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SUMMARY

A bias correction to the Akaike information criterion, AIC, is derived for regression
and autoregressive time series models. The correction is of particular use when the sample
size is small, or when the number of fitted parameters is a moderate to large fraction of
the sample size. The corrected method, called AICC, is asymptotically efficient if the true
model is infinite dimensional. Furthermore, when the true model is of finite dimension,
AICC is found to provide better model order choices than any other asymptotically efficient
method. Applications to nonstationary autoregressive and mixed autoregressive moving
average time series models are also discussed.
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1. INTRODUCTION

The problems of regression and autoregressive model selection are closely related.
Indeed, many of the proposed solutions can be applied equally well to both problems.
One of the leading selection methods, and the primary focus of this paper, is the Akaike
information criterion, AIC (Akaike, 1973). This was designed to be an approximately
unbiased estimator of the expected Kullback-Leibler information of a fitted model. The
minimum-Aic criterion produces a selected model which is, hopefully, close to the best
possible choice.

If the true model is infinite dimensional, a case which seems most realistic in practice,
AIC provides an asymptotically efficient selection of a finite dimensional approximating
model. If the true model is finite dimensional, however, the asymptotically efficient
methods, e.g., Akaike's FPE (Akaike, 1970), AIC, and Parzen's CAT (Parzen, 1977), do
not provide consistent model order selections. Consistency can be obtained (Hannan &
Quinn, 1979; Schwarz, 1978) only at the cost of asymptotic efficiency. We feel that of
the two properties, asymptotic efficiency is the more desirable. Nevertheless, the existing
efficient methods suffer some severe shortcomings, which become particularly evident in
the finite dimensional case. The methods tend to overfit severely unless strong restrictions
are placed on the maximum allowable dimension of the candidate models. The imposition
of such cut-offs, moreover, seems arbitrary and is especially problematic when the sample
size is small.

In the case of AIC, the cause of the overfitting problem becomes evident when one
examines plots of AIC and the actual Kullback-Leibler information for the various
candidate models. As m, the dimension of the candidate model, increases in comparison
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to n, the sample size, AIC becomes a strongly negatively biased estimate of the information.
This bias can lead to overfitting, even if a maximum cut-off is imposed. The bias of AIC
may be attributed to the progressive deterioration, as m/n is increased, in the accuracy
of certain Taylor series expansions for the information used in the derivation of AIC.

In this paper, we will obtain a bias-corrected version of AIC for nonlinear regression
and autoregressive time series models. We achieve this by extending the applicability of
the corrected AIC, AICC, method originally proposed for linear regression models by
Sugiura (1978); AICC is asymptotically efficient, in both regression and time series. For
linear regression, AICC is exactly unbiased, assuming that the candidate family of models
includes the true model. For nonlinear regression and time series models, the unbiasedness
of AICC is only approximate, since the motivation for AICC in these cases is based on
asymptotic theory. In all cases, the reduction in bias is achieved without any increase in
variance, since AICC may be written as the sum of AIC and a nonstochastic term. We
explore the performance of AICC in small samples, by means of simulations in which the
true model is finite dimensional. We find that the bias reduction of AICC compared to
AIC is quite dramatic, as is the improvement in the selected model orders. Furthermore,
a maximum model order cut-off is not needed for AICC. Among the efficient methods
studied AICC is found to perform best. For small samples, AICC is able to out-perform
even the consistent methods. In view of the theoretical and simulation results, we argiie
that AICC should be used routinely in place of AIC for regression and autoregressive
model selection. In addition, we present simulation results demonstrating the effectiveness
of AICC for selection of nonstationary autoregressive and mixed autoregressive-moving
average time series models.

The remainder of this paper is organized as follows. Section 2 develops AICC for general
regression models, and presents Monte Carlo results for linear regression model selection.
Section 3 develops AICC and presents simulation results for autoregressive model selection.
The criteria for regression and autoregressive models have exactly the same form. Section
4 gives concluding remarks. An appendix outlines the derivation of AICC for autoregressive
models.

