BORN AGAIN TREES

Leo Breiman Nong Shang

Statistics Department School of Public Health

University of California University of California

Berkeley, CA 94720 Berkeley, CA 94720

leo@stat.berkeley.edu shang@stat.berkeley.edu
ABSTRACT

Tree predictors such as CART or C4.5 are often not as accurate as
neural nets or use of multiple trees. But these latter methods
lead to predictors whose structure is difficult to understand,
whereas trees have a universal simplicity. Because of this, it is
appealing to try and find tree representations of more complex
predictors. We study tree representers of multiple tree
predictors. These representers are larger, more stable and more
accurate than trees grown the usual way. For this reason, we
call them "born again" trees.

1. Introduction

A set of data (training data) T consisting of ({y(n),x(n)} n=1,, ... N) is given. Here the y(n) are
either class labels in the set [1, ... ,J} (classification) or are numerical(regression) and the x(n)
are multidimensional input vectors.. The training data T is used to consruct a predictor f(x) . On
test set data, the predictor is accurate. However, suppose the predictor has a complex structure.
For instance, the predictor could be a neural net with many hidden units. For many purposes we
would like a simple picture of how the predictor operates on a given input vector x to produce
the output prediction f(x) . One method for getting simple picture is to represent f(x) by a tree
predictor. That is, find a tree whose output at any x is generally close to f(x). Such trees we
will call representer trees. The problem is : given a probability distribution P on the space of
input variables x find the tree that best represents f(x).

Over the last two to three years, numbers of papers have come out which show that combining a
multiple set of predictors, all constructed using the same date, can lead to dramatic decreases in
test error Two methods seem most promising--bagging (Breiman[1995]) and arcing aka boosting
(Freund and Schapire[1995], 1996]). See also Breiman[1996], Dieterrich and Kong[1995],
Drucker and Cortes[1996], Quinlan[1996]. The research cited generate multiple copies of tree
predictors and combined them--in regression by taking their average at an input vector x. In
classification, the method used is to have the predictors vote for the most popular class at the
point x . Recent work on neural nets has shown that combining a number of neural nets grown
using the same data, also gives lower test set error rate.

At the of the day, what we are left with is an almost inscrutable prediction function combining
many different predictors. But the resulting predictor can be quite accurate. Michie
et.al.[1994]) compares the accuracy of over 18 different predictors on a variety of data sets. We
looked only the larger data sets that came with set-aside test sets. Growing and combining 50
CART trees using the arcing algorithm arc-fs gives a predictor that performs much better on
these four data sets than any other classifier.

But this puts us in an difficult dilemma. A single tree, whether generated by CART or C4.5
(Quinlan) has a simple and understandable structure, but combinations of many trees do not.
Suppose we try to fit the data with a single layer feed forward with 25 hidden units. The

structure of the resulting neural net is also difficult to decipher. But neural nets properly fitted
and regularized, can be among the most accurate of predictors.

To satisfy the needs of understanding, a single tree is needed. But the usual tree fitting
methods used in CART and C4.5 produce predictors with accuracy often substantially below
that of neural nets or bagged/arced trees. What is shown in this present work is that it is
possible to find single trees representing predictors that have better accuracy than trees built
the usual way.

The key to this construction is manufacturing data. We assume that, using the training set T, a
predictor f(x) has been constructed such that given any input x of the right dimensionality, and
numerical characteristics, f(x) outputs a predicted value of y. Then, we can manufacture a large
number of inputs {xm}, put each one of these into {, get the predicted value ym=f(xm), and use
the {ym,xm} to build a representer tree. Since there is no limit to how many xm we
manufacture, the data used to build the representer tree can have a much larger sample size
that the original training set.

There are two problems that need to be solved for this approach to work. The first is how to
manufacture the xm. It is known that trees are consistent in the sense that, under weak
restrictions, if the data consists of (y,x) pairs independently drawn from the same underlying
distribution, then as the sample size and the size of the tree goes to infinity, its prediction error
converges to the minimum possible error rate. Since we what the constructed tree to be accurate
for future x-inputs drawn from the same distribution as the training set {x(n)}, we need to
manufacture the xm from a distribution derived from that of the training set {x(n)}.

