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We first review quasi Monte Carlo (QMC) integration for approximating integrals, which we
believe is a useful tool often overlooked by statistics researchers. We then present a manually-
adaptive extension of QMC for approximating marginal densities when the joint density is
known up to a normalization constant. Randomization and a batch-wise approach involving
(0,s)-sequences are the cornerstones of our method. By incorporating a variety of graphical
diagnostics the method allows the user to adaptively allocate points for joint density function
evaluations. Through intelligent allocation of resources to different regions of the marginal
space, the method can quickly produce reliable marginal density approximations in moderate
dimensions. We demonstrate by examples that adaptive QMC can be a viable alternative to

the Metropolis algorithm.
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1. Introduction

A common computational problem in statistics is the
calculation of marginal densities. In some cases the joint
density is too complicated to allow an analytical solution,
so we must turn to approximations. Such a situation arises
naturally in Bayesian statistics when a complicated poste-
rior density is known only up to a normalization constant.
We will address the general problem of approximating a
d > 1 dimensional marginal density of an s > d dimen-
sional non-negative density f, where f is integrable and
known up to a normalizing constant. We have two primary
goals: to introduce quasi Monte Carlo (QMC) integration
to researchers new to QMC, and to explore an adaptive
variation of QMC integration. We demonstrate by exam-
ples that adaptive QMC can be a viable alternative to the
commonly used Metropolis algorithm.

An obvious question is why do we need alternatives to
Metropolis in the first place? Metropolis is easy to imple-
ment (relying mostly on being able to evaluate the unnor-
malized joint density), and has had its share of successes.
The basic idea behind Metropolis is to create a Markov
chain with stationary distribution equal to the target dis-
tribution. Thus, once the chain is run far enough to reach
approximate stationarity, the next batch of iterations will
be an approximate (dependent) sample from the desired
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distribution. However, many serious questions persist:
How far is ‘far enough’ in order to reach stationarity? How
does one best handle the dependency between samples in a
‘sticky’ chain? How does one choose a good transition
kernel for a particular density? How does one choose a
starting value? Which is better: one long chain or several
shorter chains? Without a clear consensus on these im-
portant questions there is a strong need for alternative
methods which can serve as external checks for Metropolis.
Moreover, many Metropolis diagnostics suggested in the
literature are unintuitive, difficult to implement, or require
problem-specific code. Furthermore, Cowles and Carlin
(1996) recently reviewed thirteen convergence diagnostics
and concluded, ‘all the methods can fail to detect the sorts
of convergence failure that they were designed to identify.’
So there is clearly room for alternative methods. Leonard,
Hsu and Ritter (1994) and Tierney, Kass and Kadane
(1989) demonstrate algebraic approximations which can be
useful alternatives in some instances. Here we provide a
numeric alternative for moderate dimensions based on
QMC.

In the Bayesian framework, Shaw (1988) used quasi
Monte Carlo (QMC) methods to approximate posterior
moments and marginal density evaluations of a posterior
f. Unlike Metropolis which strives to build up samples
from those regions of the domain where f has greatest
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mass, QMC attempts in some sense to blanket the domain
of a function with an evenly spread net of points and use
function evaluations at these points to approximate the
function’s integral. The differing nature of these methods
suggests that agreement in the two results lends credibility
to the analysis. In this paper we extend the simple imple-
mentation of QMC to a scheme that allocates points for
joint density evaluations adaptively according to which
regions seem to need more evaluations. To emphasize the
adaptive nature of our QMC extension, we refer to our
method as AQMC. In addition to adaptiveness, AQMC
enables rough assessment of the accuracy of the approxi-
mations. These assessments are based on an introduction
of randomness to the QMC nets and, as suggested by Owen
(1996), utilization of a batch-wise approach based on (0, s)-
sequences.

The organization of the paper is as follows: Section 2.1
introduces regular quasi Monte Carlo integration for
readers unfamiliar with QMC. Section 2.2 is a brief de-
scription of the Metropolis algorithm for comparison. The
useful QMC sequence known as the (¢,s)-sequence is de-
fined in Section 2.3. Technical details of how to construct
such a sequence are provided in the Appendix. Section 3
develops the application of AQMC to the approximation
of marginal densities. A variety of graphical diagnostics are
proposed to help assess the quality of the approximations
as well as answer the related question of which regions
require more joint density evaluations. Section 4 demon-
strates these techniques on a Bayesian posterior density
example, comparing the results to that of Metropolis. The
limits of AQMC are also probed as we apply the method to
higher-dimension problems. Finally, a discussion of the
results is found in Section 5.

