
Lecture Notes: Information Theory and Statistics

Caution: Very Rough Draft

October 19, 2005

Contents

1 Entropy and Codes 2
1.1 Prelude: entropy’s physics origin 2
1.2 Shannon’s entropy and codes . 4
1.3 Examples of Code . 5
1.4 Codes and Probability Distributions 8
1.5 Coding algorithms based on a known distribution 10
1.6 Shannon’s source coding theorem 20
1.7 Entropy . 23
1.8 Estimation of Entropy . 30
1.9 Maximum Entropy (Maxent) Principle: the first visit 34

2 Relative Entropy or Kullback Leibler Divergence 37
2.1 Kullback-Leibler Divergence . 39
2.2 KL as a dissimilarity measure on distributions 44
2.3 KL and MLE . 45

2.3.1 Basic Classical Maximum Likelihood Theory 45
2.3.2 Limit of MLE when the model is misspecified 47

2.4 Mutual Information . 50
2.4.1 Sufficiency . 51
2.4.2 Fano’s inequality . 54
2.4.3 Non-parametric minimax density estimation 56

2.5 The Method of Types . 62
2.6 Large Deviations . 64
2.7 Stein’s Lemma in Hypothesis Testing 69
2.8 Mutual Information . 71

2.8.1 Sufficiency . 73
2.8.2 Fano’s inequality . 74
2.8.3 Channel Capacity . 75

Copyright c©2003 by Hansen and Yu

1

Chapter 1

Entropy and Codes

1.1 Prelude: entropy’s physics origin

The idea of entropy was invented in 1850 by the Prussian theoretical physicist
Rudolf Julius Emmanuel Clausius (1822- 1888) who played an important role in
establishing theoretical physics as a discipline. As many physicists of the time,
such as Laplace, Poisson, Sadi Carnot and Clapeyron, Clausisus was into the
theory of the heat, called the caloric theory at the time, which was based on two
axioms: 1. the heat in the universe is conserved and 2. the heat in a substance
is a function of the state of the substance. Clausius’ most famous paper was
read in 1850 to Berlin Academy and published in Annalen der Physik in in the
same year, laying the foundation of modern thermodynamics. In this paper,
he argued that the two axioms are wrong and gave the first and second laws
of thermodynamics in place of the two axioms. The first thermodynamics law
stated the equivalence of heat and work and it was well supported by experi-
mental data of Joule. The acceptance of the first law refuted both axioms in
the caloric theory.

For the second law of thermodynamics, Clausius set up an equation (in
modern notations):

d̄Q = dU + d̄W,

where d̄Q was the change in the heat, dU the energy change in the system,
and d̄W the change in the external work done. d stands for ”true differential”
because U (and entropy S to be introduced later), as we know now, is a function
of the state of the system, while d̄ is a differential which depends on how a system
is brought from its initial state to its final state.

The introduction of the energy of the system, U, was of great significance
and U was later name intrinsic energy by another physicist William Thomson.
In the same 1850 paper, Clausius also recognized entropy as the quantity that
remains invariant during changes of volume and temperature in a Carnot cycle
(which transmits heat between two heat reservoirs at different temperatures

2

and at the same time converts heat into work). He did not name the important
entropy concept at that time, however. In the fifteen years to follow, Clausius
continued to refine the two laws of themodynamics. In 1865, Clausius gave the
two laws of thermodynamics in the following form:

1. The energy of the universe is constant.
2. The entropy of the universe tends to a maximum.
And the paper contained the equation:

dS = d̄Q/T,

where S is the entropy, Q is the internal energy or heat, and T the temeprature.
The amazing property of entropy is that, although the integration of d̄Q depends
on the detailed path, but the integration of Q̄/T = dS does not!

Clausius’ most important contribution to physics is undoubtedly his idea
of the irreversible increase in entropy, and yet there seems no indication of
interest from him in Boltzmann’s views on thermodynamics and probability or
Josiah Willard Gibbs’ work on chemical equilibrium, both of which were utterly
dependent on his idea. It is strange that he himself showed no inclination to seek
a molecular understanding of irreversible entropy or to find further applications
of the idea; it is stranger yet, and even tragic, that he expressed no concern for
the work of his contemporaries who were accomplishing those very tasks.

Ludwig Boltzmann (1844-1906), a theoretical phycist at Vienna (and Graz),
became famous because of his invention of statistical mechanics. This he did
independently of Josiah Willard Gibbs. Their theories connected the proper-
ties and behaviour of atoms and molecules with the large scale properties and
behaviour of the substances of which they were the building blocks. In 1877,
Boltzmann quantifies entropy of an equilibrium thermodynamic system as

S = K logW,

S - entropy, K - Boltzman constant, W - number of microstates in the system.
This formula is also carved onto Boltzman’s tombstone even though it has been
said that Planck was the first who wrote this down.

In the United States, J. W. Gibbs (1839-1903), a Europe-trained mathemat-
ical physicist at Yale College, advanced a branch of physics called statistical
mechanics to describe microscopic order and disorder. Statistical mechanics de-
scribes the behavior of a substance in terms of the statistical behavior of the
atoms and molecules contained in it. His work on statistical mechanics provided
a mathematical framework for quantum theory and for Maxwell’s theories. His
last publication, Elementary Principles in Statistical Mechanics, beautifully lays
a firm foundation for statistical mechanics.

In the 1870s, Gibbs introduced another expression to describe entropy such
that if all the microstates in a system have equal probability, his term reduces
to k log W. This formula, often simply called Boltzmann-Gibbs entropy, has
been a workhorse in physics and thermodynamics for 120 years.

S = −
∑

j

pj log pj ,

3

where pj is the probability that the system is at microstate j. Mathematically, it
is easy to see that if pj = 1/W , Gibbs’ entropy formula agrees with Boltzman’s
entropy formula.

1.2 Shannon’s entropy and codes

Claude Elwood Shannon was born in Gaylord, Michigan, on April 30, 1916
and passed away on Feb. 26, 2001. He is considered as the founding father of
electronic communications age. His work on technical and engineering problems
within the communications industry laid the groundwork for both the computer
industry and telecommunications.

The fundamental problem of communication is that of reproducing
at one point either exactly or approximately a message selected at
another point.

Claude Shannon
A Mathematical Theory of Communication

In Shannon’s information theory, a message is a random draw from a proba-
bility distribution on messages and entropy gives the data compression (source
coding) limit. Shannon’s entropy measures ”information” content in a message,
but this ”information” is not the meaningful information. It is simply the uncer-
tainty in the message just as Boltzmann-Gibbs entropy measures the disorder
in a thermodynamic system.

Shannon’s information theory concerns with point-to-point communications
as in telephony, and characterizes the limits of communication. Abstractly, we
work with messages or sequences of symbols from a discrete alphabet that are
generated by some source. In the rest of the chapter, we consider the problem
of encoding the sequence of symbols for storage or (noiseless) transmission. In
the literature of information theory, this general problem is referred to as source
coding. How compactly can we represent messages emanating from a discrete
source? In his original paper in 1948, Shannon assumed sources generated
messages one symbol at a time according to a probability distribution; each
new symbol might depend on the preceding symbols as well as the alphabet.
Therefore, Shannon defined a source to be a discrete stochastic process.

In more familiar terms, this chapter concerns data compression. The frame-
work studied by Shannon can be applied to e-mail messages, Web pages, Java
programs, and any data stored on your hard drive. How small can we compress
these files? The source coding tools introduced in this chapter help us address
this question. While Shannon’s probabilistic view of a source is not valid for
a fixed data file, we can still apply the concepts of his theory and gain useful
insights into the basic properties of compression algorithms.

4

Throughout this chapter, the reader will find a number of connections with
the field of statistics. We might expect a certain overlap given Shannon’s
stochastic characterization of a source.

1.3 Examples of Code

A code C on a discrete alphabet X is simply a mapping from symbols in X to a set
of codewords. With this mapping, we encode messages or sequences of symbols
from X . Throughout this chapter, we consider codes that are lossless in the
sense that messages can be decoded exactly, without any loss of information.

Example 1.1 (Simple binary codes). Let our alphabet consist of just three
symbols, X = {a, b, c}. A binary code is a mapping from X to strings of 0’s and
1’s. Here is one such code:

a → 00

b → 01 (1.1)

c → 10

Here, we encode each symbol with two binary digits or bits1; each symbol
is assigned a number 0,1,2 and the code is just a binary representation of
that number. The length of each codeword is a fixed 2 bits, making it a
fixed-length code. With this code, the 10-symbol message aabacbcbaa becomes
00000100100110010000 and the 10-symbol message bcccbabcca is 01101010010001101000,
each requiring 20 bits. Formally, we encode messages with the extension of C
that concatenates the codewords for each symbol in the message. Decoding
involves splitting the encoded string into pairs of 0’1 and 1’s, determining the
integer associated with each pair (0, 1 or 2) and then performing a table lookup
to see which symbol is associated with each integer.

Here is another binary code for the same alphabet:

a → 0

b → 10 (1.2)

c → 11

Notice that each codeword now involves a different number of bits so that
this code is a variable length code. Applying the extension of this code, the
10-symbol message aabacbcbaa becomes 001001110111000 and the 10-symbol
message bcccbabcca is 101111111001011110. In the previous example, decoding
involved processing pairs of bits. In this case, we notice that the codewords
form a so-called prefix code; that is, no codeword is the prefix of another. This
property means that encoded messages are uniquely decodable, even if we don’t
include special separating markers between the codewords.

1Bits was suggested to Shannon by his statistician colleague J. W. Tukey at Bell Labs.

5

Notice that the 10-symbol message aabacbcbaa requires 15 bits to encode;
and the 10-symbol message bcccbabcca needs 18 bits. Given the short codeword
for a, we expect this code to do better with the first 10-symbol message. In both
cases, however, this code improves on the fixed-length scheme (1.1) requiring
20 bits per 10-symbol message. In the next section we will illustrate how the
mapping (1.2) was constructed and see how our assumptions about messages
guide code design.

Example 1.2 (ASCII and Unicode). Originally, the American Standard
Code for Information Interchange (ASCII) was a 7 bit coded character set for
English letters, digits, mathematical symbols and punctuation. It was widely
used for storing and transmitting basic English language documents. Each sym-
bol was mapped to a digit between 0 and 127. It was common to include an 8th
bit referred to as the parity bit to check that the symbol has been transmitted
correctly; here the 8th bit might be 1 if the number of the symbol being sent
is odd and zero if its even. Newer operating systems work with legitimate 8-bit
extensions to ASCII, encoding larger character sets that include more mathe-
matical symbols, graphics symbols and some non-English characters. Unicode
is a 16-bit code that assigns a unique number to every character or symbol in
use, from Bengali to Braille. With 16 bits, there is room for over 65K characters
in the code set. Both ASCII and Unicode are fixed-length encoding schemes like
(1.1).

Example 1.3 (Morse Code). This encoding is named for Samuel Morse,
originally a professor of arts and design at New York University. The alphabet
for Morse’s original code consisted of numbers that mapped to a fixed collection
of words. The codewords consisted of of dots, dashes and pauses.

The more familiar version of Morse code was developed by Alfred Vail. Here,
the alphabet consists of English letters, numbers and punctuation. The code-
words consist of strings made from a set of five symbols; dot, dash, short gap
(between each letter), medium gap (between words) and long gap (between sen-
tences). In designing the codewords, Morse and Vail adopted a compression
strategy: the letter “e” is a single dot, and “t” is a single dash. These letters
appear more commonly in standard written English than letters assigned longer
strings of dots and dashes. Two-symbol codewords were assigned to “a,” “i,”
“m” and “n.” Morse and Vail did derive their coding scheme by counting let-
ters in samples of text, but instead counted the individual pieces of type in each
section of a printer’s type box. (In frequency counts of characters taken from
modern texts, “o” appears more frequently than “n,” and “m” often doesn’t
score among the top 10.)

Even with this compression, codes were built on top of Morse code. Tele-
graph companies charged based on the length of the message sent. Codes
emerged that encoded complete phrases in five-letter groups that were sent
as single words. Examples: BYOXO (”Are you trying to crawl out of it?”),
LIOUY (”Why do you not answer my question?”), and AYYLU (”Not clearly
coded, repeat more clearly.”). The letters of these five-letter code words were
sent individually using Morse code.

6

With this example, we see how we can reduce the size of a data set by cap-
italizing on regularities. Here the regularities are in the form of frequencies, or
rather some ordering of the frequencies of letters in common English transmis-
sions. As we will see, the same principle guided the design of (1.2), making it
better suited for messages with more a’s than b’s or c’s.

Example 1.4 (Braille). Braille was developed by a blind Frenchman named
Louis Braille in 1829. Braille is based on a 6-bit encoding scheme, which allows
a maximum of 63 possible codes. Since only 26 of this codes are required for
encoding the letters of the alphabet, the remainder of the codes are used to
encode common words (and, for, of, the, with) and common two-letter combi-
nations (ch, gh, sh, th, wh, ed, er, ou, ow). In 1992 there was an attempt to
unite separate Braille codes for mathematics, scientific notation and computer
symbols into one Unified English Braille Code (UEBC).

In Braille we see even more direct use of frequent structures in English. By
directly encoding common words and word-fragments, we achieve even more
compression.

We now collect some of the definitions introduced in the examples. A code
or source code C is a mapping from an alphabet X to a set of codewords. In
binary code the codewords are strings of 0’s and 1’s. A non-singular code maps
each symbol in X into a different codeword. The extension C∗ of a code C is
the mapping from finite length strings of symbols of X to finite length binary
strings, defined by C∗(x1, . . . , xn) = C(x1) · · · C(xn), the concatenation of the
codewords C(x1), . . . , C(xn). If the extension of a code is non-singular, the
code is called uniquely decodable. Codes with the prefix property are examples
of uniquely decodable mappings. We say that a code is prefix or instataneous if
no codeword is the prefix of any other codeword. Such codes allows decoding
as soon as a codeword is finished or a leave node in the binary code tree is
reached (hence the name ”instataneous”). Uniquely decodable but not prefix
codes need to look ahead for decoding. For example, on our three letter alphabet
X = {a, b, c}, the code

a→ 0, b→ 01, c→ 11

is uniquely decodable, but not prefix because a corresponds to an internal node
0. Nevertheless, the strings of 0’s and 1’s which come from encoding using this
code can be uniquely decoded. For instance, 001011 is uniquely decoded to abac.

Exercise Set 1

1. Design a uniquely decodable, but not prefix code on an alphabet of size 3.

2. Write a meaningful email to a friend without using letter ”e”.

7

1.4 Codes and Probability Distributions

Given a binary code C on X , the length function L maps symbols in X to the
length of their codeword in bits. Using the code in (1.2), we have L(a) = 1
and L(b) = L(c) = 2. In general, there is a correspondence between the length
function of a prefix code and the quantity − log2Q for a probability distribution
Q defined on X . To make this precise, we first introduce the Kraft inequality.

Theorem 1.1 (Kraft inequality). For any binary prefix code, the code length
function L must satisfy the inequality

∑

x∈X

2−L(x) ≤ 1 . (1.3)

Conversely, given a set of codeword lengths that satisfy this inequality, there
exists a prefix binary code with these code lengths.

Proof. Given a binary prefix code, its codewords correspond to only leave nodes
of the binary code tree, because of the prefix property (no codewords can be
a prefix of another codeword so no internal nodes are codewords). Then the
branch lengths of the leave codeword nodes are the lengths of the codewords.
Complete the tree by adding single-leave nodes which don’t correspond to any
codewords to result in an expanded alphabet X ′ on all the leave nodes of a
complete tree. Obviously

∑

x′∈X ′

2−L(x′) = 1,

which implies that

∑

xinX

2−L(x) ≤
∑

x′∈X ′

2−L(x′) = 1.

For the other direction, given any set of code word lengths L(x), x ∈ X =
{1, 2, ..., k} which satisfy the Kraft inequality. Pick the first node in a binary
tree from left to right of depth l1 as the codeword for 1 and take out its offsprings
from the tree so to make it a leave node on the code tree. Then pick the first
remaining node of depth l2 as the codeword for 2, etc. The Kraft’s inequality
ensures that we have enough nodes to go around to give everyone a codeword
as a leave node of the code tree.

Using the Kraft inequality, we can take any length function L and construct
a distribution as follows

Q(a) =
2−L(a)

∑

a∈X 2−L(a)
for any a ∈ X . (1.4)

Conversely, for any distribution Q on X and any a ∈ X , we can find a prefix
code with length function L(a) = d− log2Q(a)e, the smallest integer greater
than or equal to − log2Q(a). This is because

8

L(x) ≥ − logQ(x), hence − L(x) ≤ logQ(x),

and it follows that

∑

2−L(x) ≤
∑

2log Q(x) =
∑

Q(x) = 1.

Now, consider a stochastic source of symbols. That is, suppose our messages
are constructed by randomly selecting elements of X according to a distribution
P . Then, the expected length of a code C is given by

LC =
∑

x∈X

P (x)L(x) . (1.5)

The following theorem characterizes the shortest expected code length given a
source with distribution P .

Theorem 1.2 (Information inequality). Given two distribution Q and P ,

EP logP (X)/Q(X) ≥ 0,

and the equality holds if and only if P = Q.

Proof.

EP log
P (X)

Q(X)
= −EP log

Q(X)

P (X)
≥∗ − logEP

Q(X)

P (X)
= − log 1 = 0.

The inequality above holds due to Jensen’s inequality applied to the convex
function − log. That is, for Y = Q(X)/P (X)

E[− log Y] ≥ − logEY,

which is the same as
−(E log Y) ≥ − logEY.

