction--for instance by giving an estimate of the rms error in the prediction.  When
these error estimates are  based on the training set error, they are often biased toward the low
side.

In trees, the predicted value f(x,T) is constant over each terminal node t and is equal to the

average y (t)  of the training set outputs over the node t.  The with-in node error estimate eR(t)

for t is computed as the rms error over all examples in the training set falling into t.  However,
since the recursive splitting in CART is based on trying to minimize this error measure, it is
clearly biased low as an estimate of the true error rate e*(t) defined as:



5

. e*(t)=(E((Y−y(t))2|X∈ t))1/2

 The out-of-bag estimates are gotten this way:  draw 100 bootstrap replicates of T  getting T1,B,

...  ,T100,B.  For each k, build the tree predictor f(x,Tk,B).  For each (y,x) in T, define sB(x)  as

the average of  (y - f(x,Tk,B))2  over all k such that (y,x) is not in Tk,B.  Then for any node t

define eB(t) as the square root of the average over all x in t of sB(x).

3.1 Experimental results

For any estimate e(t) of e*(t), define two error measures:

        E1 = q*(t)|e*(t)−e(t)|
t
∑

      E2 = ( q*(t)
t
∑ (e*(t)−e(t))2)

1
2

To illustrate the improved accuracy of the out-of-bag estimates of  e*(t), five data sets are
used--the same five that were used in Breiman[1996a].  The first three of the data sets are
synthetic data, the last two real.

Table 5 Data Set Summary

Data Set Inputs            Training         Test

Friedman #1 10 100 2000
Friedman #2   4 100 2000
Friedman #3   4 100 2000
Ozone   8 100   230
Boston 12 100   406

There were 50 runs of the procedure on each data set, and 100 bootstrap baggings in each run.  In
the synthetic data sets, the training and test set was freshly generated for each run.  With the
real data sets, for each run a different random split into training and test set was used.  The
values of q* and e* were estimated using the test set.  For E2 an adjustment was used to correct for

this approximation (see Appendix).  The results, averaged over the 50 runs, are given in Table
6.  For interpretability, the error measures displayed have been divided by the standard
deviation of the combined training and test set.

Table 4  Node Estimation Errors

Data Set EB1 ER1   EB1/ER1             EB2 ER2    EB2/ER2

Friedman#1 .13 .33 .41 .17 .35 .47
Friedman #2 .11 .23 .47 .14 .27 .53
Freidman #3 .14 .31 .47 .20 .42 .48
Ozone .11 .18 .59 .11 .21 .52
Boston .17 .31 .53 .21 .39 .53

Again, there are significant reductions  in estimation error.

4.  Error due to within-node variability
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Suppose that we want to estimate a function of the inputs h*(x).  Only if we want to stay in the
structure of a single tree with predictions constant over each terminal node,  does it make sense
to estimate h*(x) by some estimate of h*(t).  The target function h*(x) may have considerable
variability over the region defined by a terminal node in a tree.  Given a tree with terminal
nodes t  and estimates h(t) of h*(t), denote the corresponding estimate of h by h(x,T).  tThe
squared error  in estimating h* given that the inputs x are drawn from the distribution of the
random vector X  can be decomposed as:

EX (h(X) − h(X, T ))
2

= EX(h(X)−h*(
t
∑ t)

2
| X ∈ t)P(X ∈ t) + (h*(t)−h(t))2

t
∑ P(X ∈ t)

The first term in this decomposition we call the error due to within-node variability, the
second is the node estimation error. The relevant question is how large the within-node
variability error is compared to the node estimation error.  Obviously, this will be problem
dependent , but we give some evidence below that it may be a major portion of the error.

We look at the problem of estimating the conditional probabilities  p*(x). The expression
analogous  to the above decomposition is:

 EX p*(X)−p(X,T)
2

= q*(t)EX( p*(X)−p*(t) 2 |X∈ t)
t
∑ + q*(t) p*(t)−p(t) 2

t
∑       (4.1)

For the four synthetic classification data sets used in Section 3,  p*(x)  can be evaluated exactly.
Therefore, replacing the expectations over X  by averages over a large test set (5000), the error
EV due to within-node variability (first term in (4.1) and the error EN due to node estimation
(second term in (4.1))can be evaluated.  There are two methods of node estimation--the
standard method leads to error ENR and the out-of-bag  method to error ENB.