2. Quasi Monte Carlo and Metropolis

2.1. Quasi Monte Carlo

Quasi Monte Carlo methods impact a variety of topics in
statistics (see Fang and Wang, 1993), but we focus on the
application of QMC to multi-dimensional numerical inte-
gration. In this context, QMC can be viewed as a quad-
rature technique, but it distinguishes itself from other more
standard quadrature techniques because of the number
theory behind the selection of points at which to evaluate
the integrand. Such theory is beyond the scope of this
paper, but to gain some insight into how QMC works, it is
instructive to first take a quick look at Monte Carlo inte-
gration.

Let f be an integrable function on the s-dimensional unit
cube C* = [0,1]°. Let I = [, fdx. If I cannot be calculated
analytically it must be approximated. Much literature is
devoted to special quadrature techniques for numerical
solutions to this very problem (see Davis and Rabinowitz
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1984). However, the standard techniques become prohibi-
tively inefficient when s becomes large. When s is large, one
route is the Monte Carlo (MC) method. In its simplest
incarnation MC integration consists of taking a random
sample X, ..., X, from the uniform distribution on C*.
Then the approximation
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converges to I by the Law of Large Numbers. Additionally,
if f € L, then the Central Limit Theorem (CLT) guarantees
that /n(l, —I) — N(0,¢?), where convergence is in dis-
tribution and ¢? = [, (f — I)*dx. MC is simple to imple-
ment and it is viable in high dimensions since the rate of
convergence does not depend on the dimension. Also ob-
taining an estimate of the approximation error is simple
using the sample variance. On the other hand, the rate of
convergence is only of the order n2 and, since the CLT is
in terms of the probability distributions, bounds on the
error (fn — I) are given with probability statements attached
to them. Thus, the method performs well on average, but
the particular sample path that one observes may lead to a
terrible approximation. Furthermore, with an undersized
sample it is possible to get a very small estimated standard
error even when MC is far from the right answer. Hence,
many researchers are rightfully wary about using Monte
Carlo integration when high precision is demanded. There
are variance reduction methods that improve on this simple
version (see Rubinstein, 1981; Ripley, 1987), but neither
the order nor type of convergence is altered.

In moderate dimensions quasi Monte Carlo integration
succeeds on the two points where MC falters with a de-
terministic error bound at a better asymptotic rate. For
thorough details on QMC, see Niederreiter (1992) and Hua
and Wang (1981). The idea behind QMC integration is that
the uniform random vectors Xj, ..., X, in (1) are not
‘evenly spread’ enough — a term we will formally define
below. So, instead of using uniform random vectors, QMC
employs a deterministic set of points xj, ..., x, that are
spread evenly over C*. The resulting estimator is again (1),
only this time using the deterministic set xj, ..., x,. We
will refer to a set of points meeting certain criteria for being
spread evenly as a QMC net (also called a Number Theo-
retic Net, or an NT-net for short). Figure 1 compares two
sets of 25 points in the two-dimensional unit square. The
first set is of (pseudo)random uniforms like those used in
Monte Carlo integration, and the second is a QMC net
known as a (0,2,2)-net in base 5.

The discrepancy is the most common measure of even-
ness of spread for a set of points in the unit cube. Let

p={x;, j=1, ..., n} beaset of points in C*. For fixed p
define U, (y) as the function on R* given by
1 n
Un(y) = ZZ l{xiﬁy} (2)
i=1
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Fig. 1. 25 Random uniforms and a (0, 2, 2)-net in base 5.

where 1,4 is the indicator function of the set A, and {x; < y}
is understood as being with respect to component-wise
order. This is simply the empirical distribution function of
p. Then, the discrepancy of p is defined as

D(n,p) = sup |Us(y) = UQ)| 3)

where U(y) is the cumulative distribution function of a
uniform random vector on C*.

It turns out that for a wide class of functions (those of
bounded variation in the sense of Hardy and Krause,
which is a smoothness requirement on the integrand — see
Niederreiter (1978)) the absolute error of a QMC approx-
imation is bounded by a constant times the discrepancy of
the set of points used in (1). This is good news since it is
possible to construct a set of points p = {xy, ..., x,} such
that D(n, p) is order (logn)*"'/n, which is a superior as-
ymptotic rate to the n? given by Monte Carlo integration.
Moreover, the bound on the error is deterministic, not just
in probability.

