STAT 151A: Lab 4

Billy Fang
22 September 2017

Feedback form is at the same place: https://goo.gl/forms/fKJeKItix2Djg512. Please leave comments and suggestions for lab, office hours, etc.

1 References and tables

Relevant reading: 6.1.3, 6.2.2, 9.4.1-3 in Fox.

Here are some links to t-tables. If you are not yet comfortable with reading a t-table, it would be good to practice on different t-tables, since the formatting/notation can differ. The columns can be listed by quantiles, by one-sided p-values, or by two-sided p-values (or some combination of the above) so make sure you know exactly what you are reading!

- https://en.wikipedia.org/wiki/Student%27s_t-distribution#Table_of_selected_values
- http://math.mit.edu/~vebrunel/Additional%20lecture%20notes/t%20(Student%27s)
 20table.pdf
- https://faculty.washington.edu/heagerty/Books/Biostatistics/TABLES/t-Tables/
- https://web.stanford.edu/dept/radiology/cgi-bin/classes/stats_data_analysis/lesson_4/234_5_e.html

Here are links to F-tables. Be sure to not to mix up the order of the degrees of freedom!

- http://www.socr.ucla.edu/applets.dir/f_table.html

2 Review of model, and fun facts

Everything we do today will be under the Gaussian model that we have been studying for the past two weeks. Specifically,

$$y = X\beta + \epsilon, \quad \epsilon \sim N_n(0, \sigma^2I_n),$$

where β is an unknown vector of length $p + 1$, where X is a fixed but known $n \times (p+1)$ matrix (with first column being all 1s), and where y is random (because of ϵ) and observed vector of length n. We will assume X^TX is invertible.

Let

$$\hat{\beta} := (X^TX)^{-1}X^Ty$$

be the least squares coefficients, and let $\hat{y} := X\hat{\beta}$ be the fitted values. Let

$$e := y - \hat{y}$$

be the residuals. Recall $\text{RSS} := \|e\|^2$.

Recall the following fun facts.
\[
\begin{align*}
\hat{\beta} & \sim N_n(\beta, \sigma^2 (X^T X)^{-1}) . \\
\frac{RSS}{\hat{\sigma}^2} & \sim \chi^2_{n-p-1} , \text{ and thus } E_{n-p-1} \frac{RSS}{\hat{\sigma}^2} = \sigma^2 . \\
\hat{\beta} \text{ and } e \text{ are independent} .
\end{align*}
\]

3 **Testing, in [somewhat] plain English**

<table>
<thead>
<tr>
<th>Explanation</th>
<th>Coin flip example</th>
<th>Lin. reg. example</th>
</tr>
</thead>
<tbody>
<tr>
<td>you have data (D)</td>
<td>outcome of many coin flips</td>
<td>(y \in \mathbb{R}^n) and (X \in \mathbb{R}^{n \times (p+1)})</td>
</tr>
<tr>
<td>want to test a hypothesis that the data come from some model</td>
<td>i.i.d. coin flips</td>
<td>above Gaussian model</td>
</tr>
<tr>
<td>find a statistic (T(D)) (a statistic is a function of data) whose distribution ((under the hypothesis)) you know</td>
<td>under the hypothesis, # heads (\sim) Binom((np))</td>
<td>under the hypothesis, (\frac{\hat{\beta}3 - 73}{\sqrt{\frac{RSS}{n-p-1} \cdot \sqrt{v{3,3}}}} \sim t_{n-p-1})</td>
</tr>
<tr>
<td>check if statistic (T(D)) is likely or unlikely under its distribution (e.g., using (p)-value); if unlikely, reject hypothesis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 **\(t\)-test and confidence intervals**

4.1 **Characterization of the \(t\)-distribution.**

If \(Z \sim N(0, 1)\) and \(U \sim \chi^2_d\) are independent, then

\[
\frac{Z}{\sqrt{U/d}}
\]

follows the \(t\)-distribution with \(d\) degrees of freedom.

4.2 **Simple example: testing** \(H_0 : \beta_3 = 73\)

We want to find a statistic whose distribution we know.

Let \(V = (X^T X)^{-1}\), with rows/columns indexed from 0 to \(p\). First, we know that under the general model, \(\hat{\beta}_3 \sim N(\beta_3, \sigma^2 v_{3,3})\), and thus normalizing yields

\[
\frac{\hat{\beta}_3 - \beta_3}{\sigma \sqrt{v_{3,3}}} \sim N(0, 1) .
\]

However, under the hypothesis \(\beta_3 = 73\), we have

\[
\frac{\hat{\beta}_3 - 73}{\sigma \sqrt{v_{3,3}}} \sim N(0, 1) .
\]

If we knew \(\sigma\), then we could do a \(Z\)-test by checking the \(p\)-value \(P(|Z| \geq \left| \frac{\hat{\beta}_3 - 73}{\sigma \sqrt{v_{3,3}}} \right|)\) of this statistic. If this is very small, we have evidence to reject the hypothesis.