Another method of estimating p* is by utilizing the sequence of bagged predictors.  For each
(y,x) in the test set, define pB(x) as the average of the pR(x, Tk,B) over all k.  Then defining EB
as:

EB =  EX p*(X)−pB(X)
2

,

this quantity is also evaluated for the synthetic data by averaging over the test data.

The experimental procedure consists of 50 iterations for each synthetic data set.  In each
iteration, a 5000 examples test set and 100J example training set is generated, and the following
ratios evaluated:

R1 = 100*ENR /(ENR +EV ),
R2 = 100*(ENB-ENR )/(ENR+EV ),
R3 = 100*ENB/(ENB+EV ),
R4 = 100*EB /EV .

Thus,  R1 is the percent of the total error due to node estimation when the resubstitution method
of estimating  p*(t)  is used:  R2  is the percent of reduction in the total error  when the bagging
estimate  pB(t)  is used.  When pB(t)  is used,  R3  is the percent of the total error due to node
estimation.  Finally, R4 is the ratio*100 of the error using the pointwise bagging estimate of p*

to the error using estimates constant over the terminal nodes but using the optimal node
estimate p*(t).   Table  5 gives the results.
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Table 5  Error Ratios(%) in Estimating Class Probabilities

Data Set R1 R2 R3 R4 

waveform 37 29 11 46
twonorm 28 21   8 46
threenorm 37 29 10 59
ringnorm 27 18 11 63

For these synthetic data sets, the  values for R1 shows that  within-node variability accounts
for about two-thirds of the error.   The second column ( R2 ) shows that use of the bagging
estimate pB(t)  eliminates most of the errors due to node estimation, but that the reduction is
relatively modest because of the strong contribution of within-node variability.  The results for
R3  show that when pB(t) is used, only about 10% of the total error is due to node estimation, so
that we are close to the limit of what can be accomplished using estimates of p* constant over
nodes.

The final column gives the good news that using the pointwise bagging estimates  pB(x) gives
about 50% reduction as compared to the best possible node estimate.   It is a bit disconcerting to
see how much accuracy is lost  by the averaging of estimates over nodes.   Smyth et.al.[1996]
avoid this averaging by using a kernel density method to estimate variable within-node
densities.  However,  pointwise bagging estimates may give comparable or better results.  Care
must be taken in generalizing from these synthetic data sets as I suspect they may have more
within-node variability than typical real data sets.

5.  Why it works--the pointwise bias-variance decomposition

Suppose there is some underlying function h*(x) that we want to estimate using the training set
T and that we have some method h(x,T) for estimating h*(x).  Then for x fixed, we can write,
using ET to denote expectation over replicate training sets of the same size drawn from the same

distribution

ET (h*(x)−h(x,T ))2 =(h*(x)−ETh(x,T ))2 +ET (h(x,T )−ETh(x,T ))2
.

This is a pointwise in x  version of the now familar bias-variance decomposition.  The
interesting thing that it shows is that at each point x,  ETh(x,T) has lower squared error than

does h(x, T)--it has zero variance but the same bias.  That is, averaging h(x,T) over replicate
training  sets improves performance at each individual values of x.

Bagging tries to get an estimate of ETh(x,T) by averaging over the values of  h(x,Tk,B).  Now

ETh(x,T) is computed assuming x is held fixed  and T is chosen in a way that does not depend on

x.  But if x is in the training set, then the Tk,B  often contain x, violating the assumption.  A

better imitation of  ETh(x,T) would be to leave x out of the training set and do bagging on the

deleted training set.  But this is exactly what out-of-bag estimation does resulting in more
accurate estimates of h*(x) at every example in the training set.  When these are averaged over

any terminal node t,  more accurate estimates hB(t) of h*(t)=E(h*(X)| X ∈   t) result.

6.  Trees using  out-of-bag output estimates.

In regression, for y,x an example in the training set, define the out-of-bag estimate yB for the
output y to be the average of f(x,Tk,B) over all k such that x is not in Tk,B.  The out-of-bag

output estimates will generally be less noisy than the original outputs.  This suggests the
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possibility of growing a tree using the yB as the outputs values for the training set.  We did this
using the data sets described in Section 3, and followed the procedure in Breiman[1996].