Well-known methods for constructing sets of low dis-
crepancy include the good lattice point, the good point,
Halton, scrambled Halton, Haber, Hammersley, and
(t,m,s)-nets. Fang and Wang (1993) and Shaw (1988)
compare many of these methods on test functions. Our
paper makes extensive use of the (¢,m,s)-net and the as-
sociated infinite sequence. Because we can construct a
nested sequence of increasingly large sets of points such
that each set has excellent equi-distribution properties (see
Section 2.3 for a description of these properties), we are
able to adaptively allocate resources and get estimates of
approximation errors. A construction of these sequences is
found in the Appendix.

Regular QMC is inferior to Monte Carlo integration in
one important area: in QMC the approximation error is
difficult to estimate. The forementioned error bound is not
very useful since it is neither sharp nor calculable in gen-
eral. Cranley and Patterson (1976), Shaw (1988) and Owen
(1995, 1996) among others have discussed introducing
randomness into the nets in order to get estimates of the
error. By re-introducing randomness these authors have
created hybrid QMC—-Monte Carlo methods enjoying some
of the best properties of both QMC and MC. We will
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follow the lead of these ideas in assessing the quality of our
approximations.

2.2. Metropolis algorithm

A vast literature on this topic has erupted in recent years.
Since many readers are likely to be familiar with this al-
gorithm, we present only a quick recipe for implementa-
tion. For a more complete discussion see Gelman and
Rubin (1992), Chib and Greenberg (1994), Cowles and
Carlin (1996), Geyer (1992) and Tierney (1994).

According to the Metropolis algorithm, an s-dimen-
sional Markov chain is formed as follows:

1. Find a transition kernel ¢(-,-) for a symmetric Markov
Chain from which one can directly draw a sample.

2. Pick an initial value Xj.

3. Generate a candidate Y from the distribution ¢g(X;,-).

4. Calculate the ratio r=a(X;,Y) where o(x,y)=
min (%71 .

5. Set X;;; = Y with probability r, and X;;; = X; otherwise.

6. Repeat steps 3-5 N times, for some large N.

Then X, is a Markov Chain that has stationary distribution
with density f (see Tierney, 1994). Convergence to the
stationary distribution is guaranteed once the chain is
shown to be irreducible and aperiodic — conditions that are
satisfied by the usual choices for ¢(x, -). However the rate of
convergence is generally not known, and, especially with a
poor choice of transition kernel and/or starting value,
convergence could take a very long time. There appears to
be no fail-safe method for determining if a chain has
reached stationarity based on the iterations up to N (see
Gelman and Rubin (1992) and Cowles and Carlin (1996)
for discussion on this point). Standard procedure is to
discard (‘burn in’) the first ng iterations of the chain. At this
point many researchers separate the remaining N — ny it-
erations into batches and estimate the mean and variance of
the target distribution from these batches, taking care to
consider auto-correlations. In the examples that follow we
will be concerned with marginal density approximation and
will use a slightly naive treatment of considering the N — ny
iterations as i.i.d. samples from the joint distribution. Then
density estimation techniques are employed with the samples.

2.3. (t,m,s)-nets and (t,s)-sequences

In this section we define (¢,m,s)-nets and the associated
sequences. This type of QMC sequence will be instrumental
in the methods presented later, and a construction of such
sequences is provided in the Appendix. For integers s > 1
and b > 2, an elementary interval in base b is an s-dimen-
sional sub-rectangle of C* = [0,1]" of the form

g a; a,~—|—l
ey @
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where k;,a; are integers with k; > 0 and 0 < g; < b%. The
usual volume of such a rectangle is thus V(E) = 5~° where
=73, k.Let m >0 be an integer and ¢ < m be a non-
negative integer, then the set of points xy, ..., x;» from C* is
a (t,m,s)-net in base b if every elementary interval in base b
of volume b'~™ contains exactly 4" points from the set. So,
smaller values of ¢ imply that the property holds at a finer
resolution, resulting in stronger equi-distributional state-
ments. At the other extreme, taking = m makes the trivial
statement that all points in the set lie in [0, 1]*. The points in
Fig. 2 are a (0,2,2)-net in base 3. The three frames dem-
onstrate how each elementary interval of volume 372
contains exactly one point.