The second problem is that the approach, as outlined above, does not work very well. We had,
early on, after putting together the arced CART classifiers, tried this approach using xm that
were manufactured using the method detailed in Section 2. We generated data sets 10-20 times
the size of the original training set and grew CART trees using this manufactured data. They
were more accurate, but were so large that they could not be called simple.

The paper by Craven and Shavlik[1996] provided the piece that was essential to make
representation work. Instead of generating a large manufactured data set to begin with and
then grow a tree, they set a sample size NS and proceeded as follows: given an unsplit node t of
the current representation tree, manufacture data xm and send it down the tree until there are
NS instances in the node t. Now use these NS instances to split t. This idea solved what is the
most vexing problem in tree construction--the thinning out of training data in the lower branches
of the tree.

Craven and Shavlik manufacture the xm by using a kernel estimate for the density of each
coordinate of x, and sample from the product of the densities. We use a different approach
that preserves some of the correlation between coordinates and does not assume that the
variables in x are all numerical. We also use a different "stop splitting" rule. The splitting
process is stopped when the one of the two children node contains no instance of the original
training set. Generally, the number of nodes generated this way is large. In order to keep tight
bounds on the size of the representing trees, we assign a cost to each node and use pruning.

Section 2 describes the algorithms we use in representation. In Section 3 we give the results of
testing the trees representing arced classifiers on a number of data sets. In arcing we used the
Freund-Schapire algorithm (see Freund and Schapire[1995],[1996]). The tree representers are
generally more accurate than the trees grown the usual way. Section 3 shows similar results for
the regression case where we represent bagged trees. Section 4 gives results concerning the sizes
of the representer trees, and sections 5 and 6 look at some asssociated questions.

The results in this paper seem circular. First, tree construction methods were discovered. Then,
recently, it was discovered that accuracy could be improved by bagging or arcing multiple trees.
Now we see that by manufacturing data and representing the multiple trees, we can get a single
tree that is larger, more robust, and considerably more accurate than the original tree. Because
of this, we refer to these representation trees as born again trees.

2. Structure of the Algorithm.

There are three primary components to our representations. They are a) how the xm are
generated b) how the tree is constructed c) how the tree is pruned and a subtree selected

2.1 Generating the xm

The x in the training set and future x are assumed to be drawn from some underlying unknown
multivariate distribution that we would like to mimic. Let x = (x(1), x(2), ... ,x(m)). One
approach to generating the xm is to estimate the underlying distribution of the x using the
values of the {x(n)} in the training set, and then sample from this estimated distribution. We
take, instead, a different approach that preserves some of the correlation between variables in
the input vector and allows the variables to have any characteristic-numerical or categorical.

The xm are manufactured as follows: a threshold number palt in [0,1] is selected (in all runs we
used palt = .5 or .25). One of the {x(n)} in the training set is selected at random. Its coordinates
are x(1,n) ,x(2,n), ... x(m,n). For i=1, ... ,m, a random number r in [0,1] is selected. If r > palt
then xm(i)=x(i,n). Else, xm(i) is selected at random from the N values of {x(i,j), j=1, ... ,N}. We
refer to this method as 100*palt% smearing. We found, in the data sets experimented on, that
50% smearing worked well for all except one in which 25% smearing gave better results.

2.2 Constructing the born again tree

A sample size NS is set (we took NS~N, but its exact size is not critical--see remarks in Section
4). The nodes are numbered consecutively as they are formed. At the next unsplit node t, xm are
manufactured and passed down the tree until NS land in node. These NS xm are passed through
the arced or bagged predictor (classification or regression), to give estimated predicted values
ym.

In the classification case, we get an estimate of the probability of node t, pr(t), by dividing NS
by the number of times we manufactured an xm until we got NS of them into t. If p(j) is the
proportion of class j among the NS cases in t, then set cost(t)= (1-max(p(j)) pr(t). Find the best
split of t using the {(ym,xm), n=1, ... ,NS}. After the split, if either child node contains no
instance of the training set, declare the parent a terminal node and leave it unsplit. In the
regression case, we compute the sample variance var(t) of the ym in t, and define the cost(t) as

pr(t) var(t).