However, we typically do not know \(\sigma\), so we use our unbiased estimate

\[
\hat{\sigma}^2 = \frac{RSS}{n-p-1}
\]

in place of \(\sigma^2\).
Exercise 4.1. What distribution does
\[\frac{\hat{\beta}_3 - 73}{\sigma \sqrt{\nu_{3,3}}} \]
follow? Why? ■

Exercise 4.2. Draw a picture of what the p-value of this statistic represents. Write down an expression for the definition of the p-value (e.g., p-value = \(\mathbb{P}(\cdots) \)).

Suppose the degrees of freedom is \(n - p - 1 = 100 \) and the t-statistic is \(\frac{\hat{\beta}_3 - 73}{\sigma \sqrt{\nu_{3,3}}} = 1.9 \). Compute the p-value both using R and using a t-table. ■

4.3 Converting to a confidence interval

The work that we have done already essentially translates to a confidence interval. Instead of 73, let us return to the unknown \(\beta_3 \). The work in the previous part (if we had not substituted \(\beta_3 = 73 \)) shows that with the definition \(\text{SE}(\hat{\beta}_3) := \hat{\sigma} \sqrt{\nu_{3,3}} \), we know
\[\frac{\hat{\beta}_3 - \beta_3}{\text{SE}(\hat{\beta}_3)} \]
follows the t-distribution with \(n - p - 1 \) degrees of freedom. Thus, if \(q \) is the 0.95 quantile of this t-distribution, then
\[\mathbb{P}\left(-q \leq \frac{\hat{\beta}_3 - \beta_3}{\text{SE}(\hat{\beta}_3)} \leq q\right) = 0.9. \]

By rearranging the inequality, we can rewrite this as
\[\mathbb{P}\left(\hat{\beta}_3 - q \text{SE}(\hat{\beta}_3) \leq \beta_3 \leq \hat{\beta}_3 + q \text{SE}(\hat{\beta}_3)\right) = 0.9. \]
Thus,
\[\hat{\beta}_3 \pm q \text{SE}(\hat{\beta}_3) \]
is a 90% confidence interval for \(\beta_3 \).

Exercise 4.3. What do we change in the above procedure if we want a 95% confidence interval instead? ■

Exercise 4.4. For \(n - p - 1 = 60 \), find the appropriate quantile \(q \) if we wanted to get a 90% confidence interval, using a t-table. Double check your answer with R. Repeat the above for a 95% confidence interval. ■

4.4 Slightly more complicated example: testing \(H_0 : \beta_1 = \beta_2 \)

This hypothesis can be rewritten
\[\beta_1 - \beta_2 = 0. \]

What is the distribution of \(\hat{\beta}_1 - \hat{\beta}_2 \)? We know the vector \(\hat{\beta} \sim \mathcal{N}_n(\beta, \sigma^2(X^T X)^{-1}) \) is [multivariate] Gaussian, so \(\hat{\beta}_1 - \hat{\beta}_2 \) is [univariate] Gaussian. (Why?) We know the mean of \(\hat{\beta}_1 - \hat{\beta}_2 \) is \(\beta_1 - \beta_2 \). With \(V := (X^T X)^{-1} \) again, with rows/columns indexed from 0 to \(p \), we have
\[\text{Var}(\hat{\beta}_1 - \hat{\beta}_2) = \text{Var}(\hat{\beta}_1) + \text{Var}(\hat{\beta}_2) - 2 \text{Cov}(\hat{\beta}_1, \hat{\beta}_2) = \sigma^2(v_{1,1} + v_{2,2} - 2v_{1,2}). \]

So,
\[\hat{\beta}_1 - \hat{\beta}_2 \sim \mathcal{N}(\beta_1 - \beta_2, \sigma^2(v_{1,1} + v_{2,2} - 2v_{1,2})), \]
and thus
\[\frac{\hat{\beta}_1 - \hat{\beta}_2 - (\beta_1 - \beta_2)}{\sigma^2(v_{1,1} + v_{2,2} - 2v_{1,2})} \sim \mathcal{N}(0, 1). \]
in the general model. Under the hypothesis $\beta_1 = \beta_2$, we then have

$$\frac{\hat{\beta}_1 - \hat{\beta}_2}{\sigma \sqrt{v_{1,1} + v_{2,2} - 2v_{1,2}}} \sim N(0, 1).$$

Similar to before, we can check

$$\frac{\hat{\beta}_1 - \hat{\beta}_2}{\sqrt{\frac{\text{RSS}}{n-p-1} \sqrt{v_{1,1} + v_{2,2} - 2v_{1,2}}} \sim N(0, 1)$$

follows the t-distribution with $n-p-1$ degrees of freedom. We can then find p-values as before.