Finally, for an integer ¢+ > 0, an infinite sequence {x;},
of points from C° is a (t,s)-sequence in base b if for every
m >t the blocks of length ™ are (¢,m,s)-nets in base b.
Specifically, for all £ > 0 and m > ¢ the set of »™ points
Xkpmils -+ X(kypm 18 @ (¢,m,s)-net in base b. The useful
property of (z,s)-sequences is that we do not need to
specify the size of the net ahead of time, yet each finite
subsequence of points up to the »”-th point will have the
strong equi-distributional properties of a (¢,m,s)-net,
m=1,2,....Itis for precisely this reason (and the ease of
construction) that we use (z,s)-sequences in the sequel.
However, other QMC sequences possessing this important
property could be substituted.

3. Approximating marginal densities

In this section we propose a method of adaptively ap-
proximating marginal densities using (0, s)-sequences. We

Fig. 2. The elementary intervals for a (0, 2, 2)-net in base 3.
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begin by reviewing a simple version of QMC and gradually
enhance this to full AQMC, which incrementally allocates
points in a (0,s)-sequence for density evaluations, where
the number and location of points is determined adaptively
according to the specific problem. Diagnostics for guiding
the adaptive allocation and estimating the approximation
error are an integral part of AQMC. We want to approx-
imate a particular dj-dimensional marginal density of an
s-dimensional random variable having density f, where
1 <d) <s. Also, f =g/c where the normalization con-
stant ¢ is possibly unknown. Without loss of generality,
take the marginal space, denoted by 77, as the first d; co-
ordinates of R°. The orthogonal complement 75 is therefore
spanned by the last d» =s —d; coordinates of R®. Let
x = (x1,...,x,) represent a point in s-dimensional space.
Then the marginal density is

le(Xh...,xdl) = f(x) dxd1+l dxs
T

:%/T g(x) dxg -+ dxg (5)
:%ng(xl,...,Xd]). (6)

If we assume for now that the domain of f is in a known
s-dimensional rectangle with finite volume, then changing
variables enables us to consider only f with domain equal
to the unit s-cube.

In non-adaptive QMC n density evaluations are made at
each of m points in the marginal space, where n>m are
fixed. To implement, create a d;-dimensional QMC net N,
(which we refer to as the main net) of m points, and a d;-
dimensional QMC net N, (the auxiliary net) of n points.
Then, for each point x = (xj,...,x4) € N approximate
gr, (x) by

9 () = -3 gl ) )
i=1

where y; = (i, - - -, Via,) 18 the ith point in the auxiliary net.
Appealing to (1) the normalization constant can be ap-
proximated by

o= gn(x) (8)
=1

If dy =1 and the marginal density is known to be some-
what smooth, then a specialized quadrature technique such
as Simpson’s rule could be used to improve on (8). If ¢ is
known, it can be combined with (7) into (6) to approximate
S, (x). Otherwise, ¢ is substituted for c. In the case that ¢ is
known, the absolute error |¢c — ¢| and corresponding rela-
tive error can be used to help assess the quality of the
approximations. This is essentially the QMC method de-
scribed by Shaw (1988), among others.
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Example. We illustrate regular QMC by example with a
bimodal multivariate Gaussian. We will revisit this exam-
ple later as we develop full AQMC. Let I be the 4-dimen-
sional identity matrix, and let J be the 4-dimensional vector
of ones. We consider the mixture of two s = 4-dimensional
Gaussians with means y; = 0 and y, = 4J and covariance
matrices X£; =1, and X; = 0.25I. Take the mixing proba-
bility to be 0.5 on each of the two modes. We approximate
the d; = 1-dimensional density of the first coordinate. To
proceed, the function is truncated outside of [—4,6]* and
transformed into the unit cube. The two panels of Fig. 3
show the resulting density approximations for two choices
of (m,n). Solid lines indicate the true marginal density
which was calculated analytically. Clearly, both sets of
approximations are very close to the truth. In each case, the
usually unavailable relative error |¢ — ¢|/c is less than 1% .
Each set of computations took only a few seconds on a
Sparc 20.