2.3 Pruning and subtree selection.

The next step is pruning. This is done in the usual CART manner using the costs computed as
mentioned above. This results in a sequence of subtrees. In the results given below, the original
training set was run down the sequence of subtrees and and that subtree giving minimum error on
the training set selected. This procedure sometimes selected subtrees that were larger than
optimal. Another method of selecting a pruned subtree was to generated a data set from the
training set using the same amount of smearing used in constructing the tree, run this set of data
down the sequence of subtrees, and select the minimum error subtree. This gave smaller trees
but slightly larger test set error. We give the comparisons in section 4.

3 Experimental results--Test set error

3.1_Classification

In testing we used a number of data sets from the UCI repository . Most of these were used in
Breiman([1996a],[1996b]). Data sets in which arcing did not reduce the test set error were not

used.

Table 1 Data Set Summary-Classification

Data Set #Iraining
breast cancer 699
ionosphere 351
glass 214
soybean 683
sonar 208

#Test

70
35
21
68
21

#Variables

9
34
9
35
60

#Classes

N YOO DNDN

The test set errors are given in Table 2. The first column give the results for the born again trees
and the second for CART trees grown using the training set in the standard way. Comparison of
the first and second columns shows the reduction in error rates during rebirth (column three).
The last column gives the test set error for the 50 arced trees. The test set error estimates were
gotten by deleting 10% of the data at random, growing the arced, born again and ordinary
CART trees on the other 90% and then using the left-out 10% as a test set. This was repeated
100 times (50 times for the soybean data) and the test set errors averaged.

Table 2 Test Set Error (%)

Data Set BA-CART
breast cancer 3.9
ionosphere 6.1
glass 28.2
soybean 8.4
sonar 25.1

3.2 Regression

CART

5.9
11.2
30.4

8.6
32.1

The same data sets are used as in Breiman[1996a].

% DECREASE

34
46
7
2
22

Table 3 Data Set Summary-Regression

Data Set #Iraining
Boston Housing 506
Ozone 330
Friedman#1 200
Friedman #2 200
Friedman #3 200

#Test

56
33
2000
2000
2000

#Variables
18
9
10
4
4

ARCED-CART

3.0
5.7
21.6
6.3
16.0

We compare the results of the born again trees with the bagged trees and the CART results

given in Breiman[1996].

Table 4 Mean Squared Test Set Error

Data Set BA-CART CART %DECREASE BAGGED -CART
Boston Housing 15.6 20.0 22 10.8
Ozone 19.0 239 21 18.1
Friedman#1 8.7 11.4 24 6.4
Friedman #2* 24.7 33.1 25 21.2
Friedman #3** 32.7 40.3 19 25.5

* divided by 1000 *multipliued by 1000

With the first two data sets, the same procedure was followed as in classification. That is,
10% of the data was randomly deleted, everything was run on the rest, and the deleted 10%
used as a test set. This was repeated 100 times and the results averaged. The last three data
sets are synthetic and in each of the 100 iterations, a 200 case training set and 2000 member test
set were freshly generated. The results for bagged CART differ from the results in
Breiman[1996a} mainly because 50 trees were bagged instead of 25.

4 Tree Sizes and Parameter Settings.

4.1 Tree Sizes

If the born again trees were too large in size, their advantage in simplicity is lost. As it turns
out, the born again trees are of reasonable size--larger than CART trees, but not gigantic. We
take as default the subtrees selected by running the training set down the tree. The table below
gives the average number of terminal nodes in the born again trees (column 2) as compared with
the average for CART trees (column 1). Another subtree selection method consists of generated
a smeared data set and running it down the tree. This generally gives smaller trees (column 3)
but a small increase in classification error . We give the increase as a percent of the default
method missclassification rate(column 4).