2. MODEL SELECTION FOR REGRESSION

Here, we follow essentially the notation of Linhart & Zucchini (1986). Suppose data
are generated by the operating model, i.e. true model,

y = P + e, U)

where

y = (y\,---,yn)
T, /A = ( M I , - - , A O T , E = ( e , , . . . , e n ) T ,

and the e, are independent identically distributed normal random variables with mean
zero and variance O-Q. Additional assumptions about the form of the operating model
will be made below. Consider the approximating, or candidate, family of models

y = h(6) + u, (2)

where 0 is an m x 1 vector,

u = ( u , , . . . , un)
T, h{6) = (ht(0),..., hn(6))T,

h is assumed to be twice continuously differentiable in 6, and the u, are independent
identically distributed normal with mean zero and variance a2. We refer to (2) as a
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model, or alternatively as a family of models, one model for each particular value of
(0, a2). In the special case that the approximating family and operating model are both
linear, we have h{0) = X0, /A = X080, where X and Xo are respectively n x m and n x m0

matrices of full rank, and 60 is an m0 x 1 parameter vector. A useful measure of the
discrepancy between the operating and approximating models is the Kullback-Leibler
information

A(0, a2) = EF{-2 log ge.

where F denotes the operating model and ge,<j2{y) denotes the likelihood function under
the approximating model. We have

A(0, a2) = ~2EF log {(27rcrTin exp [ -{y -h(6)}T{y - h(0)}/(2a2)]}

= n log (2TTO-2) + EF{fi + e -h(0)}T{n + e -h(6)}/<r2

= n log (2TTO-2) + nal/a2 + {/i, - h{0)}r{(jL -h{d)}/cr2.

A reasonable criterion for judging the quality of the approximating family in the light
of the data is £F{A(0, a2)}, where 0 and &2 are the maximum likelihood estimates of 6
and a2 in the approximating family: 6 minimizes {y - h(0)}T{y - h(0)}, and

&2 = {y-h(0)}T{y-h(§)}/n.

Ignoring the constant n log (2TT), we have

A(6, a2) = n log &2 + naila2 + {ti-h(S)}T{ti-h(d)}/a2.

Given a collection of competing approximating families, then, the one which minimizes
£F{A(0, a2)} is, in a sense, closest to the truth, and is to be preferred. Of course,
EF{A(0, <J2)} is unknown, but it can be estimated if certain additional assumptions are
made. The Akaike information criterion

Aic = n(logcr2+l) + 2(m + l) , (3)

where m is the dimensionality of the approximating model, was designed to provide an
approximately unbiased estimate of EF{A(0, a2)}.

We now assume that the approximating family includes the operating model. This is
a strong assumption, but it is also used in the derivation of AIC (Linhart & Zucchini,
1986, p. 245). In this case, the mean response function fi of the operating model can be
written as /i = h(6*), where 0* is an m x 1 unknown vector. The linear expansion of h(0)
at 0 = 0* is given by

where V = dh/30 evaluated at 0 = 0*. Then under the operating model, 0 - 0* is approxi-
mately multivariate normal, N{0,al(VTV)~1}, the quantity n&2/cr2

0 is approximately
distributed as xl-m independently of 0 (Gallant, 1986, p. 17), and

nm j a \ nm

nm / a

is approximately distributed as F(m, n — m). Thus,

EF{A(0, &2)}^EF{n log a2) + n2/(n -m-2) + nm/(n -m-
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Consequently,