3.1. Assessing quality of marginal approximations

Here we introduce diagnostics for assessing the quality of
QMC approximations. Shaw (1988), who was interested in
posterior moments, describes using complete replication
based on independent random origin shifts on the QMC nets
to assess variability. In other words, he takes a d-dimen-
sional QMC net, M;, and forms » — 1 new nets M, ..., M,
where M/ = {(x1 + Ulj, coayXg T+ Udj) : (xl, Ce. ,xd) € Ml}
where the Us are independent standard uniform and the
addition is modulus one. Using each net individually he gets
r independent approximations for the posterior moment,
which he then uses to assess variability. Although natural
and easy to implement, this is computationally prohibitive if
the net sizeis at all large. However, in the context of marginal
density approximation one can proceed without resorting to
complete replication provided the marginal density is fairly
smooth and the main net is not too sparse. Specifically, one
uses independent random origin-shifted auxiliary nets for
each point in the main net. One then simply compares the
approximations at neighbouring points in ~;. Wild fluctu-
ations between neighbouring approximations suggest that

density
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the approximations are poor and indicates the need for in-
creasing the size of the auxiliary net. In essence, this diag-
nostic assumes smoothness of the marginal density in order
to use neighbouring approximations as a proxy for complete
replication.

Next we present a diagnostic based on a non-replicated
run which was suggested by Owen (1996). Unlike the
random origin shifts, this diagnostic does not require the
assumption of smoothness on fr,. We partition the evalu-
ations into batches of ‘pseudo-replicates’ and examine the
variability between approximations based on the batches.
We work with the approximated g7, instead of the f7,
which have an extra component of variability from ¢ when
c is unknown. Suppose n = kb’ for some integers k > 2 and
j > 1. From Section 2.3 we know each of the k batches of &/
points is a (0, j, d»)-net in base b. For each x € N| one can
thus approximate gr, (x) separately based on each of the
k sub-nets. For fixed x, call these approximations ¢,
[ =1,... k. If these batches were true independent repli-
cates, then

k
) =1 > (01— 97 ©)

=1
would be an estimate for the variance of g, which is the
approximation based on all n evaluations. Then, /¥, (x)
can be compared with ¢ (or ¢) to assess convergence.
However, these are not true independent replicates since N,
has such structure. But (9) can still be used as a rough
estimate for variability. Owen (1996) discusses some con-
ditions on f for which (9) is conservative. Since the batch
approximations are not independent, the choice of £ and j
makes a difference, and in our experience smaller values of
k seem to lead to better approximations of variability. If
d; < 2 aplot of \/V,(x) versus x is possible. We will refer to
such a plot as an SD plot.

Example (continued). We continue the multivariate
Gaussian example with m = 40 and » = 1000 and imple-
ment the 40 independent random origin shifts of the aux-
iliary net. We form batch variances ¥,(x) using j =15,
resulting in k = 4 full batches of 3° = 243 points each.

density
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Fig. 3. OMC Approximations: (m, n)= (20, 8000) and (m, n)= (40, 4000). Approximated marginal density evaluations are connected by

straight lines. Solid lines show truth.
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Fig. 4. QM C approximation and SD plot for (m, n) = (40, 1000)
with random origin shifts.

Figure 4 shows the approximated marginal density evalu-
ations and the SD plot.

Since Normality promises smooth marginal densities, the
jagged lines connecting the approximations indicate that
1000 evaluations is not sufficient for points under the sec-
ond mode. The large within batch SD’s relative to ¢ for
these points adds support for the need for more points.
Here the relative error is over 9%. In contrast, Fig. 5 dis-
plays similar plots for m = 40 and » = 4000, which are the
same values used to form the right panel of Fig. 3.

3.2. Adaptive nets

In this section we make QMC adaptive in three ways.
First, the size of the auxiliary net can be increased if the
diagnostics suggest that approximation errors for the
marginal density evaluations are unacceptably large.
Second, the auxiliary net can vary in length from point to
point in the marginal space. Thus, marginal evaluations
that are easy to approximate need not consume as much
computing time as those that are more difficult to
approximate. Third, the main net can adapt to the needs of
the problem by becoming more concentrated in those
regions of the marginal space where the marginal density
seems to be highly variable. We hope to capture important
features of the marginal density without resorting to an
increase in the concentration of the main net throughout
the entire marginal space. We go through these steps in
order.