Table 5 Average Number of Terminal Nodes-Classification

Data Set CART BA-CART BA-CART1 ERR-INCREASE(%)
breast cancer 16 28 25 2.6
ionosphere 11 28 22 9.0
glass 18 55 45 0.9
soybean 62 74 71 1.0
sonar 10 36 33 -1.1

In the regression case, we omit the results of the alternative tree selection method since it
selected trees almost identical in size to our default method.

Table 6 Average Number of Terminal Nodes-Regression

Data Set CART BA-CART
Boston Housing 22 58
Ozone 9 46

Friedman#1 17 49
Friedman #2 18 25

Friedman #3 22 37

4.2 Parameter Settings

We set the number NS of manufactured xm equal to the size of the training set in our runs. But
the evidence we have is that the results, within wide limits, are not sensitive to its value.
We ran the breast cancer data with NS=250 instead of the 700 used in our regular run. The
results were very close. Other than NS, the only other parameter which needs to be specified
is the amount of smearing.. We used 50% smearing in all data sets except in the soy bean data
where 25% gave better results.

Sometimes smaller trees may be desired at the price of decreased accuracy. There are two ways
to do this in our algorithm. One is to declare t terminal if cost(t) is less than some threshold
value --k/N is suitable, where N is the training set size and k is small, say 1-5. Another is to
declare t terminal if the number of training set instances in t is less than some number k, say k=1-
5.

5. Other issues

A number of interesting questions come up in the context of born again trees. Some that we
discuss below are fidelity of representation, computing efficiency, and accuracy.

5.1_Fidelity of representation

How faithful to the original is the representation? Put another way, how much do the born
again trees differ from the arced or bagged trees they are representing. In classification, we
kept track of the percent of the test set assigned different classifications by the arced trees and
the born again trees. This was also averaged over the 100 iterations. Table 4 gives again (1st
and 3rd columns) the ba-tree test rate and the arced-trees test rate. The 2nd column is the
average percent disagreement.

Table 4 Test Set Error (%) and Difference(%

Data Set BA-CART DIFFERENCE ARCED -CART
breast cancer 3.9 2.3 3.0
ionosphere 6.1 3.3 5.7
glass 28.2 17.0 21.6
soybean 8.4 6.4 6.3
sonar 25.1 19.9 16.0

In regression, we kept track of the mean-squared differences between the bagged tree test set
predictions and the born again tree predictions. Table 5 summarizes the averages of these over
the iterations.

Table 5 Mean Squared Test Set Error and Difference

Data Set BA-CART DIFFERENCE BAGGED -CART
Boston Housing 15.6 3.5 10.8
Ozone 19.0 2.2 18.1
Friedman#1 8.6 1.1 6.4
Friedman #2* 24.7 4.2 21.2
Friedman #3** 32.7 45 25.5

* divided by 1000 ** multiplied by 1000

In classification, the differences between the arced trees and their tree representers are
surprisingly large--almost as large as the error rate of the arced trees. But the error rate of the
born again trees is smaller than the sum of the error rate of the arced trees and the difference.
The implication is that where there is a difference, there is a good chance that the born again
tree has made the right choice and the arced tree the wrong one. It is odd that the imitation
classifier can often be right when the classifier being imitated is wrong. The situation in
regression is different. The differences between the bagged trees and their representers is small
compared to the overall test set error.

5.2 Computational efficiency

It takes much longer to build a born again tree than a CART tree. The major part of the effort is
not in the node splitting, but in the manufacturing of the data. If a node t has small
probability--say, for instance, that pr(t)=.01, then 100 xm have to be manufactured for every xm
that falls into node t. Thus, if NS=1000, 100,000 xm will need to be manufactured to get NS
inputs into t. If the dimensionality is, say, 20, and palt=.5 then over 3,000,000 random numbers
will have to generated in the manufacture of data for the single node t. In addition, these
100,000 xm will need to be passed down the tree constructed to date to see which will reach t.

Still, by neural net standards, the computing time is modest. For example, growing a born
again tree on the soybean data takes about 50 cpu minutes on a SUN Ultrasparc 1. We recently
tested a version of the algorithm which reduces the number of xm that need to be manufactured
to get NS vectors into t, and cuts the computing time by a factor of three to five.

