
Biomelrika (1991), 78, 3, pp. 499-509
Printed in Great Britain

Bias of the corrected AIC criterion for underfitted regression
and time series models

BY CLIFFORD M. HURVICH
Department of Statistics and Operations Research, New York University, Tisch Hall,

40 West Fourth Street, New York, New York 10003, U.S.A.

AND CHIH-LING TSAI
Graduate School of Management, University of California, Davis, California 95616, U.S.A.

SUMMARY

The Akaike Information Criterion, AIC (Akaike, 1973), and a bias-corrected version,
Aicc (Sugiura, 1978; Hurvich & Tsai, 1989) are two methods for selection of regression
and autoregressive models. Both criteria may be viewed as estimators of the expected
Kullback-Leibler information. The bias of AIC and AICC is studied in the underfitting
case, where none of the candidate models includes the true model (Shibata, 1980, 1981;
Parzen, 1978). Both normal linear regression and autoregressive candidate models are
considered. The bias of AICC is typically smaller, often dramatically smaller, than that
of AIC. A simulation study in which the true model is an infinite-order autoregression
shows that, even in moderate sample sizes, AICC provides substantially better model
selections than AIC.

Some key words: AIC; Autoregression; Kullback-Leibler information; Model selection.

1. INTRODUCTION

In a seminal paper, Akaike (1973) proposed that the expected Kullback-Leibler
information be used as a means of discriminating between competing statistical models,
even if the models have different dimensions. He proposed the Akaike Information
Criterion, AIC, as an asymptotically unbiased estimator of this information. Since the
underlying target criterion is sound, it may be hoped that minimization of an unbiased
estimate of it will provide good model selections. The idea has been put in a general
framework by Linhart & Zucchini (1986), who view model selection as the construction
of approximately unbiased estimators of an underlying criterion function.

It is possible to prove independently that AIC produces good model selections in large
samples (Shibata, 1980). Nevertheless (Findley, 1985) the bias itself seems to be a basic
property worthy of study. Furthermore, one may hope that by improving the bias
properties, one will also improve the quality of the selected models. This is indeed the
case for the corrected AIC criterion, AiCc, originally proposed by Sugiura (1978) with a
view towards bias reduction, and found by Hurvich & Tsai (1989) to produce not only
dramatic bias reduction but also greatly improved model selections in small samples.
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For a normal linear regression, or autoregressive, model with p regression, or
autoregressive, parameters, the AIC and AICC criteria are respectively defined by

AICC = n log (2v&2) + n -
-(p + 2)/n'

where a2 is the estimated error or innovations variance for the fitted pth order candidate
model.

In previous work, the derivation of AICC and the study of its bias properties were
limited to the case where the true model is of finite dimension and is either correctly
specified or overfitted. In practice, however, since a variety of candidate models will be
considered, it will often happen that the model is underfitted. We will say that a true
model is correctly specified or overfitted if some configuration of parameter values in
the candidate model, perhaps including some zero values, yields the true model. Other-
wise, the true model is said to be underfitted, and the candidate model is referred to as
an approximating model. If the true model is of infinite dimension, which we feel will
be the typical situation in practice, then none of the candidate models will be capable
of exactly producing the true model, and therefore the model will always be underfitted.

In this paper, we study the bias properties and model selection quality of AIC and
AICC for the underfitting case. We consider both linear regression and autoregressive
time series models. In the normal linear regression case, we derive exact expressions for
the expectations of AIC, AICC and the Kullback-Leibler information. The bias of AIC
and AICC depends on the true regression function, and on the form and dimension of
the candidate model. We numerically evaluate the bias for a class of trigonometric
candidate models, assuming a variety of true regression functions. We find that, although
AICC is not uniformly less biased than AIC, the minimizers over a set of candidate model
orders of the expected AICC and Kullback-Leibler information are similar to each other,
and often quite different from the minimizer of the expected AIC. Furthermore, as the
ratio of the model dimension to the sample size increases, AIC becomes strongly negatively
biased, while the bias of AICC is often dramatically smaller than that of AIC. For the
autoregressive case, exact finite-sample results are not available. Findley (1985) has given
a rigorous derivation of the asymptotic bias of AIC for any correct or approximating
ARMA model. We study the finite-sample bias properties of AIC and AICC , viewed as
functions of the order of the approximating AR models, using a combination of theory
and Monte Carlo. Once again, we find that AICC can be substantially less biased than
AIC. We also find that AICC significantly outperforms AIC in terms of quality of the
selected approximating model. These findings strengthen the case for using AICC in place
of AIC, as was originally recommended by Hurvich & Tsai (1989).