With the real data sets we randomly subdivided them so that 90% served as the training set,
and 10% as a test set.  A tree was grown and pruned using the original training set, and the 10%
test set used to get a mean-squared error estimate.  Then we did 100 bootstrap iterations and
computed the yB.  Finally a single tree was grown using the yB as outputs and its error measured
using the 10% test set.  The random subdivsion was repeated 50 times and the test set errors
averaged.  With the three synthetic data sets, a training set of 200 and a test set of 2000 were
freshly generated in each of the 50 runs.  The results are given in Table 6.

          Table 6.  Mean Square Test Set Error

Data Set Error--Original Outputs    Error--O-B  Outputs

Friedman #1 11.8 10.6
Freidman #2* 31.2 26.8 * x1000
Friedman #3** 42.1 41.2 **/1000
Boston 20.4 18.7
Ozone 25.5 21.2

These decreases are not as dramatic as those given by bagging.  On the other hand, they involve
prediction by a single tree, generally of about the same size as those grown on the original
training set.  If the desire is to increase accuracy while retaining interpretability, then using
the out-of-bag outputs does quite well.

The story in classification is that using the out-of-bag output estimates gives very little
improvement in accuracy and can actually result in less accurate trees.  The out-of-bag output
estimates consist of the probability vectors pB(x). CART was modified to accept probability
vectors as outputs in tree construction, and a procedure similar to that used in regression was
tried on a number of data sets with disappointing results.  The problem is two-fold.  First, while
the probability vector estimates may be more accurate, the classification depends only on the
location of the maximum component.  Second, for data sets with substantial missclassification
rates, the out-of-bag estimates may produce more distortion than the original class labels.

7.  Out-of-bag estimates for bagged predictors.

In this section, we reinforce the work by Tibshirani [1996] and Wolpert and Macready[1996],
both of whom proposed using out-of-bag estimates as an ingredient in estimates of
generalization error.  Wolpert and Macready worked on regression type problems and proposed
a number of methods for estimating the generalization error of bagged predictors.  The method
they found that gave best performance is a special case of the method we propose.  Tibshirani
used out-of-bag estimates of variance to estimate generalization error for arbitrary classifiers.
We explore estimates of generalization error for bagged predictors.  For classification, our
results are new.

As Wolpert and Macready point out in their paper,  cross-validating bagged predictors may
lead to large computing efforts.  The out-of-bag estimates are efficient in that they can be
computed in the same run that constructs the bagged predictor with little additional effort.
Our experiments below also give evidence that these estimates are close to optimal.

Suppose again, that we have a training set T consisting of examples with an output variable y
that can be a multidimensional vector with numerical or categorical coordinates, and
corresponding input x.  A method is used to construct  a predictor  f(x,T), and a given loss function
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L(y, f) measures the error in predicting y  by f.  Form bootstrap training sets Tk,B, predictors f(x,

Tk,B) and aggregate these predictors in an appropriate way to form the bagged predictor fB(x).

For each y,x  in the training set, aggregate the predictors only over those k for which Tk,B does

not containing y,x.  Denote these out-of-bag predictors by fOB  Then the out-of-bag estimate for
the generalization error is the average of L(y, fOB(x)) over all examples in the training set.

Denote by eTS  the test set error estimate and by eOB the out-of-bag error estimate.  In all of the
runs in Sections 2 and 3, we also accumulated the average of  eTS , eOB and |eTS - eOB|.  We can
also compute the expected value of  |eTS - eOB| under the assumption that  eOB is computed
using a test set of the same size as the training set and independent of the actual test set used
(see Appendix).  We claim that this expected value is a lower bound for how well we could use
the training set to estimate the generalization error of the bagged predictor.

Our reasoning is this:  given that the training set is used to construct the predictor, the most
accurate estimate for its error is a test set independent of the training set.  If we used a test set of
the same size as the training set, this is as well as can be done using this number of examples.
Therefore, we can judge the efficiency of any generalization error estimate based on the training
set by comparing its accuracy to the estimate we would get using a test set of the size of the
training set.