„, 1 + m/n
Aicc = n log al+n-—-—

\-(m + 2)/n

is an approximately unbiased estimator of EF{A(6, a2)}. An equivalent form is

, 2 ( w + l ) (m + 2) tA.
AICC = AICH—- . (4)

n — m — 2

Thus, AICC is the sum of AIC and an additional nonstochastic penalty term,

If the approximating models are linear, it follows from Shibata (1981, p. 53) that AICC

is asymptotically efficient.
For the remainder of this section, we assume for simplicity that the approximating

family and operating model are both linear; h(6) = X0, /A = X060. If the approximating
family includes the operating model, then V = X and fi = X9*. In this case, AICC is an
exactly unbiased estimator of £F{A(0, a2)}, as originally given for the linear regression
case by Sugiura (1978, eqn (3.5)). Curiously Sugiura (1978) did not explore the small-
sample performance of AICC , and indeed for the two data sets he examined, AIC and
AICC produced identical selections.

To compare the small-sample performance of various selection criteria in the linear
regression case, 100 realizations were generated from model (1) with (JL = X060, mo = 3,
0O

 = (1,2, 3)T and <r%=\. TWO sample sizes were used: n = 10 and n = 20. There were
seven candidate variables, stored in an n x 7 matrix X of independent identically dis-
tributed normal random variables. The candidate models were linear, and included the
columns of X in a sequentially nested fashion; i.e. the candidate model of dimension m
consisted of columns 1 , . . . , m of X. The true model consisted of Xo, the first 3 columns
of X.

For each realization, the following criteria were used to select a value of m: AICC ,

equation (4); AIC, equation (2); FPE (Akaike, 1970, eqn (4.7)); FPE4 (Bhansali & Down-
ham, 1977, p. 547); HQ (Hannan & Quinn, 1979, p. 191); sic (Schwarz, 1978; Priestley,
1981, p. 376); CP (Mallows, 1973, eqn (3)); and PRESS (Allen, 1974, p. 126). Of these
criteria, HQ and sic are consistent (Shibata, 1986), and AICC , AIC, FPE, CP are asymptoti-
cally efficient (Shibata, 1981, p. 53).

For n = 10, the left-hand side of Table 1 gives the frequency of the order selected by
the various criteria. Here, AICC clearly provides the best selection of m among all criteria

Table 1. Frequency of order selected by various criteria in 100 realizations of regression
model with m0 = 3, n = 10, 20

Criterion

AICC

AIC

FPE

FPE4
HQ

SIC

CP

PRESS

2

2
0
0
0
0
0
0
1

3

96
36
46
57
24
41
61
58

4
n =

2
8

12
10
11
9
8

11

5
10

0
6

12
9

13
10
8

12

Selected model
6

0
16
9
7

13
11
6
7

7

0
34
21
17
39
29
17
11

order,
2

0
0
0
0
0
0
0
0

m
3

88
64
68
87
70
84
77
75

4
n =

9
13
13
7

12
8
11
13

5
20

2
9
8
5
8
5
7
8

6

1
7
6
1
6
1
3
3

7

0
7
5
0
4
2
2
1
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studied. The other criteria often show a tendency to overfit the model. We focus now on
a comparison between AIC and AICC, both of which are designed to be estimates of the
Kullback-Leibler discrepancy. Figure 1 plots the average values of AIC, AICC and A(0, a2),
DELTA, as functions of m. For m> m0, AIC is a strongly negatively biased estimator of
£F{A(0, a2)}. As m is increased beyond m0, AIC first reaches a local maximum and then
decreases, eventually falling below the value for m = m0. In contrast, the shape of AICC

tends to mirror that of A(0, a2), particularly for m 3= m0, a region in which AICC is exactly
unbiased for £F{A(0, a2)}. The average value of AICC attains a global minimum at the
correct value, m =3.

For n = 20 in Table 1, AICC still provides the best selection of m, although several of
the other methods also performed well. Among the efficient criteria, AICC strongly
outperformed its competitors.

c
u

60

40

20

n

-

DELTA J

\

1 1 1 1 1

/ /

' /

/

AICC

AIC

i i

1 2 3 4 5 6 7

Number of independent variables, m

Fig. 1. Average criterion functions and Kullback-Leibler discrepancy in
100 realizations from a regression model with mo = 3 and n = 10.