1. Size of auxiliary net. We grow the auxiliary net in
stages by taking increasingly large segments of a (0,d,)-
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sequence. After the jth step, letting #; denote the size of the
auxiliary net, one examines the diagnostics from Sec-
tion 3.1. By proceeding in steps, other useful diagnostics
can be carried out. One can plot ¢; versus n; for
i=1, ..., j,where ¢; is the estimate for c after the ith step.
This plot will be referred to as the normalization constant
plot. Achieving a plateau in the normalization constant
plot is a necessary condition for convergence. However,
care must be taken since the aggregate nature of the ¢s
means that ¢; will not change much if n; —n;_; is small
relative to n;_;. If dy <2 then one can also plot the mar-
ginal approximations after steps j and j — 1 on the same
axes. Lack of agreement establishes the need for more
evaluations. The same warnings as with the normalization
constant plot apply. Based on the results of the diagnostics,
one decides if the number of points in the auxiliary net
should be increased.

2. Focusing resources. After the jth step, the diagnostics
may indicate regions of the marginal space for which g, is
well approximated, while other regions require more eval-
uations. One does not want to waste evaluations on the
former of these regions. So, we ‘turn off’ these points,
skipping over them when doing more evaluations at the
rest of the points in the main net.

3. Concentration of the main net. Separate from the issue
of whether or not gr is well approximated for individual
points in main net is whether or not the main net N is
sufficiently dense. Indeed, even if one knew gz, (x) exactly
for all x € Ny, it is possible that the main net is too sparse to
capture important features of the underlying marginal
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Fig. 5. QM C approximation and SD plot for (m, n)= (40, 4000)
with random origin shifts.
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density. One can never be completely certain that the main
net is sufficiently dense for an unknown f, but there are
diagnostics capable of suggesting when resolution is in-
sufficient in a region. For example, if the marginal density
is known to be smooth, then neighbouring estimates which
do not change as n increases yet remain far apart from each
other suggest the need for increased concentration in that
neighbourhood. This manifests itself in the marginal den-
sity estimate appearing highly piecewise linear rather than
smooth.

If the main net seems sparse in a region, we add points.
First we turn back on points that were turned off during a
previous step. If necessary we then add brand new points,
although doing so in such a way as to maintain high local
equi-distribution is no trivial task in more than one or
two dimensions. But this is not a major problem since
adding points to sub-regions destroys global equi-distri-
bution and invalidates using (8) to approximate c. So, al-
ternative quadrature methods allowing non-equally spaced
points must used. This is not a problem provided d; is
small.

Next, although many problems come with information
about the support of f, the assumption that the domain of
f lies in a known rectangle rarely holds. We proceed by
guessing the support of f and acting as if it were the truth.
Any guess should be spot checked by investigating f at
points outside of the rectangle. This is quite an ad hoc
approach, but it is a similar blend of art, science, and un-
derstanding of the physical problem behind the data that is
used by Metropolis practitioners for finding starting values
and transition kernels. The main net can be adapted, so the
guess is less important in the corresponding coordinates.
However, in the complement space too large a rectangle
makes more evaluations necessary whereas too small a
rectangle means we are missing support of the joint density.
Clearly, estimating the wrong quantity is the greater evil,
therefore the rectangle should be chosen somewhat con-
servatively. We do not pursue this here, but Fang and
Wang (1993) discuss methods for generating QMC nets on
non-rectangular regions, which may be more natural in
some problems.

density
00 0.1 02 03

-4 -2 0 2 4 6

223

Example (continued). We now demonstrate a full AQMC
treatment of our multivariate Gaussian example. We start
with m = 40 points in the main net and an initial batch of
ng = 1000 points in the auxiliary net. The first batch results
in Fig. 4 as previously discussed. Based on the diagnostics,
we ‘turn off’ the points under the first mode and increase
the auxiliary net in steps of 1000 points. After six more
batches, we end up with the marginal density approxima-
tion shown in the left panel of Fig. 6. The diagnostics (not
all shown here) suggest that the approximations are close
to the truth. In fact our relative error is about 1%. We note
that since over half of the points in the main net only
required 1000 evaluations each, the total number of eval-
uations is less than that required in Fig. 5, yet the accuracy
is comparable. This demonstrates the advantage of adap-
tiveness.

For comparison, we also used Metropolis to approxi-
mate the same marginal density. A multivariate Gaussian
transition kernel was used with covariance KI. Four sep-
arate chains were run with K taken as 0.5, 1, 2, and 4.
Starting values for the four runs were picked independently
from a uniform distribution over the set used as support
for the AQMC treatment. In each case the first 10 000
iterations were burned off and the remaining 75 000 were
retained as the °‘sample’. Density estimation using a
Gaussian kernel was then applied to the samples to esti-
mate the marginal density of the first coordinate. The re-
sults are found in Fig. 7. The variation between estimates
demonstrates that the choice of transition kernel can have
enormous impact on the results. Even the best of the four
kernels explored here led to an unsatisfactory approxima-
tion when compared with the AQMC approximation. Also,
there is extra variability introduced by density estimation
when using any sampling based method.