Theorem 1.3 (Shannon’s source coding theorem). Suppose the elements
of X are generated according to a probability distribution P . For any prefix code
C on X with length function L(·), the expected code length LC is bounded below

LC ≥ −
∑

x∈X

P (x) log2 P (x) = H(P) (1.6)

where quality holds if and only if L = − log2 P .

Proof. By Kraft’s inequality,

CL =
∑

x

2−L(x) ≤ 1.

9

Then
Q(x) = 2−L(x)/CL.

is a probability distribution.
Since EPL = EP [− log(Q(X)) − logCL] ≥ EP [− log(Q(X)),

EPL −H(P) = −EP log
Q(X)

P (X)
≥ 0,

Note that implicit in this result is that we know the distribution P that
generates messages we wish to encode. To a statistician this seems like an im-
possible luxury. Instead, it is more realistic to consider one or more distributions
Q that approximate P in some sense. In coding problems, we can evaluate dif-
ferent models based on their ability to compress the data. We will formalize
these notions in later chapters. For now, we illustrate ties between codes and
probability distributions by describing several well-known encoding schemes.

1.5 Coding algorithms based on a known distri-
bution

We now consider several coding schemes and evaluate them based on their ability
to compress a corpus of text. We took as our test case 175 stories classified by
the online news service from Google as having to do with the power outage
that hit the Northeastern United States on Thursday, August 14, 2003 (stories
collected on August 15, 2003). There were 1,022,574 characters in this sample,
which means a simple ASCII encoding would require 8,180,592 bits (or 998.6
Kb)

Example 1.1 (Shannon). Suppose we are given an alphabet X = {x1, . . . , xn}
with probability function P . Now, consider a length function of the form
L∗(x) = d− logP (x)e, where dye denotes the smallest integer greater or equal
to y. These lengths satisfy Kraft’s inequality since

n
∑

i=1

2−d− log P (xi)e ≤
n

∑

i=1

2log P (xi) =

n
∑

i=1

P (xi) = 1 . (1.7)

Therefore, by Kraft’s inequality we can find a code with this length function.
Since the ceiling operator introduces an error of at most one bit, we have that

H(P) ≤ EL∗ ≤ H(P) + 1 (1.8)

from Information inequality.
Shannon proposed a simple scheme that creates the code with length function

L∗. Suppose that the symbols in our alphabet are ordered so that P (x1) ≥
P (x2) ≥ · · · ≥ P (xn). Define Fi =

∑i−1
j=1 P (xi), the sum of the probabilities of

10

symbols 1 through i − 1. The codeword for xi is then taken to be Fi rounded
to d− logPie bits. The resulting code is prefix, and as indicated above has an
expected code length within one bit of the entropy.

Now let us construct the Shannon code for a distribution P on {a, b, c} with
probabilities 11/20, 1/4, 1/5, respectively. Its entropy can be easily calculated
as H(P) = 1.439 bits. Moreover,

F1 = 0, F2 = 11/20, F3 = 4/5,

d− logP1e = d0.86e = 1; d− logP2e = d2e = 2; d− logP3e = d2.3e = 3

Rounding F1, F2, F3 to 1, 2 and 3 bits, we obtain the codewords for a, b, c
as

C(F1) = 0, C(F2) = 10, C(F3) = 110,

because

F1 = 0, F2 = 11/20 = 1/2 + 1/20;F3 = 4/5 = 1/2 + 1/4 + 1/20.

This Shannon code has an expected code length

L = 11/20 + 2 × 1/4 + 3 × 1/5 = 8/5 = 1.6 bits

which is quite close to the entropy 1.439 bits.
In Figure 1.1 we show the Shannon code for the characters in the collection

of documents. Using this code, we need 5,534,865 bits (or 675.6 Kb) to code
the articles, a 32% reduction. The entropy of the character distribution is 4.77,
and the expected code length of the Shannon code is 5.41 2.

We now consider two coding methods that are directly based on binary trees.
Recall from our proof of the Kraft inequality that the leaves of a binary tree
can be used to represent a prefix code. The next two constructions recursively
construct codes in a top-down (Shannon-Fano coding) and bottom-up (Huffman
coding) fashion.

Example 1.2 (Shannon-Fano). This is a top-down method for forming a
binary tree that will characterize a prefix code.

1. List all the possible messages, with their probabilities, in decreasing prob-
ability order

2. Divide the list into two parts of (roughly) equal probability

3. Start the code for those messages in the first part with a 0 bit and for
those in the second part with a 1

4. Continue recursively until each subdivision contains just one message

2Strictly speaking, we should have also accounted for the bits needed to encode the fre-

quencies in Figure 1.1 since they are estimated from data. We will elaborate on this point in

the MDL sections later.

11

Shannon Code Huffman Code
x P (x) bits codeword bits codeword

space 0.173 3 000 3 111
e 0.085 4 0010 4 1101
t 0.062 5 01000 4 1010
a 0.060 5 01010 4 1001
o 0.057 5 01100 4 0111
r 0.054 5 01101 4 0100
s 0.048 5 01111 4 0010
i 0.047 5 10001 4 0001
n 0.047 5 10010 4 0000
l 0.028 6 101000 5 01101
d 0.027 6 101010 5 01011
h 0.027 6 101100 5 01010
u 0.024 6 101101 6 110011
c 0.022 6 101111 6 110010
g 0.015 7 1100001 6 101100
w 0.015 7 1100011 6 100010
p 0.014 7 1100101 6 100000
y 0.014 7 1100110 6 011001
m 0.014 7 1101000 6 011000
f 0.013 7 1101010 6 001110
b 0.010 7 1101011 7 1100010
. 0.009 7 1101101 7 1100000
k 0.008 7 1101110 7 1011011
, 0.008 7 1101111 7 1011010
S 0.007 8 11100000 7 1000010

Figure 1.1: Characters from 175 news articles related to the massive blackout
in the Northeastern part of the United States. We present the alphabet (in this
case, letters, numbers and some punctuation), the frequency of each symbol in
the corpus, and the codewords for the associated Shannon code (we will explain
the last two columns related to the Huffman code shortly).

12

Figure 1.2: Constructing the Shannon-Fano code on a 6-letter alphabet, A =
{a, e, i, o, u, !}.

It is possible to show that for the Shannon-Fano code,

H(P) ≤ L ≤ H(P) + 2. (1.9)

To illustrate the process, consider a six-symbol alphabet X = {a, e, i, o, u, !}.
We give the probability function in Figure 1.2; note that we have sorted the
symbols in terms of their frequency. The entropy of this distribution is 2.45.
Note that the expected code length of the resulting Shannon-Fano code is 2.5
bits. In Figure 1.2, we compare this code length to that of the Shannon code
built from the same frequency table. Here, the Shannon code has an expected
code length of 3 bits.

Shannon-Fano code (or any prefix code) can be re-expressed in terms of the
game of 20 questions. Suppose we want to find a sequence of yes-no questions to
determine an object from a class of objects with a known probability distribu-
tion. We first group the objects into two subsets of (roughly) equal probabilities
and ask which subset contains the object, and so on. This is exactly how the
Shnnon-Fano code was constructed. For any prefix code, there is a binary tree
with leaf nodes as the code words for the objects. We start from the root of the
tree, and group the objects into two subsets according to whether the objects
are the descendants of the left branch or the right branch and ask the question
whether the object is in the left subset or the right subset, and so on. In terms
of the expected number of questions asked, the optimal sequence of questions
corresponds to the Huffman code which we will now begin to introduce.

In his 1948 masterpiece, Shannon solved the source coding problem when the
message gets longer and longer (the entropy rate is achieved in the limit) and this
is the celebrated Shannon’s source coding theorem which we will take up later.
However, he left open the optimal coding question for a fixed size alphabet.
That is, among all prefix codes, which code gives the shortest expected code
length with respect to a message generating distribution P . Even though we
know the Shannon code gets close to the lower bound entropy within one bit, in
the finite case, the entropy might not be achievable. Huffman (1952) solved this
finite sample optimality problem by showing that the Huffman code obtains the

13

shortest average code length among all prefix codes. This is a surprising result
since Huffman code is a greedy algorithm, but it nevertheless achieves the global
optimality.

Example 1.3 (Huffman Coding). This is a bottom-up method for forming
a binary tree that will characterize a prefix code. We recursively combine small
trees to form one large binary tree. Start with as many trees as there are symbols
in the alphabet. While there is more than one tree:

1. Find the two trees with the smallest total probability.

2. Combine the trees into one, setting one as the left child and the other as
the right.

3. Now the tree contains all the symbols. A ’0’ represents following the left
child; a ’1’ represents following the right child.

It is possible to demonstrate that the Huffman code is optimal among all prefix
codes in the sense that it produces the shortest expected code length. In fact,

H(P) ≤ L ≤ H(P) + 1. (1.10)

We now illustrate the coding procedure on a couple examples.
We continue with the simple example used for illustrating the Shannon code.

Let X = {a, b, c} and let P denote a probability distribution on X with P (a) =
11/20 and P (b) = 1/4 and P (c) = 1/5. We can construct a code for X by
growing a binary tree from the end-nodes {a, b, c}. This procedure is similar
to the greedy algorithm used in agglomerative, hierarchical clustering (Jobson,
1992). First, we choose the two elements with the smallest probabilities, b
and c, and connect them with leaves 0 and 1, assigned arbitrarily, to form the
intermediate node bc having node probability 1/4+1/5 = 9/20. We then iterate
the process with the new set of nodes {a, bc}. Since there are only two nodes
left, we connect a and bc with leaves 0 and 1, again assigned arbitrarily, and
reach the tree’s root. The tree obtained through this construction as well as
the resulting code are given explicitly in Figure 1. Let L be the code length
function associated with this code so that L(a) = L(0) = 1, L(b) = L(10) = 2,

Shannon Code S-F Code Huffman Code
x P (x) bits codeword bits codeword bits codeword
e 0.3 2 00 2 00 2 00
a 0.2 3 010 2 01 2 10
o 0.2 3 011 3 100 3 010
u 0.1 4 1011 3 101 3 111
i 0.1 4 1100 3 110 3 011
! 0.1 4 1110 3 111 3 110

Figure 1.3: Several coding schemes applied to a small, 6-character alphabet.

14

(11)

a
(0)

(10)
cb

C : X → {0, 1}∗ = strings of 0’s and 1’s

a → 0

b → 10

c → 11

Figure 1.4: Constructing a Huffman code in Example 1: At the left is the binary
tree e on which the code is based, and on the right is an explicit description of
the final mapping.

and L(c) = L(11) = 2. It is easy to see that in this case, our code length is
given exactly by L(x) = − log2 P (x) for all x ∈ X .

This small example is slightly unrealistic in that the probabilities are all
a power of 2. To further illustrate the coding process, we reconsider our 6-
letter alphabet from the Shannon-Fano example. The codewords are given in
Figure 1.2. Notice that while the codewords are a bit different than those from
the Shannon-Fano code, the code lengths are the same. This means that the
expected code length is also 2.5 (the source having an entropy of 2.45).

We now consider the Huffman code for the character distribution of the news
articles relating to the power outage. In Figure 1.1, we exhibit the codewords
for the Huffman table. Note that they are not longer than those of the Shannon
code. In fact, the expected code length for this code is 4.81. Recall that the
entropy of the distribution is 4.77 and the Shannon code had an expected length
of 5.41.

As a final example, we apply the scheme to an alphabet consisting of the
words in the corpus of 175 news stories. For the moment, we ignored punctuation
and reduced the stream to a series of words. To make things even easier, we
regularized the words in the sense that we removed all the capitalization. In
all, there are 10,269 words. The distribution of counts is quite skewed, and
seems to obey Zipf’s law; see Figure 1.3. From this large alphabet, we then
build both the Shannon code and the Huffman code. In Figure 1.3 we present
both a sample of the frequency distribution as well as the codewords. Again, the
Huffman table tends to have shorter codewords. The entropy of the distribution
is 10.02, and the expected code lengths are 10.43 for Shannon and 10.05 for
Huffman. In terms of actual compression, this means that we can encode the
words with 1,665,567 bits (208,196 bytes or 203Kb) for Shannon and 1,605,460
bits (200,683 bits or 196Kb) for Huffman. This represents a tremendous savings
over the character-based codes we’ve considered so far. Naturally, by reducing
the data to lower-case words, we have simplified the stream and have made the

15

0 2 4 6 8

0

2

4

6

8

log of order

lo
g

co
un

t

Figure 1.5: A frequency plot based on the words from the news stories corpus.
The appearance of a straight line in this plot is said to indicate the existence of
a power law, in this case, Zipf’s law.

16

job easier. Still, if we were to have coded a file consisting of the stream of words
(inserting a space between each) in ASCII, it would require 945,513 bytes or
923Kb.

A modification of Shannon code removes the sorting step by encoding the
middle points in the jumps of the CDF and this gives the Shannon-Fano-Elias
code which is particularly convenient for block coding.

Example 1.4 (Shannon-Fano-Elias). Let X = {1, 2, . . . ,m} and Q(x) > 0
for x ∈ X . Define the cumulative distribution function F (x) and the so-called
modified distribution function F̄ (x) to be

F (x) =
∑

a≤x

Q(a) and F̄ (x) =
∑

a<x

Q(a) +
1

2
Q(x) (1.11)

Since Q(x) is positive on X , the cumulative distribution function has the prop-
erty that F (a) 6= F (a′) if a 6= a′. Looking at F , it is clear that we can map
F (x) back to x and hence F̄ (x) can be used to encode x. In general, as a set of
codewords, F̄ (x) can be quite complicated, and might even require an infinite
number of bits to describe. Instead, we build a code from a truncated expansion
of F̄ (x). We round to l(x) bits, meaning

F̄ (x) − bF̄ (x)cl(x) <
1

2l(x)
(1.12)

Now, if we set l(x) = d− logQ(x)e + 1, then

1

2l(x)
≤ Q(x)

2
= F̄ (x) − F (x− 1) (1.13)

so that the truncated value bF̄ (x)cl(x) can be mapped back to x using the
cumulative distribution function. Like Huffman’s algorithm, this construction
also produces a prefix code (using F (x) would not guarantee this). Also, this
code also uses shorter code words for less frequently observed symbols.

In Figure 1.3 we exhibit the codewords for this construction. The main
difference between this code and the Shannon code is that the symbols are not
sorted according to their probability before code construction, so that some
extra effort has to be expended to guarantee the prefix property of the resulting
code.

So far, we have discussed four coding schemes, Shannon, Shannon-Fano,
Huffman, and Shannon-Fano-Elias. We have seen that in some cases, we are
close to the entropy bound, in others not so close. In the case of Huffman
code, it is common to consider an alphabet formed by blocks of length n from
the source. If the blocks are too small and the alphabet is small, then coding
cannot provide much gains. For example, if we try to encode a string of 0’s and
1’s, taking blocks of size 1 will not produce any compression gains. No matter
how we code, we will always be forced to communicate one bit for each input
bit. This holds for every prefix code and when H(P) is small, this is far away
from the entropy lower bound given by the Information inequality.

17

Shannon Code Huffman Code SFE Code
x P (x) bits codeword bits codeword bits codeword
the 0.042 5 00000 5 11100 6 000001
to 0.022 6 000010 6 111110 7 0000110
and 0.021 6 000100 6 111011 7 0001001
in 0.019 6 000101 6 110001 7 0001100
of 0.018 6 000110 6 101110 7 0001110
a 0.015 7 0001111 6 100000 8 00100001
power 0.013 7 0010001 6 001100 8 00100101
by 0.011 7 0010011 6 000010 8 00101000
new 0.011 7 0010100 7 1111001 8 00101011
on 0.010 7 0010101 7 1100110 8 00101101
august 0.009 7 0010111 7 1011011 8 00110000
said 0.009 7 0011001 7 1010011 8 00110010
york 0.008 7 0011010 7 1000111 8 00110100
thursday 0.008 8 00110110 7 1000011 9 001101100
score 0.008 8 00111000 7 0111110 9 001110000
pm 0.007 8 00111010 7 0111010 9 001110100
was 0.007 8 00111100 7 0110011 9 001111000
were 0.007 8 00111110 7 0101011 9 001111011
for 0.006 8 01000000 7 0011100 9 001111111
it 0.006 8 01000001 7 0001101 9 010000010
that 0.006 8 01000100 7 0000111 9 010000101
news 0.006 8 01000110 8 11111101 9 010001000
as 0.005 8 01000111 8 11110100 9 010001011
...

...
...

...
...

...
parts 0.001 10 0111111101 10 1010100011 11 01111110000
still 0.001 10 1000000000 10 1010010101 11 01111110010
cause 0.001 10 1000000001 10 1010010110 11 01111111000
beneath 0.001 10 1000000010 10 1010010111 11 01111111011
now 0.001 10 1000000011 10 1010100000 11 01111110110
services 0.001 10 1000000100 10 1010100001 11 01111110100
threshold 0.001 10 1000000101 10 1010001101 11 01111111101
across 0.001 10 1000000110 10 1010010100 11 01111111111
million 0.001 10 1000000111 10 1010000011 11 10000000001
...

...
...

...
...

...

Figure 1.6: Shannon, Huffman and Shannon-Fano-Elias encodings of the 175
news stories. Here, the “symbols” consist of 10269 words that appear in the
corpus.

18

In general, we can improve the behavior of these schemes by encoding larger
blocks of data. That is, rather than work with a single symbol at a time, we
consider strings of length n. To see why there might be an advantage to doing
this, let Pn(x1, . . . , xn) = P (x1) · · ·P (xn). Then,

H(Pn) ≤ ELn ≤ H(Pn) + 1 (1.14)

Since we have an iid sequence of symbols, the entropy can be written

H(Pn) =
∑

H(P) = nH(P) (1.15)

so that per symbol we have

H(P) ≤ L < H(P) +
1

n
(1.16)

This means we can get arbitrarily close to the entropy limit by considering
longer and longer blocks. This is the celebrated Shannon’s source coding theo-
rem. Now let us prepare ourselves for its proof by studying the entropy function
a bit in depth.