5.3 Other ways of manufacturing data

Manufacturing data by smearing seems odd at first impression. Craven and Shavlik [1996]
take a more direct approach, construct a kernel density estimate for each each input variable
separately, and sample from the product of the density estimates. =~ We tried two approaches
which also seemed more standard. An x input vector is chosen at random from the N input
vectors in the training set, x = (x(1),x(2), ... ,x(m)). Set a value nn and for each k=1, ... ,m select
the kth component of the manufactured xm at random from among the nn nearest neighbors of
x(k) in the set of training values x(kn), n=1, ... ,N. This is repeated as many times as necessary
to get NS xm into the node being split. A variant of this is to select the kth component of xm
from among the nn nearest neighbors, but with the probability of selection decreasing as the
neighbor is further away. To our surprise, neither appoach did as well as smearing.

5.3 Comments on accuracy

In the classification data sets we ran, born again trees have error rates averaging 22% less
than CART trees--in regression, 42% less. The idea that we can significantly improve the
accuracy of trees by this roundabout method is interesting. In previous research (Shang and
Breiman [1996]) we saw that tree accuracy could be improved by using the training set to
estimate the (Y,X) distribution and then using the estimated distribution to grow the tree.
While this approach also gives improved accuracy, it requires a complex estimation procedure
and grows larger trees.

Breiman[1996a,b] noted that an important source of error in methods like trees was their
instability, which led to high variance. ~Combining many trees by devices like bagging or
arcing can lead to substantial reduction in variance, while leaving bias about the same. The
reason that born again trees are more accurate is that they are representers of the more stable
bagged or arced tree predictors. If the training set changes slightly, the CART tree may change

substantially, but not the combined tree predictor. The increased stability of the combined tree
predictor is passed on to its representer.

But caveats exist. The degree of improvement is data set dependent. It is relatively small in
the soy bean and glass data sets. We conjecture that the source of the problem is that these are
multiple class data sets with 19 classes in the soy bean data and 6 in the glass. Then, to
improve accuracy, the born again trees must give more accurate representations of 19 or 6 class
distribution surfaces. Note that the born again regression trees are fairly faithful representers
of the bagged trees --but here they only need to give a better representation of one prediction
surface. The other classification data sets have only two classes, and so may be easier to
approximate.

Another caveat is that born again trees are not automatically more accurate than CART trees.
For instance, growing the born again tree on the soybean data using palt=.5 resulted in a born
again tree with test set error rate higher than the CART tree. Dropping palt to .25 gave better
results. Another fact we observed is that if we grow larger trees the error rate can be reduced.
For instance, with the sonar data we grew trees by setting a low threshold th and splitting as
long as cost(t) < th. In 100 iterations the average test set error was 23.3 compared with the 25.1
rate listed above. But the average number of terminal nodes went from 36 to 71.

5.4 How accurate can trees be?

There are consistency results for trees that show, under some restrictions, that as the size of the
training set grows large the tree test set error converges to the Bayes rate (Breiman,
et.al[1984]). Theory is all well and good, but we wanted to see what the practical limits on
accuracy were using a method similar to that of the born again trees. To do this, we used the
synthetic 3 class, 21 dimensional waveform data (Breiman, et.al.[1984]). For waveform
training sets of size 300, the CART error rate is 29.0%, arcing 50 trees has error rate 17.8%, and
the Bayes rate is 13.2%.

We constructed a large tree as follows: to split a node t of the tree we generated new waveform
data and fed them down the tree until there were 500 instances in t. These 500 were used to
split t. We declared a node terminal if its probability was less than 1/4000. The tree was
pruned using the estimated gini costs in each node. A 3000 member test set was generated and
poured down the pruned subtrees.

Figure 1 is a graph of the test set missclassification rate versus the number of terminal nodes.
The graph indicates an asymptotic error rate of 22% for the trees constructed as described
above. This indicates that an error rate substantially above the Bayes error rate is a lower
limit to the best we can do using splits constructed from a fixed number of instances in each node.