Table 7 contains the results for the classification runs for both the real and synthetic data.  The
last column is the ratio of the experimentally observed |eTS - eOB| to the expected value if the
training set were an independent test set.  The closer this ratio is to one, the closer to optimal
eOB is.    Table 8 gives the corresponding results  for  regression.

Table 7  Estimates of Generalisation Error  (% Missclassification)

Data Set              Av eTS          Av  eOB    Av |eTS - eOB| Ratio

waveform 19.6 19.4 2.7 1.41
twonorm   8.4   9.1 1.8 1.10
threenorm 21.3 21.8 3.3 1.35
ringnorm 11.8 12.2 2.6 1.33

breast-cancer   4.4   4.4 1.5 1.11
diabetes 25.6 26.2 3.6 1.28
vehicle 26.3 27.0 2.3   .96
satellite 13.7 14.1 1.3 1.01
dna   7.5   7.6 1.2   .96

Table 8  Estimates of Generalization Error  (Mean Squared Error)

Data Set  Av eTS            Av  eOB        Av |eTS - eOB| Ratio

Friedman #1   8.6   8.0 1.3 1.33
Friedman #2 24.7* 23.6* 3.6 1.21 * x1000
Friedman #3 32.8** 30.5** 6.7** 1.06 **/1000
Boston 19.6 17.8 6.8 1.07
Ozone 20.7 19.5 3.5 1.02

Tables 7 and 8 show that the out-of-bag estimates are remarkably accurate.  On the whole, the
ratio values are close to one, reflecting the accuracy of the out-of-bag estimates of the
generalization error of the bagged predictors.  In classification, the out-of-bag estimates



10

appear almost unbiased, i.e. the average of eOB is almost equal to the average of eTS .  But the
estimates in regression may be systematically low.   The two values slightly less than one in
Table 6 we attribute to random fluctuations.  The denominator in the ratio column depends on a
parameter which has to be estimated from the data.  Error in this parameter estimate may
drive the ratio low )see Appendix for details).
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Appendix

I.  Adjustment to E2 in classification

With moderate sized test sets we can get, at best, only noisy estimates of p*.   Using these
estimates to compute error rates may lead to  biases in the results.  However, a simple
adjustment is possible in the E2 error criterion. For {p(t)} probability estimates  in the terminal

nodes t  depending only on the examples in T, E2  is defined by

E22 = q(t) p*(t)−p(t) 2

t
∑ (2.1)

Let p'(t) be the class proportions of test set examples in node t so that p'(t) is an estimate of
p*(t) .  We assume that the examples in S and T are independent.  Let N  be the number of test
set examples falling into terminal node t.  Conditional on N, p'(j|t) times N has a binomial
distribution B(p*(j|t),N).  Hence,  p'(j|t)  has expectation p*(j|t) and variance p*(j|t)(1-p*(j|t)
)/N.   Write

p' −p 2 = p*−p 2 + p' −p* 2 +2(p*−p,p' −p*) .

Taking  expectations of both sides with respect to the examples in S holding  N constant gives

N⋅E p' −p 2 =N p*−p 2 +1− p* 2
(A.1)

Putting p=0 in (A.1) gives

N⋅E p' 2 =N p* 2 +1− p* 2
(A.2
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Solving (A.1) and (A.2) for  N p*−p 2
gives

N p*−p 2 =N⋅E p' −p 2 −
N

N−1
(1−E p' 2

)

Thus, we estimate the error measure E2 as:

E22= q' (t)[
t
∑ p' (t)−p(t) 2 −(1− p' 2 ) (N(t)−1)] (A.3)

where N(t) is the number of test set examples in node t, q'(t) is N(t)/N, and we define the
second term in the brackets to be zero if N(t)=1.    This term in (A.3) is the adjustment.  In our
examples, it had only a small effect on the results.

II.  Adjustment to E2 in regression

In regression, E2 is defined as the square root  of

    R=  q*(t)
t
∑ (e*(t)−e(t))2 .

Since e*(t) is unknown, we estimate it as the square root of the average over all test set (y,x)

falling in t of (y- y (t) )2 and denote this estimate by e'(t).  Let

    R' = q*(t)
t
∑ (e' (t)−e(t))2  .