19

Exercise Set 2

1. Compressing letters in ”Sons and Lovers” by D. H. Lawrence

Letter percentages (%) from Sons and Lovers are given in a decreasing
order:

e t a h o i s n r
12.95 8.59 7.84 7.59 7.21 6.67 6.52 6.44 5.59

d l w u m y g f c
4.75 4.47 2.85 2.72 2.68 2.17 2.13 1.99 1.94

b p k v x j q z
1.39 1.39 1.07 0.76 0.10 0.08 0.08 0.03

Design the Shannon Code from these percentages, and display the code in
a binary tree. Calculate the average code length per letter and compare
with the estimated entropy rate.

2. Optimality of Huffman code

Prove that Huffman code gives the shortest average code length among all
prefix codes.

3. Compare Huffman code on symbols with Huffman code on 3-tuples (blocks)

Given an iid binary message source with probability 0.1, 0.9, design the
Huffman code on {0, 1} and the Huffman code on {0, 1}3. Display the
codes in binary trees, and Calculate the average code lengths and compare
with the entropy rate.

1.6 Shannon’s source coding theorem

Even though Shannon’s source coding theorem holds for ergodic sequences, we
cover only the iid case in this section. A sequence of iid symbols X1, ..., Xn from
X , each with entropy H(P), can be compressed into more than nH(P) bits
with negligible loss of information as n→ ∞; conversely, information inequality
ensures the entropy nH(P) for the product measure as a lower bound.

Theorem 1.4 (Asymptotic Equipartition Property (AEP)). If X1, ..., Xn

are iid with a distribution P ,

− 1

n
log2 P (X1, ..., Xn) → H(P) (1.17)

in probability as n tends to infinity.

Proof. The result follows from the weak law of large numbers.

20

Corollary 1.1. Under the assumptions of the above theorem, the average code
lengths per symbol of the Shannon and Fano-Shannon-Elias codes on X n tend
to the entropy H(P) as the sequence gets longer and longer.

One can interpret or re-write the above result using the terminology of a
typical set.

Definition 1 (Typical Set). For a given ε > 0, the typical set is defined

A(n)
ε = {xn ∈ X : 2−n(H(P)+ε) ≤ P (xn) ≤ 2−n(H(P)−ε)} ∈ Xn.

The set A
(n)
ε is typical in the sense that the strings xn ∈ A

(n)
ε account

for most of the probability in the product space, X n, and the probability of

each string xn ∈ A
(n)
ε is close to uniform; that is, the cardiality of A

(n)
ε is

approximately 2nH(P), and the probability of each string xn ∈ A
(n)
ε is about

2−nH(P). When P is the uniform distribution on X , we have seen that the

entropy is log |X |. For the typical set, we have log2A
(n)
ε ≈ log2 2nH(P) = nH(P).

Hence, through the notion of a typical set, the uniform distribution emerges as
an important tool for understanding the entropy of general P . These statements
are made precise by the following theorem:

Theorem 1.5. Given a probabiity distribution P on a set X , and iid obser-
vations X1, . . . , Xn from P , we have the following results about the typical set

A
(n)
ε for ε > 0

1. If xn ∈ A
(n)
ε ,

∣

∣

∣

∣

− 1

n
log2 P (xn) −H(P)

∣

∣

∣

∣

< ε , (1.18)

2. For large n,

P
(

A(n)
ε

)

> 1 − ε , (1.19)

3. |A(n)
ε | < 2n(H(P)+ε), and

4. For large n,
∣

∣

∣
A(n)

ε

∣

∣

∣
> (1 − ε) 2n(H(P)−ε) (1.20)

Proof. The proof of (3) follows from the chain of (in)equalities

1 =
∑

xn∈Xn

P (xn)

≥
∑

xn∈A
(n)
ε

P (xn)

≥
∣

∣

∣
A(n)

ε

∣

∣

∣
2−n(H(P)+ε).

21

An entropy-achieving block coding scheme can be devised based on the corol-
lary. For a given ε > 0, first we use one bit to indicate whether a sequence

xn ∈ Xn is in A
(n)
ε or not; we enumerate the sequences in A

(n)
ε in lexicographic

order to give each sequence an integer index which is the code for this sequence.
This takes less than n(H(P) + ε) + 2 bits. For the sequences in the compliment

of A
(n)
ε , it takes at most n log2 |X | + 2 bits to encode. As a result, this coding

scheme has average code length per symbol approximates the entropy rate on

A
(n)
ε .

All the codes introduced earlier when applied to the block alphabet X n lead
to the entropy rate in the limit. But some are easier to implement on the block
than others. In particular, Huffman and Shannon codes need sorting which is
a demanding computational task for a large alphabet X n when n is not small.
It is particularly hard to move from one block size to the next for these codes.
The Shannon-Fano-Elias code, however, is easily updated when the block size
changes and has acquired a new name, Arithmetic Code, when applied to blocks.

Example 1.1 (Arithmetic Code). We end this set of examples with an
encoding scheme that builds on the the Shannon-Fano-Elias code. Assume we
have a model Q that we want to use to compress strings from a particular source.
The distribution Q does not have to correspond to the true data-generating
distribution. Suppose we have a string x1, x2, . . . , xn that we want to compress.
In the simplest case, our model Q might assume that each symbol appears in
the string independently. We might also consider a Markov model in which
Q(xi) = Q(xi|xi−1). No matter how we specify the model, it is important
that we can compute the probability of xi given the previous elements of the
sequence.

Formally, we consider mapping symbols or sequences of symbols onto subin-
tervals of [0, 1). Here is an outline of the method

1. We begin with a “current interval” [L,H) initialized to [0, 1).

2. For each symbol in the string we want to compress

(a) We subdivide the current interval into subintervals, one for each pos-
sible symbol. The size of a symbol’s subinterval is proportional to
the probability that the symbol will be the next to appear in the
string, according to the model of the source.

(b) We select the subinterval corresponding to the next symbol that is
actually observed and make it the new current interval.

3. We output enough bits to distinguish the final current interval from all
other possible final intervals.

The length of the final subinterval is equal to the product of the probabilities
of the symbols; that is, Q(x1, . . . , xn) = Q(x1)Q(x2|x1) · · ·Q(xn|x1, . . . , xn−1).
For and independent model this is just Q(x1) · · ·Q(xn). The final step of this
process requires b− logQc + 1 bits as in Shannon-Fano-Elias code. When the

22

Next symbol L H
0.0 1.0

a 0.0 0.9
a 0.0 0.81
a 0.0 0.729
a 0.0 0.6561
a 0.0 0.59049
a 0.0 0.531441
a 0.0 0.4782969

Figure 1.7: Arithmetic coder for simple sequence.

true data generating distribution P is not known, we can use estimates of
P (xi|x1, ..., xi−1) based on x1, ..., xi−1 as Q(xi|x1, ..., xi−1).

To see the benefit of this kind of process, consider a case when the prob-
abilities of observing a symbol are slightly skewed. Consider a case in which
the probability of seeing the symbol a is 0.9. We set up our probability table
so that the letter a occupies the range 0.0 to 0.9. For message ”aaaaaaa”, the
encoding process then looks like this:

Now we know what the range of low and high values are, all that remains
is to use the middle-point in the interval [0, 0.4782969) to encode this message.
Truncating the middle-point 0.2391485 into d− log 0.4782969e + 1 = 3 bits, we
get the codeword 001 for the message ”aaaaaaa”.

1.7 Entropy

As we know, the entropy formula appeared as early as in Gibbs’ works in the
late 1800s and has been shown to be a lower bound on the average code length
in the information inequality. Now let us formally introduce it in this section
with its properties.

Given a probability function P defined on a discrete alphabet X , we define
the entropy H(P) to be

H(P) = −
∑

x∈X

P (x) logP (x) . (1.21)

The logarithm in this expression is usually in base 2, and the units of entropy
are referred to as bits. The entropy function enjoys the following properties
which are easy to prove:

Theorem 1.6. Let X be a random variable on X with distribution P . Then

0 ≤ H(X) ≤ log2 |X | < |X |.
That is, the entropy of a random variable X is non-negative and is bounded by
the cardinality of X , |X |. Equality holds if and only if X is uniformly distributed
on X . Moreover, H(X) = H(P) is concave in P .

23

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p

en
tr

op
y

p1

p2

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1.8: Left: Entropy of a coin toss, plotted as a function of p. Right:
Entropy of a multinomial with 3 values plotted as a function of p1 and p2.

Proof. The entropy is non-negative because − logP (x) ≥ 0.
By using Lagrange multiplier, it is easily seen that H(P) is maximized when

P (x) = 1/|X | under the constraint

∑

x

P (x) = 1.

The concavity of H(P) follows from the concavity of log.

Example 1.1 (Entropy of a coin toss). Let X = {0, 1} and and P (1) = p.
H(p) = −p log2 p − (1 − p) log2(1 − p) with a graph. Then H(0.5) = 1. The
function H(p) is given on the left in Figure 1.8. It is easily calculated that it
reaches its maximum at p = 1/2 and is symmetric around p = 1/2. The function
is rather flat around its maximum as well, but is quite steep at the ends of [0,1].

Example 1.2 (Multinomial distribution). Given an alphabet with A sym-
bols, taking probabilities b ′ = p1, . . . , pA, the entropy is

H(b ′) =
∑

pi log pi

For 3 values, b ′ = (p1, p2, p3). The function H(b ′) is given on the right in
Figure 1.8, plotted as a function of p1 and p2. The point marked in this figure
(0.5,0.25) indicates the entropy value for our toy example given above, where
the the alphabet X = {a, b, c}.

The entropy function can also be derived from a set of axioms as demon-
strated in Shannon (1948). Below is a list of requirements that seem reasonable
for a measure of information. Various authors have shown that collections of

24

these properties are in fact sufficient to prove that entropy must take the form
defined above.

Continuity H(p1, ..., pk) is a continuous function of the vector p. This makes
sense because we would not want small changes in p to yield large differ-
ences in information.

Monotonicity For pj = 1/m, the entropy H(1/m, . . . , 1/m) should be an in-
creasing function of m. When dealing with choices between equally likely
events, there is more choice or uncertainty when there are more possible
events.

Conditioning Hm(p1, . . . , pm) = Hm−1(p1+p2, p2, . . . , pm)+(p1+p2)H2(
p1

p1+p2
, p2

p1+p2
)

Theorem 1.7. If a function satisfies continuity, monotonicity, and the condi-
tioning conditions, then

Hm(p1, . . . , pm) = −
m

∑

i=1

pi log pi for m = 2, 3, . . .

For a pair of random variables (X,Y), putting its joint distribution in the
entropy formula gives the joint entropy of the pair which we denote by H(X,Y).

Definition 2 (Joint Entropy). The joint entropyH(X,Y) of a pair of discrete
random variables (X,Y) with a joint distribution P (x, y) is

H(X,Y) = −
∑

x∈X

∑

y∈Y

P (x, y) logP (x, y) = −E logP (X,Y) (1.22)

When side information X, which is dependent on Y , is available at no cost
or little cost, it is better to use X for the compression of the variable of interest
Y . This is the case in distributed compression and predictive coding. For the
next definition, we let P (y|x) denote the conditional distribution of Y given
X = x.

Definition 3 (Conditional Entropy). Let (X,Y) have the joint distribution
function P (x, y). Then the conditional entropy is defined to be

H(Y |X) =
∑

x∈X

P (x)H(Y |X = x) (1.23)

= −
∑

x∈X

P (x)
∑

y∈Y

P (y|x) logP (y|x) (1.24)

= −
∑

x∈X

∑

y∈Y

P (x, y) logP (y|x) (1.25)

= −E logP (Y |X) (1.26)

Theorem 1.8 (Chain rule for entropy).

H(X,Y) = H(X) +H(Y |X) (1.27)

25

Proof.

H(X,Y) = −
∑

x∈X

∑

y∈Y

P (x, y) logP (x, y) (1.28)

= −
∑

x∈X

∑

y∈Y

P (x, y) logP (x)P (y|x) (1.29)

= −
∑

x∈X

∑

y∈Y

P (x, y) logP (x) −
∑

x∈X

∑

y∈Y

P (x, y) logP (y|x)(1.30)

= −
∑

x∈X

P (x) logP (x) −
∑

x∈X

∑

y∈Y

P (x, y) logP (y|x) (1.31)

= H(X) +H(Y |X) (1.32)

Example 1.3 (Experiments with News Stories). For this example, we
consider all the stories from nytimes.com on September 15, 2003. All the
entropy calculations are done in the unit of nat. This collection consists of
76,018 words

• We then ran the so-called Brill’s part of speech tagger over the corpus,
assigning each word one of 35 labels (noun, verb, adjective, etc.). If X is
a word and Y is the part of speech, then H(X) = 7.2, H(Y) = 2.8 and
H(X,Y) = 7.4.

• Next, if for each sentence, we let X and Y denote consecutive words in
the sentence, H(X) = 7.1, H(Y) = 7.3 and H(X,Y) = 10.1. (Note that
the entropy of X is slightly less than the previous example; we have left
off the last X in each sentence.)

• Finally, suppose we let X represent words again and Y an indicator of
which story the word belonged to. Our test sample has 116 stories. Then,
H(X) = 7.2, H(Y) = 4.7 and H(X,Y) = 10.0. This means that cer-
tain words appear only in certain stories, reducing the entropy more than
knowing the part of speech or the previous word.

Corollary 1.2.
H(X,Y |Z) = H(X|Z) +H(Y |X,Z) (1.33)

Example 1.4. Suppose X and Y are both binary and X is uniform and the
input variable into a symmetric binary channel with switching probability p and
Y is the output of the channel. Their joint distribution is given in the table
below, and their marginal distributions are given in the margins.

y
x 0 1
0 0.5 (1-p) 0.5 p 0.5
1 0.5 p 0.5 (1- p) 0.5

0.5 0.5

26

Then H(Y |X) = H(p) and H(X,Y) = H(X) +H(Y |X) = 1 +H(p). When p
is small, the channel noise is low so Y is very much like X and the joint entropy
is close to the entropy of X.

Theorem 1.9. H(X|Y) ≤ H(X) with equality if and only if X and Y are
independent.

Similarly we can define the joint entropy for any random variable vector
(X1, ..., Xn):

H(X1, ..., Xn) =
∑

x1,...,xn

P (x1, ..., xn)[− logP (x1, ..., xn)].

It follows that if X1, ..., Xn are iid, then

H(X1, ..., Xn) = nH(X1),

with the special case that for a binomial random variable X with a success
probability p:

H(X) = nH(p).

In general, the entropy chain rule takes the form

H(X1, . . . , Xn) =

n
∑

i=1

H(Xi|Xi−1, . . . , X1),

because

P (x1, . . . , xn) =
n

∏

i=1

P (xi|xi−1, . . . , x1).

Theorem 1.10. H(X1, ..., Xn) ≤
∑

iH(Xi) with equality if and only X1, ..., Xn

are independent.

If the message process is not iid, then the entropy of the marginal distribution
does not reflect the coding limit since the depedences between the symbols in
the process are not taken into account. However, we can still consider coding
on blocks of sylmbos and this leads to the follwoing deifinition of

Definition 4 (Entropy Rate of a Stochastic Process). The entropy rate
of a stochastic process X = (X1, ..., Xn, ...) is defined as

H(X) = lim
n→∞

H(X1, ..., Xn).

If we take the conditional view of the process or think about predictive
coding, then we arrive at an alternative definition for the entropy rate

H ′(X) = lim
n→∞

H(Xn|Xn−1, , ..., X1).

For stationary processes, these two definitions are equivalent fortunately

27

Theorem 1.11. For a stationary stochastic process on X , H(X) exists and
equals H ′(X).

Proof. Since conditioning reduces entropy,

H(Xn+1|Xn, Xn−1, ..., X2, X1)

≤ H(Xn+1|Xn, Xn−1, ..., X2)

= H(Xn|Xn−1, Xn−2, ..., X1).

The last equality holds because of stationarity. Hence the sequence

H(Xn+1|Xn, Xn−1, ..., X2)

is non-negative and non-increasing so has a limit. By the chain rule on the joint
entropy H(X1, ..., Xn), the averged joint entropy or H(X) is the average of the
above sequence and hence also shares the same limit.

Example 1.5 (Entropy rate of a stationary Markov process). If X is a
stationary Markov process of order 1,

H(Xn|Xn−1,, X1) = H(Xn|Xn−1) = H(X2|X1),

and the entropy rate
H(X) = H(X2|X1).

For a stationary and ergodic Markov chain with stationary distribution πi

and transition matrix pij , The entropy rate is

∑

i

πi

∑

j

[−pij log pij].

For a two-state Markov chain with a transition Matrix
(

1 − p1 p1

p2 1 − p2

)

and stationary distribution

π1 =
p2

p1 + p2
;π2 =

p1

p1 + p2
.

The entropy of Xn is

H(Xn) = H(π1) = H(
p2

p1 + p2
).

However, the entropy rate of the sequence is LOWER due to the dependence
and it is

H(X2|X1) =
p2

p1 + p2
H(p1) +

p1

p1 + p2
H(p2)

28

For low flip rates p1 = 0.01, p2 = 0.02, the marginal entropy is

H(π1) = H(2/3) = 0.92(bits),

while the entropy rate of the sequence is

2/3 ×H(0.01) + 1/3 ×H(0.02) = 2 × 0.08/3 + 0.14/3 = 0.1(bits).

Recall that the Clausius invented concept of entropy in Physics specifically
in the statement of Second Law of Thermodynamics. We have now acquired
enough basics on entropy to actually prove a version of Second Law of Thermo-
dynamics as follows.