2. APPROXIMATING REGRESSION MODELS

2 1 . Theoretical derivation
Given data y = (>>,,... ,yn)' generated from the operating model, i.e. true model,

y = /i. + e where /i is the true mean of y and e ~ N(0, a2
oln), we consider the candidate

family of models approximating family y = Xd + u, where X is a nonstochastic nxp
matrix, 6 is a p x l parameter vector, and u — N(0, cr2ln). The parameters (8, a2) are
estimated by least squares, that is

§ = {X'XY'X'y, a2 = (y - X8)'(y - Xd)/n.
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If ge.siy) denotes the likelihood for (0, a2), and Eo denotes the expectation with respect
to the operating model, we define the discrepancy function

= n log (277-O-2) + £0{(M + e - Xe)'{p + e- X6)/a2}

= n log (27TO-2) + naif a2 + (ft - Xe)'(n - X6)/a2.

Thus

d(6,a2) = n log (2na2) + na2
0/a

2 + (/* - X§)'(ti - X6)/a2.

Define the n x n projection matrix H = X{X'X)~XX'. Note that H2=H and Xd = Hy.
Let A = fi'(I — H)/x/al, and let x\(^) denote a noncentral x\ distribution with noncen-
trality parameter A.

LEMMA. The random variables (/LA - X6)'{^ - X§) and a2 are independently distributed.
Further,

A proof follows from the arguments of Rao (1973, pp. 186,187, 209).
From Rao (1973, p. 182), if X - xlW then X has density

g(x) = e~^ f,-a\)rf2r+k(x),

where f2r+k(x) is the density of a central xlr+k random variable. Since the logarithm of
a xlr+k random variable has expectation log 2 + \p{r+{k), where i^(.) denotes the
digamma function, it follows that

n - p)} 1.
J
(1)

Since the inverse of a xlr+k random variable has expectation (2r + fc-2)"', it follows that

E0{na2
0/&

2) = n2E0(na2/a2
0y

l = n2 e"** I - GA)'—-— - . (2)

r-or\ 2r+n-p-2

Thus, combining (1) and (2), the expected Kullback-Leibler discrepancy is

= E0{d(0,a2)}

f ({k)^{\(2r+n-p)}
r-0

2-2. Numerical results
Here, we consider the operating model
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Fig. 1. Expected A I C C , shown by lines, A*, triangles, and AlC, circles, versus p. Trigonometric regression candidates,
linear and exponential operating models; n = 100.
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where e, are independent identically distributed normal random variables with mean
zero and variance crl, together with the trigonometric approximating models

y, = A>+ I {Aj cos (tojt) + Bj sin («,-/)} + u,,

where Ao, At, B , , . . . , Ap, Bp are real-valued parameters, Wj = 2vj/n, and u, are indepen-
dent identically distributed normal random variables with mean zero and variance a2.

Figure 1 gives plots of A(0, a2), denoted by A*, together with the expectations of AIC
and A IC C , all functions of p, where p = 1 , . . . , 30, for a sample of size n = 100 under nine
different combinations of choices for ft, and crl. Figures l(a), (b), (c) assume the linear
operating model fi, = t, denoted by 'linear'. Figures l(d)-(i) assume the exponential
operating model /A, = ep', denoted by 'exp', using B = -0-05 and B = 004.

Although A I C C is not uniformly less biased than AIC, the expected value of AIC C

outperforms that of AIC in capturing the overall shape of the A* curves, viewed as
functions of p. In particular, the values of p which minimize £ ( A I C C ) and A* are similar,
while E ( A I C ) is often minimized at very large, and clearly suboptimal, values of p. Also
A I C C becomes positively biased as p is increased, a tendency which becomes more
pronounced as crl is decreased. Finally, the patterns observed here depend more strongly
on the operating variance al than on the form of the operating mean /A,.