Then we want to adjust R' so that it is an unbiased estimate of R, i.e. so that ER' = R, when the
expectation is taken over the test set examples.  To simplify this computation, we assume that:

i)  test set output values in t are normally distributed with true mean y*(t).

ii) q*(t)|y*(t)- y (t)| is small.

Now,

e' (t)2 = (yn
'

n
∑ −y(t))2 / N(t)

where the sum is over all test set (y,x) falling into t.  By the Central Limit Theorem, e'(t)2 =

e*(t)2  + Z / N(t)  where Z is approximately normally distributed with mean zero and

variance equal to the variance of (Y- y (t) )2 conditional on X  in t.   It follows that Ee'(t)2 =

e*(t)2 , and to first order in N(t),  Ee'(t) = e*(t) - EZ2 /(8e*(t)3 N(t)) .  Recall that for a

normally distributed random variable U with variance σ2
,the variance of U2 is 2σ4

.  Using

assumption i) gives EZ2 =  2(var(Y- y (t) ))2.By assumption ii) the variance of Y- y (t)  on t can

be approximated by e*(t)2 .  Thus,

Ee' (t)=e*(t)[1−.25/ N(t)]   (A.4)
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Write
.

(e' (t)−e(t))2 =(e' (t)−e*(t))2 +(e*(t)−e(t))2 +2(e' (t)−e*(t))(e*(t)−e(t)).      (A.4)

Taking expectation of (A.5) with respect to the test set and using (A.4) gives

E(e' (t)−e(t))2 ≈E(e*(t)−e(t))2 +e*(t)e(t)/2N(t)   (A.5)

Approximating e*(t)e(t) by e'(t)2  gives the adjusted measure:

         E2
2 = q' (t)

t
∑ [(e' (t)−e(t))2 −.5e' (t)2 / N(t)]

Again, the adjustment contributes a relatively small correction in our runs.

III.  Lower bound for training set accuracy.

Suppose we have a classifier Q(x)  with true generalization missclassification rate P*.  That is,
for the distribution of the r.v. Y,X,  e*= P(Y ≠  Q(X)).  Two sets  of data T'= {(y'n,x'n), n=1, ...

,N'} and T= {(yn,xn), n=1, ... ,N} are independently drawn from the underlying distribution of

Y,X  and run through the classifier.  The first has has classification error rate e' and the second
e.  We evaluate g(N',N) =E|e'-e|.

In the context of the experiments on out-of-bag estimation, the first set of data is the given test
set.  The second set is the training set.  The training set is used both to form the bagged classifier
and the out-of-bag estimate of the generalization error.   Suppose we had an untouched test set
of the same size as the training set and used this new test set to estimate the generalization
error.  Certainly, we would do better than any way of using the training set over again to do the
same thing.  Thus g(N',N) is a lower bound for the accuracy of generalization error estimates
using a training set of N examples, when it is being compared to a test set using N' examples.

Now, e is given by

e= Vn
n
∑ / N          (A.6)

where  Vnis one if the nth case in T is missclssified and zero otherwise.  By the Central Limit

Theorem,  e=e* + Z / N , where Z is approximately normal with mean zero and variance P*(1-

P*).  Similarly, e'=e* + Z' / N ' where Z' is approximately normal mean zero also with
variance e*(1-e*) and independent of Z. So e'-e is normal with variance

s=e*(1-e*)[(1/N)+(1/N')].

The expectation E|U| of a mean zero normal variable U with variance s is 2s/π   and it was
this last expression that was used as a comparison in Section 6, with s estimated using e' in
place of e*.

In regression , the predictor is a numerical-valued function f(x).  The true generalization error is

e* = E(Y-f(X))2 .  Expression (A.6) holds with Vn =(yn − f (xn ))2
.  Again,  e=e*+ Z / N , where

Z is approximately normal with mean zero and variance  c/ N  with c the variance of (Y-

f(X))2 .   Repeating the argument above,  e'- e is a normal variable with mean zero and variance
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s=c[(1/N)+(1/N') so E|e'-e| equals 2s/π.  The variance of  (Y-f(X))2  is given by E(Y-f(X))4 -

(E(Y-f(X))2)2.  This value is approximated by the  using the corresponding moments over the
test set, leading to the evaluation of the lower bound.