Theorem 1.12. For a stationary Markov sequence X1, ..., Xn, ..., the condi-
tional entropy H(Xn|X1) is non-decreasing, while the marginal entropy H(Xn)
is fixed.

Proof.

H(Xn|X1) ≥ H(Xn|X1, X2) (property (3))

= H(Xn|X2) (Markov property)

= H(Xn−1|X1) (Stationarity)

Entropy is easily extendible to the continuous case by replacing summation
with an integral operator. (If we try to apply the summation definition to a
continuous distribution, we end up with a value of infinity.) But one may argue
that for a fixed precision, the essential information about the distribution is
captured by the so-called differential entropy.

Definition 5 (Differential Entropy). Given a continuous distribution with
a positive density function f on Rd, its differential entropy is defined as

H(f) = −
∫

Rd

f(x) log2 f(x)dx, (1.34)

with the convention that 0 log2 0 = 0.

For simplicity, suppose f is non-zero only on the unit cube of Rd, then
discretizing the unit cube by a small cube of size δd leads to a discretized
distribution Pd with cell probabilities pδ(x) ≈ f(x)δd. This distribution has
entropy

H(Pδ) ≈ H(f) − d log2 δ. (1.35)

When the precision increases or δ → 0, H(Pδ) tends to infinity, but the increas-
ing part is the same for all densities if we use the same precision and hence not
reflecting on the density under consideration.

29

Example 1.6 (Uniform Distribution). For a uniform density on [α, β], the
differential entropy is

He = ln(β − α). (1.36)

Example 1.7 (Gaussian Distribution). For a Gaussian density f with mean
µ and variance σ2,

He(f) = 1/2 + ln(2πσ2)/2. (1.37)

Both calculations confirm that the differential entropy captures the ran-
domness or variability in the random variable, but differential entropy can be
negative, unlike entropy in the discrete case.

1.8 Estimation of Entropy

We begin with a bioinformatics example where entropy estimates are used to
represent biological information.

Motifs are chromosome regions with specific biological structural significance
or function. They usually short, about 6-20 base pairs. Examples include splice
sites, transcription factor binding sites, translation initiation sites, enhancers,
and silencers. The table below is a weight matrix learned from 15,155 mamalian
donor sites (exon and intron junctions) from the SpliceDB database. Entries
are frequencies of bases at each position.

Base -3 -2 -1 0 +1 +2 +3 +4 +5
A 33 61 10 0 0 53 71 7 16
C 37 13 3 0 0 3 8 6 16
G 18 12 80 100 0 42 12 81 22
T 12 14 7 0 100 2 9 6 46

Sequence logo is a graphical method to display patterns in a set of alligned
sequences:

• Height of stack at each position is the ”information” content from the
frequencies:

max. entropy - estimated entropy = 2- estimated entropy

• Letters A, T, G, C are arranged in decreasing order of frequency whose
heights are proportional to the frequencies.

Mammalian Donor Site

weblogo.berkeley.edu

0

1

2

bi
ts

5′ -3

G

A
C

-2

G
C
T
A

-1

C
T
A
G

0

G

1T 2

G
A

3C
T
G
A

4C
T
A
G

5A

C

G

T

3′

30

The entropy estimate above is the plug-in estimate.3 In general, given an iid
sequenceX1, ..., Xn with probabilities p1, ..., pk on {1, ..., k}, the plug-in estimate
of entropy is based on empirical counts as follows. Let Nj =

∑

i I(Xi = j) for
j = 1, ..., k and they are multinomial. The MLE of p’s are

p̂j = Nj/n.

Then the plug-in MLE of H(X) is

Ĥ = H(p̂1, ..., p̂k) = −
k

∑

j=1

Nj

n
log

Nj

n
.

Miller (1954) showed that the plug-in estimate of entropy has a downward
bias. That is,

H − Ĥ =
∑

j

Nj

n
log

Nj

npj
+

∑

j

{Nj

n
− pj} log pj

Tbe expected bias

E(H − Ĥ) = E(
∑

j

Nj

n
log

Nj

npj
),

because the second term has expectation zero. Because 2
∑

j Nj log
Nj

npj
has an

approximate χ2
k−1 distribution,

E(H − Ĥ) ≈ (k − 1)/(2n) +O(1/n2).

The 1/n2 term is actually

(
∑ 1

pj
− 1)/(12n2).

From Miller’s expansion, we can easily see that when X is NOT uniform,

√
n(Ĥ −H) → N(0, σ2

H),

where
σ2

H = −
∑

j 6=j′

pjpj′ log pj log pj′ +
∑

j

pj(1 − pj)(log pj)
2.

When X is uniform, a faster convergence rate holds:

n(Ĥ −H) → 1

2
χ2

k−1.

In neuroscience, the plug-in entropy estimate is used over blocks of spike
train data to arrive at entropy estimates. This method was proposed by Strong

3Thanks to Xiaoyue Zhao and Terry Speed for providing the data.

31

et al and we describe it now. For a window size T , take non-overlapping windows
and estimate the joint probabilities of T -tuples and plug in these empirical joint
probabilities to get entropy estimate ĤT for window size T . Stationarity is
implicitly assumed.

For a sequence of size n with enough mixing, one could generalize Miller’s
result to show that the bias of Strong et al’s estimate is of order

O(2T /n),

which follows that when T = O(logn) the bias is of order O(1).
In the next example we apply Strong et al’s estimate to some songbird spike

train data corresponding to natural and synthetic stimuli4. Spike trains (0-1
sequence) are recorded on a single neuron in the auditory pathway of a song bird
while sound stimuli are played to the bird. We apply Strong et al’s method to
two spike train sequences. The first one corresponds to natural stimulus or bird
song and its length is 865 and the second corresponds to a synthetic song which
is more similar to a bird song than white noise to make the neuron respond,
but it is not a real bird song. The estimated entropies are given in Figure1.8
for T = 1, ..., 10 since 210 = 1024 which is already larger than the lengths of
both sequences. Obviously the entropy curve for the natural stimulus is higher
than the one for the synthetic stimulus, but it is hard to judge whether their
difference is significant or not without a measure of uncertainty for the entropy
estimate. Moreover, it is even harder to interpret this difference as biologically
meaningful or evidence that the neuron cell responds to natural stimulus better
than to synthetic stimulus.

There is a similar downward bias of MLE plug in for estimating differen-
tial entropy. Suppose f(xn, θ) is a parametric n-tuple density function of a

stationary and ergodic sequence, θ̂ is the MLE of θ.
Then the MLE plug-in estimate of differential entropy rate

Ĥn(f) = − log f(xn, θ̂)/n,

underestimates H(fn) = E[− log f(Xn, θ)/n] under regularity conditions and
the expected bias is

1

2
d/n,

where d is the dimension of θ, because

− log f(xn, θ) + log f(xn, θ̂) ≈ 1

2
χ2

d.

Exercise Set 3

1. For a Poisson random variable X with mean parameter µ, prove that its
entropy tends to infinity as µ→ ∞.

4Data are kindly provided by F. Theunissen Lab, UC Berkeley.

32

5 10 15 20

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

T

bi
ts

0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

1/T

bi
ts

Figure 1.9: In the left panel, the upper curve gives the entropy estimates for
T=1,...10 for the natural stimulus sequence and the lower curve is for the syn-
thetci stimulus sequence. The right panel contains the same information, but it
is plotted against 1/T as in Strong et al.

33

2. For a ”nice” parametric family of dimension d, show that the expected
downward bias of the plug-in differential entropy estimate based on n iid
samples has a leading term 1

2d/n as n→ ∞.

3. Simulate iid Bernouli sequences of various sizes and various success proba-
bilities to find out how Strong et al’s method works for entropy estimation.

1.9 Maximum Entropy (Maxent) Principle: the
first visit

In his famous 1957 paper (”information theory and statistical mechanics”), Ed.
T. Jaynes wrote:

Information theory provides a constructive criterion for setting up
probability distributions on the basis of partial knowledge, and leads
to a type of statistical inference which is called the maximum en-
tropy estimate. It is least biased estimate possible on the given in-
formation; i.e., it is maximally noncommittal with regard to missing
information.

That is to say, when characterizing some unknown events with a statistical
model, we should always choose the one that has Maximum Entropy. Maximum
entropy principle has been applied to a variety of fields such as computer vision,
spatial statistics, and natural language processing.

Below are some well-known examples of Maxent distributions

Example 1.1 (Gaussian). If X is continuous and has known first and second
moments αi for i = 1, 2 and α2 − α2

1 > 0, then the maxent distribution is
N(µ, σ2) with

µ = α1, σ
2 = α2 − α2

1.

Example 1.2 (Exponential). IfX is positive and continuous and has a known
first moment α1, then X is exponential with mean α1.

Example 1.3 (uniform). Uniform on a finite set {1, ..., k} is the maxent dis-
tribution with no moment constraints.

Example 1.4 (Boltzmann). The maxent distribution on a finite set {1, ..., k}
with a first moment constraint α1 > 0 is

pj = eλj/

k
∑

j=1

eλj .

That is, the most probable ”macrostate” (probability distribution) is (p1, ..., pk)
as above, provided that

∑

j

jpj = α1

is fixed.

34

Actually maxent distributions (when they exist) are in the exponential family
as stated in the next theorem.

Theorem 1.13. The maxent distribution is the distribution that maximizes the
entropy of f over all probability density functions such that

• f(x) ≥ 0

•
∫

f(x)dx = 1

•
∫

f(x)Ti(x)dx = αi for i = 1, ...,m

And the maxent solution takes the form

f(x) = eλ0−1+
∑m

i=1 λiTi(x),

where the λ’s are chosen to satisfy the constraints.

Proof. Here is a derivation through calculus
Let

J(f) = −
∫

f log f + λ0

∫

f +
∑

i

λi

∫

fTi.

Differentiate with respect to f(x):

∂J

∂f(x)
= − log f(x) − 1 + λ0 +

∑

i

λiTi(x).

Setting this to zero, we get

f(x) = eλ0−1+
∑m

i=1 λiTi(x),

where the λ’s are chosen to satisfy the constraints.
We can now verify such an f does have the maximum entropy. If suffices to

show that for any g satisfying all the constraints:

H(f) −H(g) ≥ 0.

H(f) −H(g) = −
∫

f(x) log f(x)dx+

∫

g(x) log g(x)dx

= −
∫

f(x)(λ0 − 1 +

m
∑

i=1

λiTi(x))dx+

∫

g(x) log g(x)dx

= −
∫

g(x)(λ0 − 1 +

m
∑

i=1

λiTi(x))dx+

∫

g(x) log g(x)dx

= −
∫

g(x) log f(x)dx+

∫

g(x) log g(x)dx

=

∫

g(x) log[g(x)/f(x)]dx

35

The last expression is non-negative due to information inequality.

36

Chapter 2

Relative Entropy or
Kullback Leibler Divergence

Now let us go back to coding. We have seen in the previous chapter that when we
know the message generating distribution P , we know how to do optimal coding
or near-optimal coding via Huffman, Shannon, Shannon-Fano-Elias codes. But
what happens if we don’t know P and use a wrong code?

We consider again the creation of codes, this time with an eye toward their
performance. Suppose we create a code based on the frequency of words found
in the New York Times in 2004, and then use it to encode stories from this year.
We collected all the articles from the issues appearing April 20, 2004 and March
9, 2005 In the two issues of the paper, we collected over 17,213 words (including
numbers and abbreviations), with 7,457 appearing only once Let P (x) and Q(x)
denote the frequency of word x from the 2004 and 2005 issues, respectively The
entropies are given by

∑

x

Q(x) log
1

Q(x)
= 12.77 and

∑

x

P (x) log
1

P (x)
= 12.94

The most frequent words appearing in these texts do not carry content; they
are pronouns, articles and prepositions We might expect that many of these
non-content words appear in roughly the same proportions in 2004 as in 2005

word n.04 freq.04 bits.04 n.05 freq.05 bits.05

the 6375 0.0626 4 5783 0.0622 5

to 2777 0.0273 6 2543 0.0274 6

of 2708 0.0266 6 2365 0.0254 6

a 2557 0.0251 6 2497 0.0269 6

and 2338 0.0230 6 2137 0.0230 6

in 2248 0.0221 6 2107 0.0227 6

that 1377 0.0135 7 1315 0.0142 7

37

said 972 0.0096 7 1027 0.0111 7

for 952 0.0094 7 893 0.0096 7

he 901 0.0089 7 741 0.0090 7

While many of the non-content words seem to have similar distributions
between 2004 and 2005, what about the people and places that make up the
news? The who, what, where, when and why of the daily news certainly changes
from year to year

The next table lists the words that gained popularity from 2004 to 2005.

word n.04 freq.04 bits.04 n.05 freq.05 bits.05 diff

lebanon 1 1.96e-05 16 49 5.38e-04 11 5

lebanese 1 1.96e-05 16 47 5.16e-04 11 5

arts 0 9.82e-06 17 34 3.76e-04 12 5

bolton 0 9.82e-06 17 28 3.12e-04 12 5

hezbollah 1 1.96e-05 16 28 3.12e-04 12 4

march 30 3.04e-04 12 103 1.12e-03 10 2

prison 10 1.08e-04 14 27 3.01e-04 12 2

syria 9 9.82e-05 14 30 3.33e-04 12 2

The second table gives words that dropped in popularity from 2004 to 2005.

word n.04 freq.04 bits.04 n.05 freq.05 bits.05 diff

saatchi 41 4.12e-04 12 0 1.08e-05 17 -5

dvd 32 3.24e-04 12 0 1.08e-05 17 -5

cantalupo 32 3.24e-04 12 0 1.08e-05 17 -5

april 111 1.10e-03 10 15 1.72e-04 13 -3

bonds 57 5.69e-04 11 8 9.68e-05 14 -3

kerry 43 4.32e-04 12 3 4.30e-05 15 -3

tax 32 3.24e-04 12 8 9.68e-05 14 -2

campaign 58 5.79e-04 11 26 2.90e-04 12 -1

We are ready to quantify the difference of the two codes. Depending which
year we apply the codes, the expected difference is taking over a different dis-
tribution. Let Q(x) and P (x) denote the probabilities of word x in 2004 and
2005, respectively We can then write the difference in code lengths as

log
1

Q(x)
− log

1

P (x)
= log

P (x)

Q(x)

If the code from 2004 gives a shorter codeword, this quantity is negative; when
the code from 2004 assigns a longer codeword, it is positive. Averaging over
the distribution of words from the 2005 paper, the expected difference in code
lengths is given by

∑

x

P (x) log
P (x)

Q(x)

38

Can this quantity ever be negative? More to the point, by using the 2004
distribution an we ever achieve (on average) a shorter encoding of the paper in
2005?

In fact, we know from the Information Inequality that the difference in av-
erage code lengths must be non-negative That is, we know that

∑

x

P (x) log
1

Q(x)
−

∑

x

P (x) log
1

P (x)
=

∑

x

P (x) log
P (x)

Q(x)
≥ 0

If we use our code from 2004, we can encode the 2005 paper with a average
code length of

∑

x

P (x) log
1

Q(x)
= 13.29

Instead, if we build a code using the frequencies from 2005, we have an average
code length equal to the entropy, or

∑

x

P (x) log
1

P (x)
= 12.94

The difference is 13.29 - 12.94 = 0.35
Before we leave this example, it is worth questioning why we might consider

words rather than characters as you have done for your lab. Users of Morse code,
for example, eventually introduced another layer of compression onto the code;
Five-letter codewords like LIOUY and AYYLU were introduced to represent
complete phrases (in this case “Why do you not answer my question” and “Not
clearly coded, repeat more clearly”). Shannon also toyed with representing
English by character- and then word-based codes.

What is not mentioned here is the effort required to decode a message; word-
based models require large codebooks In the next section of this workshop, we
compare different codes or “models” for a data set and explicitly balance the
compression achievable with a given code against the cost of representing its
codebook This will yield the principle of minimal description length; but before
we get ahead of ourselves...

2.1 Kullback-Leibler Divergence

In this section we formally define the Kullback-Leibler divergence between two
probability distributions P and Q which measures the coding loss or redundancy
when a wrong code book is used. We have in fact seen this quantity in Chapter
1 in information inequality and

Definition 6. Kullback-Leibler Divergence

D(P‖Q) =
∑

x∈X

P (x) log
P (x)

Q(x)

where 0 log 0/q = 0 and p log p/0 = ∞

39

As to be seen, in many respects KL divergence acts as a measure of dissimi-
larity or “distance” between distributions, but it is not symmetric and does not
satisfy the trianglular inequality. It nevertheless has some desirable properities
as shown below.

Non-negativity (information inequality): D(P‖Q) ≥ 0 with equality if
and only if P (x) = Q(x), x ∈ X .

Convexity: Given pairs of distributions P1, Q1 and P2, Q2 ,

λD(P1‖Q1) + (1 − λ)D(P2‖Q2) ≥ D(λP1 + (1 − λ)P2‖λQ1 + (1 − λ)Q2)

for any λ ∈ [0, 1].

Obvious from the coding exercise of the news paper stories from 2004 and
2005, Kullback-Leibler divergence represents a coding a loss when the wrong
code book or wrong distribution is used. It is called redundancy in source
coding. That is, returning to our coding example, suppose we create code
lengths

L(x) =

⌈

log
1

Q(x)

⌉

for some distribution Q. Assuming the true distribution of the source is P , we
can easily show that expected code length satisfies

H(P) +D(P‖Q) ≤ EL < H(P) +D(P‖Q) + 1

In their original paper, Kullback and Leibler cast their divergence measure
as a tool for distinguishing between statistical populations In fact, they refer to
the quantity

log
P (x)

Q(x)

as “the information in x for discrimination between” the distributions P and Q
(we recognize this as the logarithm of likelihood ratio, or Bayes factor assuming
a uniform prior on the two distributions). Their divergence is then the mean
information for discrimination per observation from P .