3. APPROXIMATING AUTOREGRESSIVE TIME SERIES MODELS

3 • 1. Theoretical derivation

Suppose we have data x = ( x 0 , . . . . *„_,)' from a zero-mean stationary Gaussian series
{x,}^._co having an infinite order autoregressive, AR(OO), representation

where {bk} are constants, bo= 1 and {17,} is a zero-mean Gaussian white noise series with
variance a\. Note that {x,} need not have a finite-order autoregressive representation.
The candidate model is a pth order autoregression, AR(/>), of form

k-0

r2where ao= 1 and {e,} is a zero-mean Gaussian white noise series with variance cr2. The
parameters are estimated by maximum likelihood, least squares, Burg's (1978) method,
or any other asymptotically equivalent method. Findley (1985) has examined the bias of
AIC for this case and has shown that, as n -» 00 and p -> 00, AIC is asymptotically unbiased
for the expected Kullback-Leibler information. In a Monte Carlo study, in which the
operating model is MA(1) , we compare the bias properties of AIC and Aic r for fixed
values of n and p. Further, we compare the performance of AIC and AIC C in terms of
quality of the selected models. Before presenting the Monte Carlo results, we obtain a
rough asymptotic approximation to the expected Kullback-Leibler information. This
approximation indicates that AIC, although asymptotically unbiased to first order, may
in fact be strongly negatively biased for a given n and p.

Let 6 = (a2, a , , . . . , ap) 'and 90={crl, 6,, b2,...)'denote the candidate AR(/>) and true
AR(OO) parameter vectors, respectively. The Kullback-Leibler discrepancy is

e,eo) = E0{-2\ogge(x)},
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where ge(x) is the likelihood function for the candidate model parameters, and Eo denotes
expectation under the true model. Let 2fl and 1^ denote the n x n covariance matrices
of x under the models with 6 and 0o, respectively. Since

- 2 log ge(x) = n log (27r) A

one obtains

d(6, d0) = n log (2TT) + log |2fl

Let 6 = (a2, a,,..., dp)' denote the estimated parameters in the candidate model. Note
that 0 need not be the maximum likelihood estimator. The selection methods AIC and
A I C C may be viewed as estimators of the expected Kullback-Leibler information,

A(0) = E0{d{§, e0)} = n log (2TT)+ E0(log |2«|) + £0{tr (1^6% (4)

Denote the true spectral density by f(<o) for o» e [-IT, IT], and denote the AR(/>) spectral
estimate by

where the sum is over the range k = 1 , . . . , p. From Parzen (1983, p. 235), the eigenvectors
and corresponding eigenvalues of S e may be approximated by

n-i{exp(-ia>,r)} (t = 0, ...,n- 1), 2irf(o}) (j = 0 , . . . , n - 1).

It follows that the expected Kullback-Leibler information A(0) may be approximated by

•r
J — TT

8(6) = E0{n log (2TTC72)} +W(27r )}£ 0 { / («) / /„(«)} dw.
J —n

To obtain an approximation for the second term we use the result of Berk (1974). If
p-KX>, n-too with p3/n->0 then fp(w) is asymptotically equivalent to the truncated
periodogram estimator

f*(to) = — X crexp(iroj),
2iT\r\<p

where
1 n-\r\

Cr~~ L XlXl-\r\
n i-o

is the sample autocovariance. From Bloomfield (1976, p. 191), we obtain the approxima-
tions

From Bloomfield (1976, p. 196), if we define v = n/p, then the distribution of vf*(a>)/f(w)
may be approximated by xl- If we treat all the above approximations as exact and assume
that fp((o) =f*(co) then we obtain

v-2 \-2pln

Thus

1 -2p/n
(5)
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Note that, to first order, the approximation (5) to the expected Kullback-Leibler informa-
tion has penalty term 2p/n, in agreement with that of AIC. Nevertheless, the full penalty
term in (5) is (1 -2p/ n)~\ which is always larger, and potentially much larger, than the
penalty term of AIC, 2p/n. Thus, AIC may be strongly negatively biased. The Monte Carlo
results given below, which do not rely on the approximations used in the above derivation,
indicate that the exact penalty term of the expected Kullback-Leibler information is in
fact quite close to the penalty term of AICC, that is,

and that AICC is much less biased than AIC.