Exercise 4.5. How do we get confidence intervals for $\beta_1 - \beta_2$?

4.5 General case: linear combination of β

This is essentially Question 5 on your homework. There, you show that

$$x_0^\top \hat{\beta} - x_0^\top \beta \sim N(0, \sigma^2 x_0^\top (X^\top X)^{-1} x_0)$$

and

$$x_0^\top \hat{\beta} - (x_0^\top \beta + \epsilon_0) \sim N(0, \sigma^2 [1 + x_0^\top (X^\top X)^{-1} x_0])$$

You can imitate the steps from the previous examples to find some statistic that follows a t distribution, and then use that to obtain a confidence interval for $x_0^\top \beta$ and for $x_0^\top \beta + \epsilon_0$.

Note that this general setup can help with Question 6 on your homework, if you choose x_0 appropriately.

5 F-tests

5.1 Characterization of the F-distribution.

If $U \sim \chi^2_{d_1}$ and $V \sim \chi^2_{d_2}$ are independent, then

$$\frac{U/d_1}{V/d_2}$$

follows the F distribution with degrees of freedom d_1 and d_2.

5.2 Example: testing $H_0: \beta_1 = \beta_2 = \beta_4 = 0$

Let $p = 4$. Let M denote the full model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \beta_4 x_{i4} + \epsilon_i. \quad (1)$$

Let m denote the model with the hypothesis imposed. We can write this smaller model as

$$y_i = \beta_0 + \beta_3 x_{i3} + \epsilon_i.$$

It turns out that under the hypothesis, we know

$$\frac{(\text{RSS}(m) - \text{RSS}(M))/3}{\text{RSS}(M)/(n-4-1)}$$

follows the F distribution with 3 and $n-4-1$ degrees of freedom. [It is not yet obvious why this is true.] The 3 comes from the fact that we have three constraints $\beta_1 = 0, \beta_2 = 0, \beta_3 = 0$. The $n-4-1$ comes from n minus the four variables and one intercept.

Exercise 5.1. If we have y and X, explain in words how we could compute the F-statistic?
5.3 Example: testing subset of coefficients is zero

More generally, suppose we have \(p \) variables, and we want to test whether a particular subset of \(q \) coefficients is zero. Then if we form the smaller model \(m \) by dropping those \(q \) coefficients, it turns out that under the hypothesis, we know

\[
\frac{(\text{RSS}(m) - \text{RSS}(M))/q}{\text{RSS}(M)/(n - p - 1)}
\]

follows the \(F \)-distribution with \(q \) and \(n - p - 1 \) degrees of freedom.

Again, it is not obvious why this follows an \(F \)-distribution. If we rewrite the statistic as

\[
\frac{\text{RSS}(m) - \text{RSS}(M)}{\sigma^2}/q
\]

then we can use our fun fact that \(\frac{\text{RSS}(M)}{\sigma^2} \sim \chi^2_{n-p-1} \) to see part of the characterization of the \(F \)-distribution. We would need to show \(\frac{\text{RSS}(m) - \text{RSS}(M)}{\sigma^2} \sim \chi^2_q \) and that \(\text{RSS}(m) - \text{RSS}(M) \) and \(\text{RSS}(M) \) are independent. But at this point, this is not obvious.

Exercise 5.2. Again, if we have \(y \) and \(X \), explain in words how we could compute the \(F \)-statistic? ■

An unusual \(F \)-statistic will be large (indicating that the larger model \(M \) is significantly better than the small model \(m \)). The \(p \)-value for this \(F \)-statistic is

\[
P(F \geq \frac{(\text{RSS}(m) - \text{RSS}(M))/q}{\text{RSS}(M)/(n - p - 1)})
\]

where \(F \) follows the \(F \) distribution with degrees of freedom \(q \) and \(n - p - 1 \). [Draw a picture: it is the right tail of the distribution.]

Exercise 5.3. Suppose \(q = 2 \) and \(n - p - 1 = 30 \). Use an \(F \)-table to find the \(p \)-value of this \(F \)-statistic is \((\text{RSS}(m) - \text{RSS}(M))/q \) \(\text{RSS}(M)/(n - p - 1) = 2.9 \). Check with R. ■

5.4 Example: testing \(H_0 : \beta_1 = \beta_2, \beta_3 = -2\beta_4 \)

Let \(p = 4 \) and consider the above hypothesis. Let \(M \) be the full model \((1)\) as before.