3. MODEL SELECTION FOR AUTOREGRESSION

Suppose that time series data x0,..., xn_, are generated from a Gaussian zero-mean
weakly stationary stochastic process. The approximating model is an order-m autoregress-
ive model with parameters a = (1, a , , . . . , am)T and white noise variance Pm fitted to the
data by maximum likelihood or some other asymptotically equivalent method, e.g.
least-squares or Burg's (1978) method. The AIC criterion for selecting an autoregressive
model is given by

In the Appendix it is shown that, if the approximating family includes the operating
model, an approximately unbiased estimator of the Kullback-Leibler discrepancy is given
by

Aicc = n log Pm + n-
m/n

- (m + 2)/iT
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This has exactly the same form as the version of AICC obtained earlier for regression.
Also as in the regression case, AICC and AIC are related by (4).

To examine small-sample performance, 100 realizations were generated from the
second-order autoregressive model

x, = 0-99x,_1-0-8xl_2+el (t = 0,..., n -1) ,

with e, independent identically distributed standard normal. Two sample sizes were used:
n = 23 and n = 30. For each realization, Burg's method was used to fit candidate
autoregressive models of orders 1 , . . . , 20, and various criteria were used to select from
among the candidate models. Most of the criteria examined here are direct generalizations
of the corresponding regression criteria with Pm used in place of a2: AICC, AIC, FPE, HQ,
SIC. Two additional criteria proposed specifically for time series were also examined:
BIC (Akaike, 1978; Priestley, 1981, p. 375), and CAT (Parzen, 1977, eqn (2.9)). The efficient
criteria were AICC) AIC, FPE (Shibata, 1980), and CAT (Bhansali, 1986). The consistent
criteria were HQ, SIC, BIC.

For n = 23, Table 2 gives first the frequency of the model orders selected by the criteria.
Two different maximum model order cut-offs were used: max = 10, max = 20. For n = 23,
max = 20, AICC performed best, followed closely by BIC, while all other criteria performed
poorly. When max was reduced to 10, AICC was slightly outperformed by BIC, but AICC

was still the best of the efficient methods. Figure 2 plots the average values of the
Kullback-Leibler discrepancy, AICC and AIC as functions of m. The patterns are quite
similar to those observed in Fig. 1 for the linear regression case.

Table 2. Frequency of order selected by various criteria in 100 realizations of second-order
autoregressive model with n = 23, first value, and n = 30, second value

Criterion

AICC

AIC

FPE

HQ

SIC

BIC

CAT

1

6,1
1,0
2,0
1,0
4,2
4,0
2,0

2

80,73
7,31

19,41
11,50
31,82
77,90
20,43

3-5
max = 20

10,22
2,12
5,17
3,12
3, 8

10, 8
5,16

Selected model
6-10

4,
2,
7,
4,
1,
3,
8,

3
6
8
7
3
0

10

11-20

0, 1
88,51
67,34
81,31
61, 5
6, 2

65,31

order, m
1

6,1
3,0
3,0
4,1
6,2
5,0
3,0

2
max

80,74
52,52
52,52
56,64
78,86
81,91
54,58

3-5
= 10

10,22
19,28
19,28
19,22
9, 9

10, 8
19,26

6-10

4, 3
26,20
26,20
21,13
1, 3
4, 1

24,16

For n = 30, the second entry in Table 2, AICC was strongly outperformed by the
consistent methods sic and BIC, but AICC was still the best of the efficient methods, by
a wide margin.

In all cases, the value of the maximum cut-off had virtually no effect on the model
chosen by AICC- For many of the other criteria, however, increasing the value of max
tended to lead to increased overfitting of the model. To explore this further, Fig. 3(a),
(b) plots the average criterion functions corresponding to the efficient and consistent
methods, respectively, for n = 23. Except for AICC, the shapes corresponding to the
efficient methods mirror the shape of AIC, and hence the criteria tend to favour large
model orders, while the shape of AICC resembles that of DELTA. The consistent methods
suffer from this overfitting problem as well, except for BIC.