3-2. Monte Carlo results
Here we present Monte Carlo results on the performance of AIC and AICC for

autoregressive time series model selection, when the operating model is Gaussian AR(OO).
We study the finite-sample bias properties of AIC and AICC) viewed as estimators of A(0).
We also study the quality of the models selected by AIC and AICC. The true model used
throughout is the first-order moving average process x, = e, + 0-99e,_,, where {e,} are
independent and identically distributed standard normal. Note that {x,} has an AR(OO)
representation, and cannot be written as a finite-order AR. For each of the sample sizes
n = 23, 30, 40, 50, 75 and 100, we generated 100 independent realizations x 0 , . . . , xn_,
of the moving average process. For each realization, autoregressive models of orders
p = I,... ,20 were fitted by the Burg method, and the criteria AIC, AICC and sic
(Schwarz, 1978) were computed. The sic criterion is given by

sic = n log (2TT(T2) + p log n.

Also computed was d(6p, 0O), where the subscript in 0P has been added for clarity to
explicitly indicate model order. Averages of the criterion functions as well as d(0p, 0O)
were computed over the 100 realizations. All these are functions of the candidate model
order p. We denote the average of the 100 values of d(6p, 0O) by A(/>), or simply A. Note
that A serves as an approximation to the expected Kullback-Leibler information A(0r)
defined in (4). Figure 2 shows that, almost without exception, AICC exhibits less bias
than AIC in estimating A. Furthermore, the magnitude of the bias of AIC increases with
model order, while AICC remains nearly unbiased for all model orders. These results
parallel those found for the overfitting case in Hurvich & Tsai (1989).

Next, we explore the quality of the models selected by AIC, AICC and sic. Since there
is no true finite autoregressive model order in the current study, we will measure quality
here using the expected Kullback-Leibler discrepancy, instead of simply examining the
selected model orders. Another reasonable measure of quality, prediction error, will be
considered at the end of this section. For each realization, the criteria yielded selected
model orders P(AIC), /J(AICC), p(sic), and corresponding expected Kullback-Leibler
discrepancies AA,C = A{/5(AIC)}, AA]CV = A{p(Aicr)}, AS|C = A{/5(sic)}. In order to allow
these discrepancy values to be viewed relative to an absolute zero, the constant d(60, 0O)
was subtracted, yielding

The average values of DAIC, DMCc and DSIC over the 100 realizations are given in Table
1. For all sample sizes studied the average value of DAICr is less than those of DMC and
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Table 1. Averages of standardized discrepancies

n Avc(DAIC) Ave(DA I C () Ave(D s l c)

23
30
40
50
75

100

864-438
112-516
32-255
25-674
21067
21-524

10-638
11-410
12-591
14-586
18036
19-744

560-918
33-571
13076
14-665
18-787
21-784

Based on 100 realizations from an M A ( 1 ) process.

DS\c, suggesting that AICC provides the best model selections, on average. To test whether
apparent differences in performance were significant, we performed pairwise comparisons
of discrepancy values, at the level of individual realizations. Specifically, for pairs (L, R)
of selection criteria, we computed the 100 values, one for each realization, of DL-DR.
A one-sample Wilcoxon test was performed on the set of values of DL - DR for the null
hypothesis that the median of DL — DR is zero. The p-values are given in Table 2 showing
that Aicr is in all cases strongly superior to AIC. Furthermore, AICC is superior, and in
most cases strongly superior, to sic.

In the comparisons of AIC and AICC the largest p-value occurred for n = 100. Since
the maximum candidate model order was held fixed at 20, it is to be expected that as n
is increased the behaviour of AIC and AICC will become increasingly similar, since the
two criteria are asymptotically equivalent in this case. Also in the comparisons of sic
and AICC, the p- values do not decrease monotonically with n. The initial increase of the
p-values, reaching a maximum of 0-200 at n =40, may be attributed to the fact that the
maximum ratio of model order to sample size is 20/ n, which decreases with n, and to
the fact that sic is strongly negatively biased when the model order is close to n but
increases fairly sharply with model order when the model order is a moderate fraction
of n. The eventual decrease of the p-values for ns=40 is to be expected since AICC is
asymptotically efficient while sic is not.