Example 2.1 (the gamma family). In Figure 2.1 we have plotted the den-
sities for five gamma distributions. The scale parameter for each is just 1, and
the shape parameters are 1, 2, 3, 4 and 5 (tracking the modes from left to right).

We present the pairwise KL divergences in the form of a (dis)similarity
matrix. Within each row, the largest distances occur in the first column; as
expected the exponential distribution looks quite distinct. Notice the asym-
metry in the table, it is also the most extreme for entries involving the first
column/row.

shape parameter

1 2 3 4 5

40

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

x

cb
in

d(
y1

, y
2,

 y
3,

 y
4,

 y
5)

1 0.00 0.54 1.78 3.42 5.34

shape 2 0.42 0.00 0.27 0.95 1.91

parameter 3 1.15 0.23 0.00 0.18 0.64

4 1.98 0.72 0.16 0.00 0.13

5 2.85 1.34 0.53 0.12 0.00

A good property of KL is its scale-invariance which is not enjoyed by the
L2 distance for example. In the gamma example, we are essentially computing
the distance between the distributions for a single observation. If we instead
consider n independent observations from P and Q, x = (x1, . . . , xn) ∈ Xn, we
have

D(Pn‖Qn) =
∑

x∈Xn

Pn(x) log
Pn(x)

Qn(x)
= nD(P‖Q)

In KL divergenece, we can clearly see the accumulation of information to dis-
tinguish two distributions when the sample size n increases. The KL divergence
of the product distributions is proportional to the sample size.

In many language applications, documents are treated naively as bags of
words. The frequency of words becomes a clue to their content; documents
that use words in roughly in the same proportion are said to be similar. What
problems might we encounter applying KL divergence directly to this kind of
data?

The first problem with KL divergence is its asymmetry. The symmetry issue
is often addressed by defining a new measure that is the sum

D(P‖Q) +D(Q‖P)

This is often called the J-divergence and was originally studied by Jeffreys in
the context of identifying invariant prior distributions Jeffreys wrote the J-
divergence in the form

D(P‖Q) +D(Q‖P) =
∑

x

[P (x) −Q(x)] log
P (x)

Q(x)

41

The second problem with KL divergence is when the two distributions do
not share the same support, the KL divergence is technically infinity. While this
may be sensible in some applications, it is a bit extreme in some situations like
the document example. To soften the blow, Lin (1991) proposed the Jensen-
Shannon divergence

JS(P,Q) =
1

2
D

(

P
∥

∥

P +Q

2

)

+
1

2
D

(

Q
∥

∥

P +Q

2

)

It is easy to check that

JS(P,Q) =
1

2
H

(

P +Q

2

)

− 1

2
H(P) − 1

2
H(Q)

Moreover, JS-divergence is at least twice as large as the J-divergence. It is also
a convenient dissimilarity measure between documents which are summarized
by word frequencies or distributions.

Theorem 2.1. For any distributions P and Q,

J(P,Q) ≤ 1

2
JS(P,Q).

Proof. Enough to show D(P ||P+Q
2) ≤ 1

2D(P ||Q).

Example 2.2 (News stories). Let’s consider stories taken from a single day
of the New York Times, January 2, 2004. We applied the JS divergence to pairs
of stories to compute a (symmetric) dissimilarity matrix. A simple visualization
device was used to check the output for clusters, categorizing stories solely on
their section of the paper.

Figure 2.1 shows the result of simple multidimensional scaling (MDS) applied
to the JS dissimilarity matrix. MDS is widely used in Psychology, Social Science
and Economy. In general, MDS maps the units (documents in our case) to points
in a low dimensional Euclidean space to minimize some stress measure such as

∑

i,j

(dij − JS(documenti||documentj)2,

where dij is the reproduced distance in R2 of the mapped points. For our
example, we used the R function cmdscale (classical multidimensional scaling).
The cmdscale algorithm is based on Gower, J. C. (1966) which uses the principle
coordinate system for the mapping.

Notice the isolation of certain categories like business and sports in Figure
2.1. It also makes sense to see the cagetory ”nyregion” has overlaps witih other
categories like sports and international.

Relative entropy or KL divergence is easily extendible to the continuous case
by replacing summation with an integral operator. we try to apply the summa-
tion definition to a continuous distribution, we end up with a value of infinity.

42

That is, for two density functions f and g, this replacement of summation by
integration in D works because the precision terms from discretizing f and g
cancel each other out. Hence we have

Definition 7 (Differential KL Divergence). Given two probability densities
f and g,

D(f ||g) =

∫

f(x) log[f(x)/g(x)]dx.

For mathematical convenience, we denote by K(f, g) the Kullback-Leibler
divergence when log is taken with respect to base e:

43

K(f, g) =

∫

f(x) ln[f(x)/g(x)]dx = ln 2D(f, g).

Recall that differential entropy which could be negative and is not the limit of
the discrete entropy when precison tends to zero. The differential KL divergence
is a well-defined limit of the discretized version of the KL divergence becase the
precision terms from discretizing f and g cancel each other out in the ratio.

2.2 KL as a dissimilarity measure on distribu-
tions

While the relative entropy is used as a kind of distance measure between dis-
tributions, it does not satisfy some important properties. The most obvious
difficulty is that it is not symmetric. It also does not satisfy the so-called trian-
gle inequality. Hence it is not a distance on the space of probability measures,
but it nevertheless measures the “dis-similarity” of two probability measures and
arises naturally in many statistical contexts. It is actually acts like a “distance”
in some sense. In particular, it is closely related to other proper distances such
as the L1 and L2 norms and the Hellinger distance as revealed in the inequalities
in the following theorem. For simplicity, we assume the two probability mea-
sures share the same probability sample space and have density functions f and
g with respect to the same dominating measure µ (e.g., the counting measure
in the discrete case and the Lebesgue measure in the continuous case).

Definition 8 (L1 norm).

L1(f, g) =

∫

|f(x) − g(x)|dµ(x).

Definition 9 (L2 norm).

L2
2(f, g) =

∫

|f(x) − g(x)|2dµ(x).

Definition 10 (Hellinger distance).

H2(f, g) =

∫

|
√

f(x) −
√

g(x)|2dµ(x).

As L1 and Hellinger distances, KL-divergence is scale-invariant, but L2 is
not.

Theorem 2.2. The following inequalities hold on the various“distances” be-
tween probability measures:

1. Obviously,
L1(f, g) ≤ L2(f, g).

44

2.
H2(f, g) ≤ L1(f, g) ≤ H(f, g)

√

4 −H2(f, g) ≤ 2H(f, g).

3.
2 − L1(f, g) ≤ {1 −H2(f, g)/2}2.

4. Pinker’s inequality:
L1(f, g) ≤

√

2K(f ||g).

5. Bretagnolle-Huber inequalities:

L1(f, g) ≤ 2
√

1 − e−K(f ||g) ≤ 2 − e−K(f ||g).

Proof. The first inequality follows from Cauchy-Schwartz inequality.

Hence D is a stronger “distance” measure than L2
1, and L2 and H are

stronger than L1 too. In some sense, D behaves as a squared distance. More
importantly, it arises as the natural measure of dissimilarity in many differ-
ent contexts, for example, MLE for misspecified models, Large deviations, and
hypothesis testing.

Much theory has been carried out for density estimation in terms of L1, L2

or H. We will see later in this course how using D simplifies and unifies the
upper and lower bounding in minimax density estimation over smooth classes
of functions.

2.3 KL and MLE

2.3.1 Basic Classical Maximum Likelihood Theory

Assume we have a parametric family of probability models g ∈ G where g =
g(x; θ) and the data generating distribution belongs to this family. The max-

imum likelihood estimator θ̂ = arg maxθ gθ(x1, . . . , xn) is optimal in the sense
that it achieves equality in the Cramer-Rao information bound if the true dis-
tribution belongs to the parametric model: for any unbiased estimator θ̂n

E(θ̂n − θ)(θ̂n − θ)′ ≥ Jn(θ)−1, (2.1)

where Jn(θ) is the Fisher information matrix,

Jn(θ) = Eθ

(

∂

∂θ
ln gθ(X1, . . . , Xn)

)(

∂

∂θ
ln gθ(X1, . . . , Xn)

)′

. (2.2)

If X1, ..., Xn are iid, then
Jn = nJ1,

45

a property similar to Shannon’s entropy. Also similar to Shannon’s entropy,
Fisher information characterize the limit of possible for parameter estimation if
the true distribution is contained in the parametric family.

There is an equivalent expression for the Fisher information. We now intro-
duce some notation. Let the log-likelihood function be

ln(θ) = ln gθ(X1, ..., Xn),

and the score vector

Un = (U1, ..., Ud)T = (∂ln/∂θ1, ..., ∂ln/∂θd)
T ,

with
EθUn = (0, ..., 0)T .

Then

Jn = [−Eθ
∂2ln
∂θi∂θj

]d×d.

The proof is straightforward from the following facts

Eθ
∂ln
∂θi

= 0.

∂ln/∂θi =
∂gθ

∂θi
/gθ.

∂2ln
∂θi∂θj

=
∂2gθ(X

n)

∂θi∂θj
/gθ −

∂gθ(X
n)

∂θi

∂gθ(X
n)

∂θj
/g2

θ .

Expanding 0 = ∂ln
∂θi

(θ̂) around the true parameter θ, we get

√
n(θ̂ − θ) ≈ [Jn(θ)]−1 ×

√
nUn.

The asymptotic normality of the maximum likelihood estimator follows:

√
n(θ̂ − θ) →d N(0, J−1

1),

provided that the observations are iid and the parametric family is ”nice”.
All the information we gather from an iid sample is about the underlying

probability distribution or density and in a parametric family this information
has to be mapped into the parameter space for parameter estimation. If we
measure the distance between the distribution by the KL divergence K, the
following equation confirms the pivotal role that the Fisher information plays
in parameter estimation:

lim
∆θ→0

1

(∆θ)2
K(gθ‖gθ+∆θ) =

1

2
J1(θ), (2.3)

46

which says that when two members of the parametric family are close, the
“distance” in terms of KL divergence between them are quadratic in terms of
the the Euclidean distance between the two parameters and the curvature is
determined by the Fisher information up to a universal constant.

Before we close this section, it is worth going through the proof of Cramer-
Rao bound in the 1-dim case to highlight once more the central role of the score
statistic.

Proof. For any estimator T (X) of θ, we look at the projection of the centered
T (X) which can be upper bounded by Cauchy-Schwartz inequality:

Because EθU(X) = 0,

EθUT = Eθ[(U − EθU)(T − EθT (X))] ≤ Eθ(U − EθU)2Eθ(T − EθT)2 = J(θ)Vθ(T).

So what matters in the centered T (X) is its projection onto the direction
of the score statistic which is the direction that MLE follows, asymptotically,
providing the most efficient estimator.

On the other hand,

EθUT =

∫

fθ(x)f
′
θ(x)/fθ(x)T (x)dx

=

∫

f ′θ(x)T (x)dx

= d/dθ

∫

fθ(x)T (x)dx

= d/dθθ

= 1.

That is,

J(θ)Vθ(T) ≥ 1.

2.3.2 Limit of MLE when the model is misspecified

When the true density f is not in the parametric family. Let θ∗ be such that
the K-L divergence satisfies

Ef log f(X)/g(X; θ∗) < Ef log f(X)/g(X; θ) (2.4)

for all θ 6= θ∗. Then, we have the following lemma.

Lemma 2.1. Assume that g(x; θ) are distinct for all θ; that the g(x; θ) and f
have common support; and that X1, . . . , Xn are iid according to f . Then, as
n→ ∞ we have that

Pf (g(X1; θ
∗) · · · g(Xn; θ∗) > g(X1; θ) · · · g(Xn; θ)) → 1 . (2.5)

47

Proof. The inequality is equivalent to

1

n

∑

i

log g(Xi; θ)/g(Xi; θ
∗) < 0 . (2.6)

By the LLN, the left side tends in probability toward

Ef log g(X; θ)/g(X; θ∗) . (2.7)

But, rewriting

Ef log g(X; θ)/g(X; θ∗) = Ef log g(X; θ) − Ef log g(X; θ∗) (2.8)

= −Ef log f(X)/g(X; θ) + Ef log f(X)/g(X; θ∗)(2.9)

< 0 . (2.10)

Theorem 2.3. In addition to the assumptions of the lemma, let the param-
eter space for θ contain an open interval around θ∗. Assume that g(·; θ) is
differentiable with respect to θ in the open interval – which we denote g ′. Let
ln(θ;x) =

∑

log g(xi; θ) denote the log-likelihood. Then with probability → 1 as
n→ ∞,

l′n(x; θ) =
∑

i

g′(x; θ)

g(x; θ)
= 0 (2.11)

has a root θ̂n such that θ̂n → θ∗ in probability.

Proof. Let a be small enough that (θ∗ − a, θ∗ + a) is in the open interval con-
taining θ∗. Let

Sn = {x : ln(θ∗;x) > ln(θ∗ − a, x) and ln(θ∗;x) > ln(θ∗ + a, x)} . (2.12)

By the above lemma, Pf (Sn) → 1. For any x ∈ Sn there exists a value θ∗ −
a < θ̂n < θ∗ + a at which ln(θ) has a local maximum. That means l′n(θ̂n) =

0. Therefore for any a > 0 sufficiently small, there exists a sequence θ̂n that
depends on a such that

Pf (|θ̂n − θ∗| < a) → 1 . (2.13)

In the case of multiple roots, we consider θ̃n which is the root closest to θ∗.
Then, Pf (|θ̃n − θ∗| < a) → 1.

Now we have shown the limit of MLE when the model is misspecified, we
could almost repeat the proof for the asymptotic normality of the MLE when
the model is correct, but not quite. For simplicity, let’s assume d = 1, then we
still have

θ̂ − θ∗ ≈ −l′n(θ∗)/l′′n(θ∗) (2.14)

48

For iid data from distribution f , the two definitions of Fisher information
part their ways. The first definition gives

J1(θ
∗) = V arf (U1(θ

∗) = EfU
2
1 (θ∗),

because

EfU1(θ
∗) = Ef [

log g(X, θ∗)

dθ
] = 0

due to the fact that Ef [− log gθ(X)] is minimized at θ = θ∗. It is interesting
to note that the score statistics U1 still has mean zero even though the model
doesn’t contain the true distribution.

The second definition of Fisher information is

J2(θ
∗) = Ef [−l′′1 (θ∗)].

Properly normalizing the numerator and the denomerator in (2.14) to obtain
the asymptotic limits:

n−1/2l′n(θ∗) →d N(0, J1(θ
∗),

and
1

n
l′′n(θ∗) →P J2(θ

∗),

Hence the asymptotic distribution of MLE is

N(θ∗, J1(θ
∗)/(n× J2

2 (θ∗)).

When f belongs to the parametric family f = gθ0
, we recover the classical

asymptotic normality result for the MLE because

J1 = J2.

Exercise Set 4

1. Prove the convexity of KL divergence. That is, Given pairs of distributions
P1, Q1 and P2, Q2 ,

λD(P1‖Q1) + (1 − λ)D(P2‖Q2) ≥ D(λP1 + (1 − λ)P2‖λQ1 + (1 − λ)Q2)

for any λ ∈ [0, 1].

2. Professor Mark Hansen at UCLA obtained the documents on Senators’
contributions to the Roberts’ confirmation hearing and put them at

qual.stat.ucla.edu/202/roberts

which contains files like

transcript1.txt (transcripts)

KENNEDY.cnt (word counts of Kennedy’s transcript)

49

The JS distance matrix between the documents (or the frequencies of the
words in the documents) is at

www.stat.berkeley.edu/ binyu/212A/hearing.txt

Use the R function cmdscale on the distance matrix to find a 2-dim rep-
resentation of the documents and comment on the plot.

Moreover, read the following paper on the algorithm used in cmdscale and
write a concise and clear description of the algorithm (if neccessary, read
other papers cited in the Gower paper):

Gower, J. C. (1966) Some distance properties of latent root and vector
methods used in multivariate analysis. Biometrika, 53, 325-328.

3. Calculate the distance matrices based on L1, L2 and Hellinger distances
between documents based on the data at the website, and then do an MDS
for the three cases and plot the results.

2.4 Mutual Information

For a pair of random variables or a vector of them, an important question is
on how much information they contain about each other; or how depedent they
are. Mutual information to be defined below answers this question naturally
and is the key ingredient in channel coding.

Let X,Y have a joint distribution P (x, y), and have marginal distributions
P (x) and P (y). The mutual information I(X;Y) is the relative entropy or
KL divergence between the joint distribution of X,Y and the product of their
marginals; or rather, how far the joint distribution P (x, y) is from independence.
It therefore measures the dependence between the two variables – the larger the
mutual information, the more dependence they are.

Definition 11 (Mutual Information).

I(X;Y) =
∑

x∈X

∑

y∈Y

P (x, y) log
P (x, y)

P (x)P (y)
,= KL(P (x, y)||P (x)P (y). (2.15)

I(X,Y) = 0 if and only if X and Y are independent. The definition of
I(X,Y) can easily be extended to the continuous case by replacing the summa-
tion by an integration.

Using the definitions of mutual information and conditional entropy, we find

50

the following expression.