Model selection in small samples 303

100

80

C
ri

te
ri

on

40

20

i

DELTA /

\ / /

X^~-—
r i i i i i i i i

/ /

/ /

AIC

- _ ^

1 1 1 1 1 1 I^VJ 1 1 \

1 2 204 6 8 10 12 14 16 18
Model order, m

Fig. 2. Average criterion functions and Kullback-Leibler discrepancy in
100 realizations from an autoregressive model with mo = 2 and n =23.
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Fig. 3. Average of all criterion functions and Kullback-Leibler discrepancy
in 100 realizations from an autoregressive model with mo = 2 and n =23;

(a) Efficient methods, (b) Consistent methods.

4. DISCUSSION

A common pattern in many of the criterion functions studied here is the eventual
decline with increasing m, leading to overfitting of the model; see, for example, Fig. 1-3.
Here, we show that the expectation of AIC has this pattern, thereby obtaining a partial
theoretical explanation for the overfitting problem. In the autoregressive case, if the
approximating family includes the operating model, and Pm is the operating white noise
variance, then nPjPm is approximately distributed as xl-m, and

(5)

where iff is the digamma function (Johnson & Kotz, 1970, p. 198, eqn (67)). Thus,



304 C. M. HURVICH AND C.-L. TSAI

As a function of m, the right-hand side of (5) has the same concave shape as found in
the AIC plots of Fig. 1-3. For the linear regression case, (5) is exact, if Pm, Pm are replaced
by a2, O-Q, respectively.

We have shown that AIC yields a biased estimate of the Kullback-Leibler information,
and that this bias tends to cause overfitting of the model, in the cases of regression and
autoregressive time series. We have also demonstrated that a bias-correction in AIC is
able to overcome the above deficiencies.

Additional time series models in which AIC, SIC and HQ have been applied include
nonstationary autoregressions (Tsay, 1984) and mixed autoregressive moving averages,
ARMA (Hannan, 1980). Here, we explore the potential applicability of AICC for these
models, based on theoretical and simulation results.

For stationary autoregressive models, Shibata (1976) obtained the asymptotic distribu-
tion of the order selected by AIC. Hannan (1980) and Tsay (1984) generalized Shibata's
result to nonstationary autoregressive and ARMA models, respectively. Since the difference
between AIC, equation (3), and AICC, equation (4), is a nonstochastic term of order \/n,
Theorem 1 of Shibata (1976, p. 119), Theorem 2 of Hannan (1980, p. 1073) and Theorem
1 of Tsay (1984, p. 1427) can be extended directly to AICC.

Next, we present simulation results on the behaviour of AICC for nonstationary
autoregressive and ARMA model selection. All models were estimated by conditional
maximum likelihood. One hundred realizations of the nonstationary third-order
autoregression

(l-B2)(l+0-95B)x, = e,

were generated, with sample size n = 15, and e, independent identically distributed
standard normal. Here, B is the backshift operator, Bx, = x,_,. Table 3 lists the frequency
of the order selected by the criteria AICC, AIC, HQ and sic. Of these four criteria, AICC

performs best. For the case of ARMA model selection, 100 realizations of the first-order
moving average model x, = e, + 0-95e,_, were generated, with sample size n = 15, and e,
independent identically distributed standard normal. Table 4 gives the frequency of the

Table 3. Frequency of order selected by various criteria in 100 realiz-
ations of nonstationary third-order autoregressive model with n = 15

iterion

AICC

AIC

HQ

SIC

m = \

8
3
3
5

m = 2

11
2
2
4

Selected
m = 3

45
10
10
19

model order
m = 4

7
11
11
12

m = 5

11
10
10
9

m =

18
64
64
51

Table 4. Frequency of model selected by various criteria in 100 realizations of first-order
moving average with n = 15. Candidate models are pure autoregressive, AR, pure moving

average, MA, and mixed autoregressive-moving average, ARMA

Model

AR(1)-AR(4)