Table 2. One-sided p-values for one-sample Wilcoxon test based on
differences of standardized average discrepancies DL — DRfor selection

criteria (L, R)

No. pos. p-valuen

23
23
30
30
40
40
50
50
75
75
100
100

L

AIC

SIC

AIC

SIC

AIC

SIC

AIC

SIC

AIC

SIC

AIC

SIC

R

AICC

AICC-
A IC r

AICC

A I C r

A1CC

AIC (

AICC

A l C r

AIC r

A I C r

A I C r

No. neg.

0
1
1

10
3

15
5

19
2

18
7
9

No. z

4
36
26
69
34
68
37
56
58
30
60
33

96
63
73
21
63
17
58
25
40
52
33
58

*
*
*

701 xlO
*

0-200
*

0131
•

0-0016
1-55x10

*

Numbers neg., zero, pos. denote the number of negative, zero and positive differences
in DL- DR for the 100 realizations.
* p-value less than 10~5.
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Another criterion for assessing the quality of a fitted autoregressive model is mean
squared prediction error. For simplicity, we use the normalized prediction error

NPE( p) = E(a'Ra)-a2
0,

where a = (1, a , , . . . , ap)' is the vector of fitted AR(/>) coefficients, R is the true (p + l ) x
(p + l) covariance matrix of the process and a\ is the innovation variance. Note that
E(d'Ra) is the one-step mean squared error incurred in predicting an independent
realization {>>,} of the process {x,} using an AR(/?) model fitted to {x,}, while <J\ is the
minimum one-step mean squared prediction error attainable by any linear predictor.
Since it would be difficult to derive the exact values of N P E ( P ) analytically, we will
instead use the approximations to NPE(/?) obtained by averaging the values of a'Ra over
100 simulated realizations.

Table 3 gives average values of NPE(/5 A | C ) , NPE(/5A|Cf.) and NPE(/5S ) C) using the same
100 realizations of the MA(1) process as reported earlier, with cr2

0= 1. The results are
reasonably similar to those found in Table 1 for the Kullback-Leibler discrepancy, with
AIC C performing uniformly best. However, AIC and AIC C are much closer in terms of
average NPE than they were in terms of average Kullback-Leibler discrepancy. This is
particularly true for the larger sample sizes, 75 and 100. An explanation, revealed by
examining plots of NPE(/>), not shown here, is that NPE places more penalty on small

Table 3. Average normalized prediction errors, NPE

n Ave{NPE(pAIC)} Ave{NPE(pAIC(.)} Ave{NPE(ps,c)}

23
30
40
50
75

100

5-154
1-469
0-555
0-411
0-266
0-219

0-491
0-418
0-354
0-322
0-254
0-214

3-492
0-665
0-390
0-361
0-299
0-258

Based on 100 realizations from an M A ( 1 ) process.

Table 4. One-sided p-values for one-sample Wilcoxon test based on
differences of normalized prediction errors, N P E ( / 5 L ) - N P E ( P « ) for

selection criteria (L, R)

n

23
23
30
30
40
40
50
50
75
75

100
100

L

AIC

SIC

AIC

SIC

AIC

SIC

AIC

SIC

AIC

SIC

AIC

SIC

R

AICC

AICC

AICC

AICC

AICC

AIC r

A I C r

A1CC

AICC

A I C r

AICC

A I C r

No. neg.

1
0
4
1

13
2

12
5

12
10
13
3

No. zero

4
36
26
69
34
68
37
56
58
30
60
33

No. pos.

95
64
70
30
53
30
51
39
30
60
27
64

p-valu

*

*
*

*
*
*

0-001
*

0023
*

Numbers neg., zero, pos. denote the number of negative, zero and positive differences
in NPE(pJ-NPE(pR) for the 100 realizations.
*p-value less than 10~5.
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model orders, and much less penalty on large model orders, than does the Kullback-
Leibler discrepancy A.

Table 4 gives p- values for Wilcoxon tests on differences of the form NPE(/5L) - NPE(/JR)
for pairs (L, R) of selection criteria; AICC is strongly superior to both AIC and sic in
terms of normalized prediction error for all cases studied. Compared with the case of
the Kullback-Leibler criterion, Table 2, the superiority of AICC over AIC is somewhat
weaker here for n = 75 and n = 100, while the superiority of AICC over sic is stronger
here than before. Both phenomena can be explained as above, since AIC tends to overfit
and sic to underfit, compared with AICC-
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