I(X;Y) =
∑

x∈X

∑

y∈Y

P (x, y) log
P (x, y)

P (x)
P (y) (2.16)

=
∑

x∈X

∑

y∈Y

P (x, y) log
P (y|x)
P (y)

(2.17)

=
∑

x∈X

∑

y∈Y

P (x, y) logP (y|x) −
∑

x∈X

∑

y∈Y

P (x, y) logP (y) (2.18)

=
∑

x∈X

∑

y∈Y

P (x, y) logP (y|x) −
∑

y∈Y

P (y) logP (y) (2.19)

= H(Y) −H(Y |X) (2.20)

Also, recall that H(Y) − H(Y |X) = H(X) − H(X|Y). Therefore, the mu-
tual information records the reduction in uncertainty of X by knowing Y and,
equivalently, the reduction in uncertainty in Y after knowing X. This is also
the amount of information that X or Y contains about the other.

Example 2.1 (Bivariate Gaussian). Assume (X,Y) are normal with mean
zero and variance 1 and correlaction coefficient ρ. It is straghtforward to calcu-
late that

I(X,Y) = −1

2
ln(1 − ρ2).

This is a monotonic transformation of the correlation coefficient which is the
only measure of dependence in the Gaussian case. The closer |ρ| to 1, the larger
the mutual information. The mutual information does not differetiate a positive
correlation with a negative one, however.

Example 2.2 (Mutual information and document similarity). Here we
consider the use of mutual information in a text mining capacity.

It is easy to verify the chain rule for mutual information based on the chain
rule for entropy and the entropy difference expression of mutual information:

I(X1, . . . , Xn;Y) =

n
∑

i=1

I(Xi, Y |Xi−1, . . . , X1).

Inherited from properties of K, I has the following concavity and convexity:

I(X,Y) is concave in P (x) for fixed P (y|x).

I(X,Y) is convex in P (y|x) for fixed P (x).

2.4.1 Sufficiency

In the age of massive data collection, it is crucial to understand that manipula-
tion of data doesn’t increase the information. This is stated most concisely in
the data processing inequality.

51

Theorem 2.4 (Data Processing Inequality). If X → Y → Z are Markov,
then

I(X,Y) ≥ I(X,Z). (2.21)

Proof. Using the chain rule on mutual information,

I(X;Z, Y) = I(X,Z) + I(X,Y |Z) ≥ 0.

Similarly,
I(X;Y, Z) = I(X,Y) + I(X,Z|Y) = I(X,Y)

since X and Z are independent given Y . Therefore

I(X,Y) ≥ I(X,Z).

Corollary 2.1. For any function g, I(X,Y) ≥ I(X, g(Y)).

Let fθ(x) be a parametric family. Our goal is to make inferences about θ
from sample x1, . . . , xn ∼ fθ(x1, ..., xn). A statistic T (x1, . . . , xn) is sufficient if
given T (X1, ..., Xn), θ and X are independent or the distribution of X1, ..., Xn

given T (X1, ..., Xn) is not dependent on θ.
One can find a sufficient statistic in a straightforward manner by capitalizing

the factorization theorem:

Theorem 2.5 (Factorization Theorem). T is a sufficient statistic for fθ if
and only

fθ(x1, . . . , xn) = gθ(T (x1, . . . , xn))h(x1, . . . , xn|T (x1, . . . , xn)) (2.22)

where g and h are two nonnegative functions and h(x1, . . . , xn|T (x1, . . . , xn))
does not depend on θ.

For example, if x1, . . . , xn are i.i.d. Gaussian with mean θ and variance 1,
T (x) = x̄ is sufficient.

Theorem 2.6 (Mutual Information and Sufficiency). T is a sufficient
statistic for fθ(X) iff

I(Θ, X) = I(Θ, T (X).

Proof. Since T is a mapping from X, we have

X → T (X),

which implies, by the data processing inequality, that

I(Θ, T (X)) ≤ I(Θ, X). (2.23)

On the other hand, T is a sufficient statistic,

Θ → T (x) → x,

52

so
I(Θ, T (X)) ≥ I(Θ, X). (2.24)

Combining two inequalities gives I(Θ, T (X)) = I(Θ, X), so the mutual infor-
mation of the parameter and the data is the same as mutual information of
the parameter and the sufficient statistic. To prove the converse, we provide
another proof of the theorem without using the Data Processing Inequality in
the following lemma.

Lemma 2.2. Suppose X has density fθ(x), T (X) has density gθ(T (x)), and
mg and mf are the marginal densities of T (X) and X respectively:

mg(T (x)) =

∫

π(θ)gθ(T (x))dθ.

mf (T (x)) =

∫

π(θ)fθ(x)dθ.

Then
Q(θ, x) = π(θ)gθ(T (x))/mg(T (x)) ×mf (x)

is a joint density of θ and x, that is
∫ ∫

Q(θ, x)dθdx = 1.

And
I(Θ, X) − I(Θ, T (X)) = K(π(θ) ∗ fθ(x), Q(θ, x)).

Proof.
∫ ∫

Q(θ, x)dθdx =

∫ ∫

π(θ)gθ(T (x))/mg(T (x)) ×mf (x)dθdx

=

∫

[

∫

π(θ)gθ(T (x))]dθ/mg(T (x)) ×mf (x)dx

=

∫

[

∫

π(θ)gθ(T (x))dθ]/mg(T (x))] ×mf (x)dx

=

∫

[mg(T (x))]/mg(T (x))] ×mf (x)dx

=

∫

mf (x)dx

= 1.

It follows from the non-negativity of Kullback-Leibler divergence that I(Θ, X) ≥
I(Θ, T (X)). And we can give a complete proof of the theorem using this expres-
sion of the difference of the mutual informations.

K(π(θ) ∗ fθ(x), Q(θ, x)) = 0

53

iff
π(θ) ∗ fθ(x) = Q(θ, x))

iff
fθ(x) = gθ(T (x))mf(x)/mg(T (x))

iff T (x) is a sufficient statistic of X relative to fθ(x).

Example 2.3 (Sufficient statistics). • X1, . . . , Xn i.i.d. Bernoulli(p). T (X) =
∑n

i=1Xi.

• X1, . . . , Xn i.i.d. N(θ, σ2). T (X) = (
∑

Xi,
∑

X2
i), or equivalently (x̄, s2).

• X1, . . . , Xn i.i.d. Uniform(θ, θ+1). T (X) = (min(X1, . . . , Xn),max(X1, . . . , Xn)).

2.4.2 Fano’s inequality

Suppose X is the unknown and Y is our data. When H(X|Y) is large, there
is much entropy or variability remaining about the unknown X even after we
collect the data Y and we can not hope to guess or estimate well X from Y .
Fano’s inequality quantifies this observation, and it has two important appli-
cations to be covered in the later lectures: proving the converse to Shannon’s
channel coding theorem and giving lower bounds in minimax density estimation.

Theorem 2.7 (Fano’s Inequality). Suppose X → P (Y |X) → Y → X̂, that
is, X̂ is an estimate of X based on Y . Let Pe = P (X 6= X̂) be the probability
of error. Then

H(Pe) + Pe log(|X | − 1) ≥ H(X|Y) (2.25)

where H(Pe) = −Pe logPe − (1 − Pe) log(1 − Pe). Note that if Pe = 0, then
H(X|Y) = 0.

Proof. Let E = 1(X̂ 6= X). Then

H(E,X|Y) = H(X|Y) +H(E|X,Y) = H(X|Y)

(if you know X and Y , you know E, so H(E|X,Y) = 0).
On the other hand, one can also write

H(E,X|Y) = H(E|Y) +H(X|E, Y). (2.26)

H(X|E, Y) = P (E = 1)H(X|E = 1, Y) + P (E = 0)H(X|E = 0, Y).

If E = 0 and we know Y , we also know X, so H(X|E = 0, Y) = 0. Hence

H(E,X|Y) = H(E|Y) +H(X|E, Y) = H(E|Y) + P (E = 1)H(X|E = 1, Y).

Putting the two identities together gives

H(X|Y) = H(E|Y) + P (E = 1)H(X|E = 1, Y).

54

If E = 1, there are |X | − 1 possible values for X̂, so H(X|E, Y) ≤ H(X) ≤
log(|X |− 1). Or we could bound it by H(X). Combining all the inequalities we
get

H(X|Y) ≤ H(E|Y) + P (E = 1)H(X|E = 1, y) ≤ H(Pe) + Pe log(|X | − 1),
(2.27)

or

H(X|Y) ≤ H(E|Y) + P (E = 1)H(X|E = 1, y) ≤ H(Pe) + PeH(X). (2.28)

Note: Fano’s inequality is sharp: let X ∈ {1, . . . ,m}, Y ≡ 1 = X̂, Pe =
P (X̂ 6= X). Let the distribution of X be p1 = 1 − Pe, p2 = · · · = pm = Pe

m−1 .
Check that this achieves equality.

Corollary 2.2.

Pe ≥ 1 − I(X,Y) + 1

H(X)
(2.29)

Proof. 1+PeH(X) ≥ H(Pe)+PeH(X) ≥ H(X|Y) = H(X|Y)−H(X)+H(X) =
H(X) − I(X,Y). Rearrange and get H(X)(Pe − 1) ≥ −I(X,Y) − 1.

When X is uniform, H(X) = log(|X |), and Pe ≥ 1 − I(X,Y)+1
log(|X |) .

In our document example where X and Y are consecutive words, H(X) =
7.1, H(X|Y) = 2.7, Fano’s inequality gives:

1 + 7.1Pe ≥ 2.7 or Pe ≥ 1.7/7.1 = 0.239,

which means that one cannot guess the next word from the previous word with
an accuracy better than 23.9%, or the error rate is at least 23.9%, no matter
now sophiscated the method is.

Note that this lower bound depends on only two summary quantities of the
joint distribution which in this document example is a huge two way table:

H(X), H(X|Y).

For a symmetric binary channel with cross-error probability ε < 1/2, let X be
an input variable with distribution 1/2, 1/2,

H(Y |X) = h(ε) = H(X|Y), H(Y) = H(X) = 1.

Fano’s is
H(Pe) + Pe ≥ H(ε).

The maximum likelihood (and the Bayesian maximum posterior) decoder is
X̂ = Y , and it has an error ε. When ε is small, the LHS of the inequality is
dominated byH(Pe) which matches the RHS. In this sense, the Fano’s inequality
is ”almost” tight.

Exercise Set 5

55

1. Prove Pinsker’s inequality.

2. For a nice parametric family {g(·, θ}, prove that

K(gθ, gθ+∆θ) ≈
1

2
(∆θ)2J(θ),

where J(θ) is the Fisher information.

3. Suppose X1, ..., Xn are iid from uniform [0, θ]. Prove thatmax(X1, ..., Xn)
is a sufficient statistic for θ.

4. For a symmetric binary channel with cross-error probability ε < 1/2, let
X be an input variable with distribution p, 1 − p, find the quantities in-
volved in the Fano’s inequality, interpret the inequality, and compare the
inequality with the error rates of the maximum likelihood decoder and the
maximum posterior decoder.

2.4.3 Non-parametric minimax density estimation

After a few decades of successful parametric modeling, the need to leave partic-
ular families of distributions was increased enough in the 60’s that a systematic
study began of estimation procedures which do not rely on a parametric form
of distributions. Presumably, this is because more data were collected but the
science or social science discipline iteself was not ready to suggest a parametric
form either because of the lack of subject knowledge or because it was impos-
sible due to the high noise to signal ratios in other fields rather than physical
sciences.

Given iid samples x1, ..., xn from a density f , here are two of the common
nonparametric density estimators:

• histogram density estimator

• kernel density estimator:

f̂(x) =
1

nh

n
∑

i=1

φ

(

x− xi

h

)

The first estimator has as long a history as the tabulation of data and the second
can at least be traced back to the 60’s.

When there is no parametric form for the underlying density, Fisher’s Max-
imum Likelihood theory cannot provide the fundamental limit on estimation
efficiency. Other frameworks become necessary. It is known that if no con-
straints are put on the underlying distribution, it is futile to study the question
of what is the best estimator since for any given rate αn going to zero as n tends
to infinity and any density estimator, there is always a density such that the
estimation error under this density is slower than αn.

One successful formulation of nonparametric density estimation has been the
minimax approach with regularity conditions imposed on all the densities in a

56

particular class to which the true density is assumed to belong. More precisely,
let M be the class and we seek a procedure that gives the best performance for
the worst density in the class:

f̂∗ = argmin
f̂

max
f∈M

Efd(f, f̂)

where d is a distance measure between densities.
For example M could be the following Lipschitz class:

M = {f : f is on [0, 1], 0 < c0 ≤ f ≤ c1, |f ′| < c′} .

For smooth density function classes, the minimax risk usually converges to zero
at a rate n−α for some 0 < α < 1/2, which is slower than the usual paramet-
ric rate of n−1/2. To be more precise, if the logarithm of the density has p
continuous derivatives the rate is α = 2p/(2p+ 1).

Historically, the minimax optimal rates were obtained in two separate stages.
For the lower bound, an intricate subclass was constructed and explicit risk
calculations were possible based on inequalities such as Assouad’s, Le Cam’s
or Fano’s (cf. Yu, 1996). One popular trick was to build an subclass indexed
by a hypercube with expanding dimensions by having local pertubations of a
uniform density function within the constraints of the class. Depending on
the pertubation is up or down, we get the hypercube subclass. For the upper
bound, one tries different known density estimators such as histogram or kernel
estimators to match the rates in the lower bounds. There was no systematic
way of finding minimax optimal estimators.

Yang and Barron (1999) unified the calculations in the lower and upper
bounds by introducing the use of KL divergence and associated inequalities.

Suppose we are given a density function class M with some smoothness prop-
erties. Recall that we have seen the Hellinger distance and the KL-divergence
between any two densities f and g (with respect to the Lebesque measure):

H(f, g) = (

∫

(
√

f −√
g)2dx)1/2.

D(f‖g) =

∫

f log
f

g
dx.

Assumption: D(f, g) � H2(f, g) when f and g are “close”, i.e., there exist
constants A and A′ s.t.

AH2(f, g) ≤ D(f‖g) ≤ A′H2(f, g) when H2(f, g) ≤ ε.

D is very convenient to use in analysis because there are many information
theory inequalities related to it, but it is not a distance. H, on the other hand,
is a distance, so if the assumption holds, one can switch back and forth between
D and H and take advantage of both.

The fundamental limit of estimation over M is determined by the metric
entropy of the class which is the counterpart of dimension in the finite dimen-
sional case. For a given distance d, there are two ways to define such an entropy

57

depending on whether or not we are considering the covering entropy or the
packing entropy. For the covering entropy, we use the KL-divergence for tech-
nical convenience; and for the packing entropy, we use the Hellinger distance to
take advantage of its triangle inequality.

Definition 12 (Minimal covering number). of a set M, Nd(εn), is the
minimum number of balls of radius (in terms of

√
D) εn needed to cover M.

That is, given an εn-cover TD(εn) = {f1, ..., fK} with cardinality K = |TD(εn)|
such that for any f ∈ M, there is an fi ∈ TD(εn) with the property that
D(f, fi) ≤ ε2n, we have ND(εn) ≤ K. VD(εn) = log(ND(εn)) is called the metric
entropy.

Definition 13 (Maximum packing number). of a set M is the maximum
number of balls of radius (in terms of H) εn that can be packed inside Mso
that their centers are in M and the balls do not overlap.

Lemma 2.3 (Mixture of Product Measures as an Estimator). Suppose
GD(εn) is a minimal cover of M at radius εn, let p be the mixture of the product
measures of the centers in the cover:

p(xn) =
1

ND(εn)

ND(εn)
∑

i

fi(x
n).

Then for any f ∈ M,

D(f(xn)||p(xn) ≤ VD(εn) + nε2n.

Moreover, the mixture density p(xn) is the Bayes estimator of f(xn) ∈ G(εn)
with respect to the uniform prior on G(εn) and risk or loss function D. That is,

p(xn) = argminQonxn

1

ND

ND
∑

i

D(fi(x
n)||Q(xn)).

The same conclusion still holds when the prior is not uniform and G is any
arbitrary density set.

Proof. For a given f ∈ M, there is a fj in GD(εn) such that D(f ||fi) ≤ ε2n,
obviously

1

ND(εn)

ND(εn)
∑

i

fi(x
n) ≤ 1

ND(εn)
fj(x

n).

Hence

58

D(f(xn)||p(xn)) = Ef(xn){log f(xn)/[
1

ND(εn)

ND(εn)
∑

i

fi(x
n)]}

≤ Ef(xn) log f(xn)/{ 1

ND(εn)
fj(x

n)}

= log |GD(εn)| +D(f(xn)||fj(x
n)

= VD(εn) + nD(f ||fj)

= VD(εn) + nε2n.

For the second conclusion, let us prove it in the general case.
For a set of densities fθ(x) indexed by θ and a prior density π(θ) on the set,

we want to show that

m(x) =

∫

fθ(x)π(θ)dθ = argminQ

∫

D(fθ||Q)π(θ)dθ.

That is, for any density Q, it suffices to show that

I =

∫

D(fθ||Q)π(θ)dθ −
∫

D(fθ||m)π(θ)dθ ≥ 0.

Notice that

I =

∫ ∫

fθ(x) log[m(x)/Q(x)]dxπ(θ)dθ

=

∫

log[m(x)/Q(x)][

∫

fθ(x)π(θ)dθ]dx

=

∫

m(x) log[m(x)/Q(x)]dx

= D(m||Q) ≥ 0

.

Theorem 2.8 (Upper bound). Using the notations in the previous lemma,
construct a marginal density using the mixture density on the n-tuples:

f̂(x) =
1

n

n−1
∑

i=0

p(xi+1 = x|xi) =
1

n

n−1
∑

i=0

f̂i,

where f̂i = p(xi+1 = x|xi). Then for any f ∈ M,

Ef(xn)D(f ||f̂) ≤ 1

n
V (εn) + ε2n.