AR(5)-AR(6)

MA(1)

MA(2 ) -MA(4 )

MA(5) -MA(10)

AICC

5
13
20
10
0

AIC

2
38

1
3

20

HQ

2
38

1
3

20

s ic

1
31

5
5

14

Model

ARMA(1, 1)

ARMA(1,2)

ARMA(2, 1)

ARMA(2, 2)

AICC

10
12
10
20

AIC

4
7
1

24

HQ

4
7
1

24

SIC

5
9
4

26
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model selected by AICC, AIC, HQ and sic. Here, the candidates included a variety of
pure autoregressive, pure moving average and mixed ARMA models. Of the four criteria,
AICC selected the correct model most frequently, in 20 cases. Further, the models selected
by AICC, although often incorrect, were typically much more parsimonious than those
selected by the other criteria.
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APPENDIX

Derivation of AICC for autoregressive models
Here, we suppose that univariate time series data x o , . . . , x n _ , are available. The operating

model is that the data form a piece of a realization of a Gaussian zero-mean weakly stationary
stochastic process with autocovariance cr = E(x,x,_r) and spectral density

1 °°
f(co)=— X crexp(irw).

2.TI r - -oo

Suppose that g(o>) is an even nonnegative integrable function on [—TT, TT]. An approximation due
to Whittle (1953, p. 133) is that the corresponding log likelihood /(g) is such that

-2/(g)-nlog(277-) + - f "
277" J _ x

{log g(a>) +

where

2vn 1-0

x, cxp(-iwt)

is the periodogram. Since I(w) is an asymptotically unbiased estimator of f{<o), we have

n\oS(2ir)+~ \ {logg(w)+f(cu)/g(w)}dco.

Thus, the discrepancy function d{f, g) serves as an approximation to the Kullback-Leibler
information.

The approximating model is the order- m autoregressive model with parameters a =
(1, a i , . . . , am)T and white noise variance Pm, fitted to the data by maximum likelihood or some
other asymptotically equivalent method, e.g. least-squares or the Burg method. The resulting
approximating spectral density is

where d0 = 1, and the sum is over k = 0 , . . . , m.
We now assume that the approximating family includes the operating model. Then the process

is an AR(WJ) process which is potentially degenerate to a lower-order autoregression. Let a =
(1, a , , . . . , am)T, Pm be the solutions to the population Yule-Walker equations Rma =
( P m , 0 , . . . , 0 ) T , where

'Co

?
.c">

C\

Co

C m - l

• •• c m

. . . C m _

' " Co
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The final m entries of -Jn(a-a) are asymptotically normal iV(0, />„,#"'_,), and nPm/Pm is
asymptotically distributed as xl-m, independently of a (Brockwell & Davis, 1987, p. 254).
Assuming for the sake of mathematical tractability that these asymptotic results are exact for
finite n, and using Kolmogorov's formula (Brockwell & Davis, 1987, p. 184) as well as basic
properties of the Yule-Walker equations, we have

= E(logPm) I dkexp(itok) do>

= E(\ogPm) + E(arRma/Pm)

±{a-a)TRm{a-a)/Pm}

= £(log Pm) + nE{\/Xl-m) + -^— E{F(m, n - m)}
n-m

_ « n m n — m
= E(\ogPm) + +

= £(logPm) +

n — m—2 n — m n — m—2

n + m

n-m-2

Thus, we obtain the approximately unbiased estimator of E{d(f,f)} as

. £ , 1 + m/n

AICC = n log Pm + n — —

It follows (Shibata, 1980, p. 160) that AICC is asymptotically efficient. Note that AICC obtained
here is equivalent to the formula derived in § 2 for the regression case.
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