6 _Final remarks

More work remains to be done in the area of representing predictors by trees. We have described
one method, but believe that it can be substantially improved. In particular, the method of
manufacturing data needs more examination. We are perplexed by the lack of fidelity in
classification and hope that others will examine this problem and find ways to improve
fidelity.

L. Breiman recently gave a talk at a 1996 IMS-AMS-SIAM Summer workshop titled
"Heisenberg's Principle in Statistics". The thesis was that there was a constant tradeoff
between accuracy and simplicity. The most accurate predictors, for seriously high-dimensional
data sets, had inscrutable structures--it was diifficult to know what pushed the prediction. But
simpler predictors, like trees, usually had less accuracy.

Representing a complex prediction rule by one with more understandable structure fulfills a
common need. An acquaintance working for a large investment house predicting market
performance using neural nets relates that the money managers constantly ask "but what factors
are driving the prediction". To answer, they fit trees to the neural net outputs. This question is
not a new one to the neural net community and there are other works in the literature which
attempt to derive sets of rules to represent nets. References are in the Craven and Shavlik
article.

These representations do not resolve the Heisenberg dilemma--the born again trees, while they
are more accurate than the CART trees, are not as accurate as the predictors they represent.
For instance, the born again classification trees have, on average, 22% lower error rate than
then CART trees. But the arced trees have error rates 23% lower than the born again trees.
The corresponding numbers in regression are 22% and 20%. While the error rates of the born
again trees can be lowered by using larger trees, this results in increasingly complex predictors
and defeats the purpose of representation.

Some of the gap between the representation error rate and error rate of the represented
predictor may be removed by improved representation methods. But experiments such as the
one using the waveform data reported on in Section 5.4 convince us that for some data
distributions, reasonable sized born again trees will have an error rate substantially above
that of the predictor being represented. One can see this most clearly in regression. Suppose
the response y equals a linear function f(x) plus noise, and suppose further that the predictor we
want to represent by a tree is exactly f(x). If x is high dimensional, then many terminal nodes
will be needed for a tree to represent f(x) accurately.

References

Breiman, L. [1996a] Bagging Predictors , Machine Learning 26, No. 2, 123-140

Breiman, L. [1996b] Bias, Variance, and Arcing Classifiers, submitted to Annals of Statistics,
ftp ftp.stat.berkeley.edu pub/breiman/arcall.ps

Breiman, L., Friedman, J., Olshen R., and Stone, C. [1984] Classification and Regression Trees,
Wadsworth

Dietterich, T.and Kong, E. [1995] Error-Correcting Output Coding Corrects Bias and
Variance, Proceedings of the 12th International Conference on Machine Learning
pp- 313-321 Morgan Kaufmann. ftp://ftp.cs.orst.edu/~tgd/papers/ml95-why.ps.gz

Drucker, H. and Cortes, C. [1996] Boosting decision trees, Neural Information Processing 8,
Morgan-Kaufmann, 479-485

Freund, Y. and Schapire, R. [1995] A decision-theoretic generalization of on-line learning
and an application to boosting. http://www.research.att.com/orgs/ssr/people/yoav
or http:/ /www.research.att.com/orgs/ssr/people/schapire

Freund, Y. and Schapire, R. [1996] Experiments with a new boosting algorithm, to appear
"Machine Learning: Proceedings of the Thirteenth International Conference," July,
1996.

Craven, M and Shavlik, W. [1996] Extracting tree-structured representations of trained
networks, Advances in Neural Information Processing Systems 8, 24-30

Quinlan, J. [1996] Bagging, Boosting, and C4.5, to appear in the Proceedings of AAAI'96
National Conference, on Artificial Intelligence, http://www.cs.su.oz.au/~quinlan

Shang, N and Breiman, L . [1996] Distribution based trees are more accurate, to appear,
Proceedings ICONIP , September, 1996.

FIGURE 1

WAVEFORM DATA--TEST SET ERROR RATE VS. NUMBER OF TERMINAL NODES

Test Set Error Rate

»

Voo, I

o
®
S SN0 wine 00 900 VORNGNIENNE B W

T T T T T T T
0 20 40 60 80 100 120 140 160

Number of Terminal Nodes