59

Proof. For any f ∈ M, since D(p||q) is convex in the pair (p, q), and f̂ is a
convex combination,

Ef(xn)D(f ||f̂) ≤ Ef(xn)
1

n

n−1
∑

i=0

D(f ||f̂i)

=
1

n

n−1
∑

i=0

Ef(xn)D(f ||f̂i)

=
1

n

n−1
∑

i=0

Ef(xn) log f(xi+1/p(xi+1|xi)

=
1

n
Ef(xn)

n−1
∑

i=0

log f(xi+1/p(xi+1|xi)

=
1

n
Ef(xn) log(f(xn)/p(xn))

=
1

n
D(f(xn)||p(xn)

≤ VD(εn)/n+ ε2n, by Lemma 2.3 .

Theorem 2.9 (Lower bound). Let f̂ be an estimate based on an i.i.d. sample
X1, . . . , Xn from f ∈ M. Then

min
f̂

max
f∈M

EfH
2(f, f̂) � min

f̂
max
f∈M

EfD(f‖f̂) ≥ ε2n/8

The proof follows from the following two lemmas and the assumption that
D(f ||g) and H2(f, g) are equivalent when f and g are close.

Lemma 2.4. Given a maximal packing net G(εn), for any estimator f̂ ,

max
f∈M

EfH
2(f, f̂) ≥ (εn/2)

2 max
f∈G(εn)

Pf{f 6= f̃}

where f̃ = arg minf∈G(εn)H
2(f̂ , f) is the projection of f̂ on the maximal packing

net.

Proof. First let us show that if f ∈ G(εn), then

{f 6= f̃} ⊂ {H(f, f̂) ≥ εn/2}.

By contradiction: if H(f, f̂) < εn/2, but f 6= f̃ , then there exists f ′ ∈ G(εn)

such that H(f̂ , f ′) < H(f̂ , f) < εn/2 (recall that f̃ is projection of f̂ onto the
net G, and so since f is not equal f̃ , there must be another function in the net
that is closer to f̂). But then by triangular inequality

H(f, f ′) ≤ H(f̂ , f ′) +H(f̂ , f) < εn,

60

which contradicts the packing property of the net, since both f and f ′ belong
to G(εn).

From the above and from Markov inequality we get

Pf{f 6= f̃} ≤ Pf{H(f, f̂) ≥ εn/2} ≤ EfH
2(f, f̂)

(εn/2)2
,

and therefore
EfH

2(f, f̂) ≥ (εn/2)
2Pf{f 6= f̃}.

Since G(εn) ⊂ M, we get

max
f∈M

EfH
2(f, f̂) ≥ max

f∈G(εn)
EfH

2(f, f̂) ≥ (εn/2)
2Pf{f 6= f̃}.

Lemma 2.5.
max

f∈G(εn)
Pf{f 6= f̃} ≥ 1/2.

Proof. Let Θ be uniform on G(εn) = {fi : i = 1, . . . , N(εn)}. The entropy
H(Θ) = log(N(εn)) = V (εn). From the corollary to Fano’s inequality, Note
that Θ → fi → Xn, and

I(Θ, Xn) =

N(εn)
∑

i=1

1

N(εn)

∫

fi(x
n) log

fi(x
n)

fεn
(xn)

dxn

≤
N(εn)
∑

i=1

1

N(εn)

∫

fi(x
n) log

fi(x
n)

Q(xn)
dxn

where

fεn
(xn) =

N(εn)
∑

i=1

1

N(εn)
fi(x

n)

is the Bayes mixture density which minimizes the Kullback-Leibler divergence
D(f‖Q) for any other density Q(xn), hence the last inequality.

Take another net G̃(ε̃n) such that for any f ∈ M there exists f̄ ∈ G̃(ε̃n)
such that D(f‖f̄) ≤ ε̃2n. Define

Q(xn) =
1

N(ε̃n)

∑

G̃(ε̃n)

fi(x
n)

If we replace the last sum by just one term from G̃(ε̃n), we get

log
fi(x

n)

Q(xn)
≤ log

fi(x
n)

1
N(ε̃n) f̄(xn)

61

Take expectations:

Ef log
fi(x

n)
1

N(ε̃n) f̄(xn)
= logN(ε̃n) +D(fi(x

n)‖f̄(xn)) ≤ V (ε̃n) + nε̃2n

Plugging into Fano’s inequality and choosing ε̃n such that V (ε̃n)+nε̃2n +1 =
V (εn)/2 we get

max
f∈G(εn)

Pf{f 6= f̃} ≥ 1 − V (ε̃n) + nε̃2n + 1

V (εn)
=

1

2
.

If we choose εn = αn such that

V (αn) = nα2
n,

then we obtain the optimal minimax rate α2
n since the rates in the lower and

upper bounds would match with such a choice.

Example 2.4 (Lipschitz Class). For the Lipschitz class defined earlier, it can
be shown that

V (ε) = 1/ε.

It follows that the optimal rate is n−2/3 after verifyting that H2 and D are
equivalent for all memebers of the class.

2.5 The Method of Types

When the source distribution is unknown, a universal coding scheme would first
transmit the parameter in the model and then use the estimated probability
model (with one of the above entropy codes) to transmit the data. If we as-
sume our source is iid P on a finite alphabet X = {1, ...,m}, for an observed
sequence X1, ..., Xn, the counts of them in the m categories form a multinomial
distribution and we can send the estimated parameters in this model first, or
equivalently, the counts N1, ..., Nm or frequencies Px = (N1, ..., Nm)/n in the m
categories among the X’s, which is the empirical distribution of X1, ..., Xn.

Definition 14 (Type Px). The sequence X1, ..., Xn is said to have a type Px

if its empirical distribution is Px.

Definition 15 (Type Class Q).

T (Q) = {x = (x1, ..., xn) ∈ Xn : Px = Q}.

It is easy to see that there are n+ 1 type classes based on sequences of size
n in the binary case m = 2. In the general case, the number of type classes is
less than (n+ 1)m.

Stirling’s approximation gives the number of sequences in a type class T (Q)
as:

62

Theorem 2.10 (Size of a type class T (P)).

1

(n+ 1)m
2nH(P) ≤ |T (P)| ≤ 2nH(P).

Proof. Here we provide an alternative proof (Cover and Thomas, p. 282-284):

The upper bound is trivial. For the lower bound, use the fact that the type
class T (P) has the highest probability under distribution P n. It follows that

1 =
∑

Q∈Pn

Pn(T (Q))

≤
∑

Q∈Pn

maxQP
n(T (Q))

=
∑

Q∈Pn

Pn(T (P))

≤ (n+ 1)mP (T (P))

= (n+ 1)mT (P)2−nH(P).

Apparently, in the binary case, we know the number of type classes is n+ 1
rather than the bound (n+1)2 used in the general case proof, so we can sharpen
the lower bound to

1

n+ 1
2nH(k/n).

Theorem 2.11 (Probability of a type class T (Q)). For any type P and any
distribution Q, the probability of the type class T (P) under Qn is 2−nD(P ||Q) to
first order in the exponent. More precisely,

1

(n+ 1)m
2−nD(P ||Q) ≤ |Qn(T (P))| ≤ 2−nD(P ||Q).

Proof. It follows from the previous theorem and the fact that, for any xn with
type P ,

Qn(xn) = 2−n(H(P)+D(P ||Q)).

The fact holds by writing out the product probability Qn(xn) and verifying
that it is the right hand side of the above equation.

Exercise Set 6

1. Prove LLN in terms of D using the above theorems. That is, D(Pxn ||P) →
0 with probability 1.

63

2. CT, pp. 333 #1

3. CT, pp. 334, #5.

Example 2.1 (Universal Source Coding). For a given sequence xn, it takes
less than m log(n+ 1) bits to send over the type class information and if we use
a uniform code over this type class (all the sequences have the same probability
in a type class under an iid assumption on the source distribution), then it takes
log |T (Pxn)| ≤ nH(Pxn) bits to transmit the membership of the observed xn in
the type class. Hence the average code length of resulted two-part code L(xn)/n
tends to H(P) almost surely as n→ ∞ because H(Pxn) → H(P) almost surely.

Read p. 279-291 of CT.

2.6 Large Deviations

Definition 16 (Exponent). A real number a is said to be the exponenet for
a sequence an, n ≥ 1, where an ≥ 0 and an → 0 if

lim
n→∞

(

− 1

n
log an

)

= −a .

Sanov’s Theorem

The Central Limit Theorem provides good approximations to events of “moder-
ate deviations” from the typical, but fails to provide accurate estimates of “rare
events” or large deviations from the typical. These “rare event” calculations
arise in applications from hypothesis testing (which we will cover) to finance
(estimating probability of large portfolio losses). The classical LD results can
be derived based on the method of types bounds we have just seen and we end
with a discussion of the general case. This rare probability often turns out to be
exponential with a negative size factor (n in the iid case) and an exponent which
is describing how close the events to the typical in terms of the KL-divergence.

Theorem 2.12 (Sanov’s theorem). Let X1, ..., Xn be iid Q. Let E be a set
of probability distributions on a finite alphabet X . Then

Qn(E) = Qn(E ∩ Pn) ≤ (n+ 1)m2−nD(P ∗||Q),

where
P ∗ = argminP∈ED(P ||Q),

is the distribution in E that is closest to P in KL divergence. If, in addition,
the set E is the closure of its interior, then

1

n
Pn(E) → −D(P ∗||Q).

64

Proof. The upper bound is straightforward: the moral is that in the log scale and
to the first order, the maximum probability in a summation of probabilities gives
the right answer. Here we need E to be nice so that we can find a distribution
P ∈ E which is close to P ∗. Under the assumption on E, since ∪nPn is dense
in the set of all distributions on X n, we can find a sequence of distributions Pn

so that for n ≤ n0, Pn ∈ E ∩ Pn, and D(Pn||Q) → D(P ∗||Q). For n ≤ n0,

Qn(E) =
∑

P∈E∩Pn

Qn(T (P))

≥ Qn(T (Pn))

≥ 1

(n+ 1)m
2−nD(Pn||Q),

which implies the lower bound.

In this characterization of a large deviations result, the set of probabilities
E are used to describe the event of interest. We now give an example based on
sample averages.

Example 2.1 (Sample averages). We now consider the probability of events
based on the sample mean, the simplest case being that the sample mean is
larger than some threshold τ . Let X1, . . . , Xn be iid according to Q, with each
Xi ∈ X = {0, . . . ,m}. To compute the probability

Pr(
1

n

∑

i

Xi > τ)

We consider the set E

E = {P :
n

∑

j=1

jP (j) > τ} (2.30)

We now want to minimize the KL divergence between elements in E and the
data generating distribution Q. Introducing Lagrange multipliers λ and ν we
want to minimize the following expression

∑

j

P (j) log
P (j)

Q(j)
− λ

∑

j

P (j)j + ν
∑

j

P (j) .

The first multiplier λ is associated with the constraint on the sample mean
(2.30), while the second ν ensures that the function P is a probability. The
solution is then of the form

P ∗(j) =
2jλQ(j)

∑

j′ 2j′λQ(j′)

where we select λ to satisfy the constraint that
∑

j jP (j) = τ . The distribu-
tion P ∗ is called a twisted distribution and we’ll see other examples of this in
connection with Stein’s theorem. In Figure 2.1 we consider tossing a fair dice.

65

−2 −1 0 1 2

2

3

4

5

lambda

co
ns

tr
ai

nt
 v

al
ue

−2 −1 0 1 2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

lambda

−
D

(P
*|

|Q
)

Figure 2.1:

Therefore, j = 6 in the above notation. In the figure, we plot first the relation-
ship between λ and τ , and then the minimized KL divergence as a function of λ.
Note that λ = 0 corresponds to τ = 3.5, the mean of the true data-generating
distribution. This yields an exponent of zero as we would expect.

If we rewrite this expression in terms of the natural logarithm, the we find
that De(P

∗‖Q) reduces to

D(P ∗‖Q) =
∑

j

ejλQ(j)
∑

j′ ej′λ
log

ejλQ(j)
∑

j′ ej′λ

1

Q(j)

= λτ − ln
∑

j

ejλQ(j)

= λτ − lnM(λ)

We recognize the last term in this expression as the natural logarithm of the
moment generating function M(λ) for Q. We will see this form for the exponent
again in Cramer’s theorem.

The general case

From Theorem 2.12, in the iid case, to the first order

− logQ(T (P)) = nD(P ||Q),

66

where Q is the true generating probability distribution and P is the type under
consideration. Because

max[P (A), P (B)] ≤ P (A ∪B)

≤ [P (A) + P (B)]

≤ 2 max[P (A), P (B)],

on a log scale, we have for all practical purposes (since for rare events, the
log probabilities are negatively large and factor 2 becomes negligible on the log
scale),

logP (A ∪B) ≈ max[logP (A), logP (B)];

or
− logP (A ∪B) ≈ min[− logP (A),− logP (B)];

If the rare event E of interest is a union of type classes, then

− logQn(E) ≈ nminP∈ED(P ||Q),

where Qn is the product measure based on Q.
This can be interpreted as follows. If we want to calculate the probability

of a “rare” event E in a “large” experiment under a model Q, then all we have
to do is to find an appropriate model P under which the event is “natural” or
normal and then

− logQn(E) ≈ “size factor”D(P ||Q).

In the iid case, the size factor is n as we have seen. Sanov’s theorem
So the art of Large Deviations lies in the choice of the alternate model P .

The choice is by no means unique and a wrong choice can lead to a wrong
answer. In our iid case, the good choice is obviously the distribution which
matches the type in the observed sequence. In other situations, things are not
always clear. This is the same idea behind importance sampling for estimating
the probability of a rare event through Monte Carlo simulations.

Example 2.2 (A Markov Alternate Model). Suppose we toss a fair coin n
times independently of each other, and let X1, . . . , Xn denote the outcome. We
would like to compute the probability q(n, k) that the number k of occurrences
of two consecutive heads is roughly ns, for some given 0 < s < 1. Here, we
would count the run HHH as two occurences of the event. We need to build
some memory into the alternate model Pn so that consecutive occurrences of H
is natural under Pn. Toward this end, we consider the class of Markov models
with transition matrix

P =

(

1 − β β
α 1 − α

)

The stationary distribution π of this chain is given by π(H) = α/(α + β),
and π(T) = β/(α + β). (Recall that the stationary distrubution of P satisfies

67

Pπ = π, so that a chain started in this distribution remains there in the sense
that P (Xn = H) = π(H) for all n.)

Therefore, the expected ratio of the number of consecutive heads to the total
run n is then

α/(α+ β) × (1 − β).

So we should choose a model with

s =
α(1 − β)

α+ β
,

to match the expected number of HH as in the rare event. If we calculate the
KL divergence of this model with the true model with α = β = 1/2, we get

F (α, β) = 1 +
α(1 − β)

α+ β
log(1 − β) +

αβ

α+ β
logα+

αβ

α+ β
log β +

β(1 − α)

α+ β
log(1 − α).

Following the recipe given above, we find the member of the class of Markov
chains that is closest to the true iid coin tossing model in thesense of KL diver-
gence, subject to the constraint that the proportion of consecutive heads is s;
that is, α(1 − β)/(α+ β) is equal to s. Set

g(s) = min
(α,β):s=

α(1−β)
α+β

F (α, β)

If we apply the constraint, we can set β = and then search numerically for α.
In Figure 2.2, we plot F as a function of s. Notice that the function attains

a maximum of zero at 1/4, corresponding to the fact that under the data gen-
erating distribution, seeing about s = 1/4 is natural. For each fixed value of s,
we read the “exponent” g(s) from the graph so that

1

n
log q(n, k) ≈ g(s)

Models with a lot of dependence (generating many more HH pairs or many more
TT pairs) have a faster decline in the probability.

The fact that this recipe works in more complex settings than those covered
by Sanov’s theorem can be explained somewhat intuitively.

Q(E) =

∫

E

dQ =

∫

E

dQ/dP dP.

68

0.0 0.2 0.4 0.6 0.8 1.0

−0.8

−0.6

−0.4

−0.2

0.0

prop of HH

ex
po

ne
nt

, g
(x

)

Figure 2.2:

If we pick P such that P (E) ≈ 1, then

logQ(E) − logP (E)

= log[
1

P (E)

∫

E

dQ/dPdP]

= log{ 1

P (E)

∫

E

exp[− log dP/dQ]dP}

≥ − 1

P (E)

∫

E

log[dP/dQ]dP

≈ −D(P ||Q)

Every P with P (E) ≈ 1 gives a lower bound and the particular P (·) =
Q(· ∩E)/Q(E) gives the exact answer! But we are back to square 1. The trick
or art is to choose a manageable class of alternate models so that the best lower
bound over the class matches the upper bound or gives the correct answer. This
is problem-dependent as we have demonstrated through the Markov example.

Historically, the first LD result was not proved in terms of the KL divergence.
Rather, moment generating functions were employed by Cramér (1938) to show

Theorem 2.13 (Cramér’s theorem). Let X1, .., Xn be iid random variables.
Assume that the moment generating function

M(θ) = E[exp(θX])]

69

is finite for all θ ∈ R. Let φ(a) be the Legendre transform of ψ(θ) = logM(θ):

φ(a) = sup
θ

[aθ − ψ(θ)] = sup
θ

[aθ − logM(θ)].

φ(a) ≥ 0 and φ(a) = 0 if and only if a = E[X]. Then

P{X1 + ...+X − n

n
∼ a] ≈ exp[−nφ(a)]

for a¬E(X).

As one might have guessed, the Legendre transform representation of the
exponent can be equivalently expressed in terms of the KL divergence.