Exercise 5.4. Write down the model \(m \) with the hypothesis imposed, using only 3 of the coefficients \(\beta_0, \ldots, \beta_4 \). ■

Again, it turns out that under the hypothesis,

\[
\frac{(\text{RSS}(m) - \text{RSS}(M))/2}{\text{RSS}(M)/(n - 4 - 1)}
\]

follows the \(F \) distribution with degrees of freedom 2 and \(n - 4 - 1 \).

Exercise 5.5. Again, if we have \(y \) and \(X \), explain in words how we could compute the \(F \)-statistic? ■

6 General formula for testing linear hypotheses

(See section 9.4.3.)

The most general setting we can consider is

\[H_0 : L\beta = c, \]

for some \(q \times (p + 1) \) matrix \(L \) with full row rank \(q \leq p + 1 \), and \(q \)-dimensional vector \(c \).

Exercise 6.1. For \(p = 4 \), write the hypothesis \(H_0 : \beta_1 = \beta_2 = \beta_4 = 0 \) in this form. ■

Exercise 6.2. For \(p = 4 \) write the previous hypothesis \(H_0 : \beta_1 = \beta_2, \beta_3 = -2\beta_4 \), in this form. ■
Let m be the smaller model with the hypothesis $L\beta = c$ imposed. This hypothesis has q linear constraints, so under the hypothesis, it turns out that we know

$$\frac{(\text{RSS}(m) - \text{RSS}(M))/q}{\text{RSS}(M)/(n - p - 1)}$$

follows the F distribution with degrees of freedom q and $n - p - 1$.

Let us finally “prove” this.

Lemma 6.3. Let m represent the smaller model with the hypothesis $L\beta = c$ imposed. Then under the hypothesis $L\beta = c$, we have the equality

$$\frac{\text{RSS}(m) - \text{RSS}(M)}{\sigma^2} = \frac{(L\hat{\beta} - c)^\top [L(X^\top X)^{-1}L^\top]^{-1} (L\hat{\beta} - c)}{\sigma^2},$$

and both sides follow the χ^2_q distribution.

Proof sketch (optional). The proofs of these two facts (the equality, and the fact that both quantities follow the χ^2_q distribution) are quite tedious, so we offer a very rough sketch with many missing steps.

If $c = 0$, then using an orthogonality argument one can show that $\text{RSS}(m) - \text{RSS}(M) = \|Py\|_2$ where P is the projection onto the column space of $X(X^\top X)^{-1}L^\top$. This yields the first equality when $c = 0$. If $c \neq 0$, then we have to deal with projections onto affine spaces (rather than subspaces), and the “$-c$” terms in stated inequality account for that.

Next we describe how to prove that the right-hand side follows the χ^2_q distribution. First note $L\hat{\beta} - c = L\hat{\beta} - L\beta \sim N(0, \sigma^2 L(X^\top X)L^{-1})$. Then $L\hat{\beta} - c$ can be written as σAz for $z \sim N(0, I_q)$ for a matrix A satisfying $AA^\top = L(X^\top X)^{-1}L^\top$ (e.g., by Cholesky decomposition or eigen-decomposition). Thus the right-hand side can be rewritten as

$$z^\top A^\top [L(X^\top X)^{-1}L^\top]^{-1} Az.$$

One can show that $A^\top [L(X^\top X)^{-1}L^\top]^{-1}A$ is idempotent and symmetric with trace q, so this quadratic form has the χ^2_q distribution.

From this lemma, it is now finally clear why the F-statistic we were looking at follows the F-distribution. In particular, we can write the F-statistic as

$$\frac{(\text{RSS}(m) - \text{RSS}(M))/q}{\text{RSS}(M)/(n - p - 1)} = \frac{(L\hat{\beta} - c)^\top [L(X^\top X)^{-1}L^\top]^{-1} (L\hat{\beta} - c)/q}{\text{RSS}(M)/(n - p - 1)}.$$ \hspace{1cm} (2)

Exercise 6.4. Under the hypothesis $L\beta = c$, what distribution does this quantity (2) follow, and why? ■

Exercise 6.5. Express the hypothesis $H_0 : \beta_1 = \beta_2 = \cdots = \beta_q = 0$ for $q \leq p$, in the form $H_0 : L\beta = c$. What does (2) look like in this case? Compare with equation (9.16) in the textbook. ■