2.7 Stein’s Lemma in Hypothesis Testing

Hypothesis testing is one of the two major inference frameworks (the other be-
ing estimation) in classifical statistical inference. Its most celebrated result is
the Neyman-Pearson Lemma obtained in the ??? which establishes the central
role that the likelihood ratio was going to and is playing in hypothesis testing.
The framework mimics the decision process to force a yes/no answer to the hy-
pothesis being tested. Testing procedures are widely used in industry, especially
mandated by FDA regulations in pharmaceutical industry to report clinical trial
results. It is often used in health studies and the reports conform to the jargons
such as statistical significant or highly statistically significant, which are often
taken by the general public as ”significant” in the common sense, but ”scien-
tifically proven” because of the appearence of the word “statistically”. This is
very unfortunately since all the evidence in terms of the probability of obtaining
something more extreme than what has been observed or the p-value is calcu-
lated assuming the dominate hypothsis is correct (which is often not the case)
and the testing is done allowing itself to committ two types of errors, which are
in the ideal case small but still non-zero.

Here we concentrate on the simplest case of telling two hypothesis or distri-
butions apart.

Definition 17. Statistical Simple Hypothesis Testing
Let X1, ..., Xn be iid with distribution Q and we test two simple hypotheses:

• H1 : Q = P1 (null hypothesis) vs

• H2 : Q = P2 (alternative hypothesis).

There are two typos of errors: false positive or type I error (H1 is wrong,
but accepted) and false negative or type II error (H2 is true, but rejected).

Theorem 2.14 (Neyman-Pearson lemma). The optimal test given a type I
error not larger than α is in the form of the likelihood ratio test, that is, accept
H1 when

An(T) = {P1(x
n)

P2(xn)
> T}

70

where the cut-off value T is chosen such that

P1(A
c
n(T)) ≤ α.

Given a data string, the observed p-value of the test is the probability under
the null hypothesis that we would have observed some test statistics value which
is more extreme than the observed test statistics (e.g. likelihood ratio). p-values
are comparable across different tests, while it is not always the case with test
statistics.

The optimality is defined in the sense that no other tests at this level with a
smaller type II error or a smaller probability

P2(An(T));

equivalently, there are not other tests with a larger power or a higher probability

P2(A
c
n(T)).

Example 2.1 (Gaussian location family).

The likelihood ratio test can be re-written in terms of KL divergences. That
is,

P1(x
n)

P2(xn)
> T

is equivalent to

D(Pxn ||P2) −D(Pxn ||P1) >
1

n
log T.

So the test is about how to choose type classes to form the acceptance region
(or the rejection region). The boundary of the region is where the type classes
are such that the differences between the KL divergences are a constant. LD
can now be employed to choose the cut-off value T in a heuristic manner.

Next, we calculate the best error exponent when one of the two types of
error goes to zero arbitrarily slowly.

Theorem 2.15 (Stein’s lemma). Assume D(P1||P2) <∞. Let the two types
of error are

αn = P1(A
c
n), βn = P2(An).

For 0 < ε < 1/2, define

βε
n = minAn⊂Xn,αn<εβn.

Then

lim
ε→0

lim
n→∞

1

n
log βε

n = −D(P1||P2).

One would like to make both types of error go to zero, at least as the sample
size n increases. The rates in Stein’s Lemma tell us that, for this to happen,
it is necessary to make the two hypotheses apart at least by 1/n, or make

71

D(P1||P2)n → ∞. In other words, we can not distinguish two distributions
which are less than 1/

√
n apart in

√
D which acts in the scale of a ”distance”.

Here we do not assume any parametric models where it is well-known that
we can not estimate an Euclidean parameter at a rate faster than 1/

√
n in

Euclidean distance – which is the consequence of requiring the more essential
distance between two distributions to be larger than 1/

√
n.

2.8 Mutual Information

For a pair of random variables or a vector of them, an important question is
on how much information they contain about each other; or how depedent they
are. Mutual information to be defined below answers this question naturally
and is the key ingredient in channel coding.

Definition 18 (Mutual Information). Let X,Y have a joint distribution
P (x, y), and have marginal distributions P (x) and P (y). The mutual informa-
tion I(X;Y) is the relative entropy between the joint distribution of X,Y and
the product of their marginals; or rather, how far the joint distribution P (x, y)
is from independence. It therefore measures the dependence between the two
variables – the larger the mutual information, the more dependence they are.

I(X;Y) =
∑

x∈X

∑

y∈Y

P (x, y) log
P (x, y)

P (x)P (y)
, (2.31)

I(X,Y) = 0 if and only if X and Y are independent. The definition of
I(X,Y) can easily be extended to the continuous case by replacing the summa-
tion by an integration.

Using the definitions of mutual information and conditional entropy, we find
the following expression.

I(X;Y) =
∑

x∈X

∑

y∈Y

P (x, y) log
P (x, y)

P (x)
P (y) (2.32)

=
∑

x∈X

∑

y∈Y

P (x, y) log
P (y|x)
P (y)

(2.33)

=
∑

x∈X

∑

y∈Y

P (x, y) logP (y|x) −
∑

x∈X

∑

y∈Y

P (x, y) logP (y) (2.34)

=
∑

x∈X

∑

y∈Y

P (x, y) logP (y|x) −
∑

y∈Y

P (y) logP (y) (2.35)

= H(Y) −H(Y |X) (2.36)

Also, recall that H(Y) − H(Y |X) = H(X) − H(X|Y). Therefore, the mu-
tual information records the reduction in uncertainty of X by knowing Y and,
equivalently, the reduction in uncertainty in Y after knowing X. This is also
the amount of information that X or Y contains about the other.

72

Example 2.1 (Bivariate Gaussian). Assume (X,Y) are normal with mean
zero and variance 1 and correlaction coefficient ρ. It is straghtforward to calcu-
late that

I(X,Y) = log2(1 − ρ2).

This is a monotonic transformation of the correlation coefficient which is the
only measure of dependence in the Gaussian case. The closer |ρ| to 1, the larger
the mutual information. The mutual information does not differetiate a positive
correlation with a negative one, however.

Example 2.2 (Mutual information and document similarity). Here we
consider the use of mutual information in a text mining capacity.

It is easy to verify the chain rule for mutual information based on the chain
rule for entropy and the entropy difference expression of mutual information:

I(X1, . . . , Xn;Y) =
n

∑

i=1

I(Xi, Y |Xi−1, . . . , X1)

.
D(p, q) is convex in pair (p, q)

I(x, y) is concave in p(x) for fixed p(y|x)
I(x, y) is convex in p(y|x) for fixed p(x)

2.8.1 Sufficiency

In the age of massive data collection, it is crucial to understand that manipula-
tion of data doesn’t increase the information. This is stated most concisely in
the data processing inequality.

Theorem 2.16 (Data Processing Inequality). If X → Y → Z are Markov,
then

I(X,Y) ≥ I(X,Z). (2.37)

Proof. Using the chain rule on mutual information,

I(X;Z, Y) = I(X,Z) + I(X,Y |Z) ≥ 0.

Similarly,
I(X;Y, Z) = I(X,Y) + I(X,Z|Y) = I(X,Y)

since X and Z are independent given Y . Therefore

I(X,Y) ≥ I(X,Z).

Corollary 2.3. For any function g, I(X,Y) ≥ I(X, g(Y)).

73

Let fθ(x) be a parametric family. Our goal is to make inferences about θ
from sample x1, . . . , xn ∼ fθ(x1, ..., xn). A statistic T (x1, . . . , xn) is sufficient if
given T (X1, ..., Xn), θ and X are independent or the distribution of X1, ..., Xn

given T (X1, ..., Xn) is not dependent on θ.
One can find a sufficient statistic in a straightforward manner by capitalizing

the factorization theorem:

Theorem 2.17 (Factorization Theorem). T is a sufficient statistic for fθ

if and only

fθ(x1, . . . , xn) = gθ(T (x1, . . . , xn))h(x1, . . . , xn|T (x1, . . . , xn)) (2.38)

where g and h are two nonnegative functions and h(x1, . . . , xn|T (x1, . . . , xn))
does not depend on θ.

For example, if x1, . . . , xn are i.i.d. Gaussian with mean θ and variance 1,
T (x) = x̄ is sufficient.

Theorem 2.18 (Mutual Information and Sufficiency). T is a sufficient
statistic for fθ(X) iff

I(Θ, X) = I(Θ, T (X).

Proof. Since T is a mapping from X, we have

X → T (X),

which implies, by the data processing inequality, that

I(Θ, T (X)) ≤ I(Θ, X). (2.39)

On the other hand, T is a sufficient statistic,

Θ → T (x) → x,

so
I(Θ, T (X)) ≥ I(Θ, X). (2.40)

Combining two inequalities gives I(Θ, T (X)) = I(Θ, X), so the mutual infor-
mation of the parameter and the data is the same as mutual information of the
parameter and the sufficient statistic. The converse???

Example 2.3 (Sufficient statistics). • X1, . . . , Xn i.i.d. Bernoulli(p). T (X) =
∑n

i=1Xi.

• X1, . . . , Xn i.i.d. N(θ, σ2). T (X) = (
∑

Xi,
∑

X2
i), or equivalently (x̄, s2).

• X1, . . . , Xn i.i.d. Uniform(θ, θ+1). T (X) = (min(X1, . . . , Xn),max(X1, . . . , Xn)).

74

2.8.2 Fano’s inequality

Suppose X is the unknown and Y is our data. When H(X|Y) is large, there
is much entropy or variability remaining about the unknown X even after we
collect the data Y and we can not hope to guess or estimate well X from Y .
Fano’s inequality quantifies this observation, and it has two important appli-
cations to be covered in the later lectures: proving the converse to Shannon’s
channel coding theorem and giving lower bounds in minimax density estimation.

Theorem 2.19 (Fano’s Inequality). Suppose X → P (Y |X) → Y → X̂, that
is, X̂ is an estimate of X based on Y . Let Pe = P (X 6= X̂) be the probability
of error. Then

H(Pe) + Pe log(|X | − 1) ≥ H(X|Y) (2.41)

where H(Pe) = −Pe logPe − (1 − Pe) log(1 − Pe). Note that if Pe = 0, then
H(X|Y) = 0.

Proof. Let E = 1(X̂ 6= X). Then

H(E,X|Y) = H(X|Y) +H(E|X,Y) = H(X|Y)

(if you know X and Y , you know E, so H(E|X,Y) = 0). On the other hand,
one can also write

H(E,X|Y) = H(E|Y) +H(X|E, Y). (2.42)

Now, H(E|Y) ≤ H(E) = H(Pe), and

H(X|E, Y) = P (E = 1)H(X|E = 1, Y) + P (E = 0)H(X|E = 0, Y).

If E = 0 and we know Y , we also know X, so H(X|E = 0, Y) = 0. If E = 1,
there are |X | − 1 possible values for X̂, so H(X|E, Y) ≤ H(X) ≤ log(|X | − 1).
Combining all the inequalities we get

H(X|Y) ≤ H(E|Y) + P (E = 1)H(X|E = 1, y) ≤ H(Pe) + Pe log(|X | − 1).
(2.43)

Note: Fano’s inequality is sharp: let X ∈ {1, . . . ,m}, Y ≡ 1 = X̂, Pe =
P (X̂ 6= X). Let the distribution of X be p1 = 1 − Pe, p2 = · · · = pm = Pe

m−1 .
Check that this achieves equality.

Corollary 2.4.

Pe ≥ 1 − I(X,Y) + 1

H(X)
(2.44)

Proof. 1+PeH(X) ≥ H(Pe)+PeH(X) ≥ H(X|Y) = H(X|Y)−H(X)+H(X) =
H(X) − I(X,Y). Rearrange and get H(X)(Pe − 1) ≥ −I(X,Y) − 1.

When X is uniform, H(X) = log(|X |), and Pe ≥ 1 − I(X,Y)+1
log(|X |) .

75

2.8.3 Channel Capacity

Most communication channels (between people, callers and receivers over wired
telephone lines or wireless phones) are noisy. The question is how much infor-
mation can be transmitted through a noisy channel. Before Shannon’s 1948
work, the common belief was that errors had to occur with a positive chance for
any noisy channel. Shannon (1948) proved it possible to transmit without errors
in the limit when the message size gets large. However, he had to (1) allow an
arbitrarily small but non zero probability of error; (2) use the channel many
tims in succession (blocks) to the law of large numbers kicks in; (3) employ a
random code book by looking at the average probility of error over randomly
generated block books to prove the existence of at least one good code book.

Definition 19 (Discrete Channel). A discrete channel is characterized by,
for any given input x ∈ a finite alphabet X , a conditional distribution p(·|x) on
a finite alphabet Y . The channel is said to be memoryless if

p(x1, ..., xn; y1, ..., yn) =

n
∏

i=1

p(yi|xi)p(xi).

A good channel’s output or data yn should contain much information about
the input or unknown xn. If we use mutual information to capture this observa-
tion, we should define the capacity of a channel to be the maximum information
possible between a pair of input and output. That is,

Definition 20 (Channel Capacity). The information channel capacity of a
discrete memoryless channel is

C = max
p(x)

I(X;Y),

where the maximum is taken over all possible input distribution p.

There is a duality between source coding and channel coding. In the former,
we remove redundancy in the data to reduce the storage needed; in the latter,
we add redundancy to the data to combat the channel noise. Channel decod-
ing is basically an estimation problem, but the difference with the statistical
estimatino problem lies in the fact that the unknowns or inputs to the channel
can be manipulated to our advantage in channel coding but not in statistical
estimation in general.

Example 2.4 (Binary symmetric channel with cross-over probability
ε).

C = 1 −H(ε).

Maximum capacity is 1 when ε = 0 or the channel is noiseless.

Example 2.5 (Erasure channel erasure probability ε). Here the output
alphabet Y = {0, e, 1} where e for erasure.

C = 1 − ε.

Maximum capacity is 1 when ε = 0 or the channel has no erasure.

76

Theorem 2.20 (Properties of C). 1. C ≥ 0.

2. C ≤ log |X |.

3. C ≤ log |Y|.

4. C is continuous in p(x).

5. C is concave in p(x).

The most important continuous channel is the Guassian additive noise chan-
nel and it is an accurate description of physical channels such as that in deep-
space communication.

Example 2.6 (Gaussian Channel with a Power Constraint P). Given a
continuous random input variable X, the output

Y = X + Z,

where Z is the channel noise which is independent of X and has a Gaussian
distribution with mean 0 and variance N . Then

C = max
EX2≤P

I(X,Y) =
1

2
log(1 + P/N).

Hence the lower the channel noise and the higher the power, the larger the
channel capacity.

Definition 21 ((M, n) Code). An (M,n) code for a channel consists of the
following

1. An index set {1, ..., N};

2. An encoding functionXn: {1, 2, ...,M} → X n, yielding codewordsXn(1), ..., Xn(M)
which form the codebook.

3. A decoding function
g : Yn → {1, ...,M}.

For a given (M,n) code, we use λ(n) and P
(n)
e to denote the maximum

probability of error and the average probability of error respectively. That is,

λ(n) = max
i∈{1,...,M}

λi

where
λi = P (g(Y n)¬i|Xn = Xn(i)).

P (n)
e =

1

M

∑

i

λi.

We often denote an (M,n) code as a (2nR, n) code with R = logM/n (bits
per transmission) being the rate of the code.

77

Theorem 2.21 (Shannon’s channel coding theorem). For a discrete mem-
oryless channel, all rates below capacity C are achievable. Specifically, for every
rate R < C, there exists a sequence of (2nR, n) codes with maximum probability
of error λ(n) going to zero as n → ∞. Conversely, any sequence of (2nR, n)
codes with λ(n) → 0 must have R ≤ C.

Proof. Heuristics:
We work with typical sequences or typical joint sequences. In the world of

typical sequences, things are roughly uniformly distributed. So counting does
the job.

For any input distribution p(x), there are only about 2nH(X) typical se-
quences. For each of these typical sequences as an input, there are approx-
imately 2nH(Y |X) possible Y -sequences which are almost equally likely. We
want to ensure that no two X-sequences produce the same Y output sequence.

The total number of possible (typical) Y -sequences is ≈ 2nH(Y). This set
has to be divided into sets of size 2nH(Y |X) corresponding to the different input
X sequences. Hence the total number of disjoint sets is less than or equal to

2n(H(Y)−nH(Y |X) = 2nI(X,Y).

If the rate R < C = max I(X,Y), we could find an input distribution p∗

such that R < I(X∗, Y) and we could map the index set of the code into these
disjoint sets through the X-typical sequences under p∗. Because R is strictly less
than I(X∗, Y) this translates into much ”room” in the space of input sequences
to cushion the rigorousness of the above argument which can be formalized via
LLN for X and Y and (X,Y). The mapping of the code index into typical
sequences under p∗ is formally done via the famous random coding argument.
Decoding can be done using maximum likelhood and through the joint typical
sequences.

Converse:
Intuitively, it is easy to see that

I(Xn, Y n) ≤ nC,

which can be proved via the chain rules of entropy and conditional entropy. It
says that the channel capacity can not be increased if we use the memoryless
channel repeatedly.

Given any (2nR, n) code with its maximum prob. of error going to zero, its
average prob. of error goes to zero too.

Let W be a uniform random variable on the index set of the code {1, ..., 2nR}
and Ŵ be the decoded index. Then

Pe = P (Ŵ 6= W) → 0.

By Fano’s inequality,

Pe ≤ (H(W |Y n) − 1)/(nR),

78

since log |2nR| = nR.
It follows that

nR = H(W) = H(W |Y n)+I(W,Y n) ≤ H(W |Y n)+I(Xn(W), Y n) ≤ nRPe+1+nC,

which implies that
Pe > 1 − C/R − 1/(nR) > 0,

if R > C. This contradicts with Pe → 0. Hence R ≤ C.

79