4. Examples
The following (as well as the previous) AQMC examples

were carried out using routines written in C by the authors.
An interface with S-plus was used to create the graphics

estimated norm. const.
0.90 0.951.001.05 1.10

1000 2000 3000 4000 5000 6000 7000
evaluations

Fig. 6. AQMC approximation and normalization constant plot. The approximations forming the first mode are based on 1000 evaluations,

while those for the second are based on 7000 evaluations.
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Fig. 7. Metropolis approximations for a variety of transition kernels. The transition kernel is Gaussian with covariance K times the identity
matrix. The first 10 000 iterations are burned off and the next 75 000 iterations form the sample. Density estimation used on samples to form

dotted lines. The solid line is truth.

and handle some of the small details. The functions apply
the methods of the previous sections to the case of a one-
dimensional marginal distribution. We are currently
working towards making these functions available through
Statlib.

4.1. Bayesian posterior density

Similar to the Metropolis—Hastings example of Chib and
Greenberg (1995), we illustrate AQMC on a Bayesian
analysis of an AR(2) model where our prior distribution is
uniform over the region in which the series is stationary. In
this situation the posterior distribution is intractable, but
by focusing evaluations in the important areas AQMC
quickly and accurately approximates the posterior mar-
ginal densities of the model parameters.

To begin with we simulated 100 observations from the
model

yt:(x]yt_] +OC2yt_2+Et, = 1,2,...,100, (10)
with o) =1, 2y = —0.5, ¢> =1, and ¢ iid N(0,0?). For
stationarity, 0 = (a1, ) must lie in the region S where
(11)

Following Box and Jenkins (1976), the likelihood function
for this model given the n = 100 observations (y,...,¥,) is

10,6%) = ¥(0,6%) x (¢*) /2 (12)

S={(xy)eR :x+y<lj—x+y<lLiy>-1}h

1 n
X €xp *27622()« — (-1, %5-2)0)°
s=3

where
_ 1
¥(0,0%) = ()" |V exp —2(72()’1,}/2)’/10’1,)’2)/}
(13)
is the density of (y1,)»), and
1 — o —oy (1 + o)
vol= (14)
—OC](l + 062) 1— 0622

To do a Bayesian analysis where the prior is uniform on
S, the posterior density is proportional to g(«,u,d?)
= 1(0, 0'2)1{963}. We use AQMC to approximate the mar-
ginal density for each of the three parameters separately.
This is a particularly nice example for AQMC since the
support of the first two coordinates of the posterior is
known to lie in S. This suggests first approximating the
marginal density of ¢?, making use of the restrictions on 0
to ‘guess’ the support of f. Then, once the marginal of ¢? is
approximated, we incorporate this information to guess the
rectangle for approximating the marginal density of «;.
Finally, we repeat this for a;.

The solid lines in Fig. 8 show the AQMC marginal
density approximation for each parameter. In each case
m = 20 was the initial size of the main net and steps of 1000
evaluations in the auxiliary net were used. For each pa-
rameter, the adaptive techniques quickly indicated where
more evaluations were needed, and just as important-
ly, where additional evaluations were not needed. The
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approximation for ¢> was done first, and it used up to
10 000 evaluations at each point in order for all of the
diagnostics to be satisfied. Using the results on ¢° to nar-
row the domain of f, the approximation for o required at
most only 6000 evaluations. Similarly, o, required at most
2000 evaluations per point. In each case, additional points
were added to the main net in active regions of the support
in order to improve the picture of the marginal density.
Judging by Fig. 8, the AQMC density approximations are
centred on the true values of the parameters that generated
the data. We note that it was necessary to scale up the
unnormalized joint density in order to maintain numerical
stability.

The dashed lines in Fig. 8 display the marginal density
approximations based on a run of the Metropolis algo-
rithm. A tri-variate normal jumping kernel was used with
covariance 0.051. An initial 5000 iterations were burned off,
and 10 000 more iterations of the chain were executed to
form the Metropolis sample. As is often the case, this is
quite a bit fewer overall joint density evaluations than was
necessary for AQMC. It should be noted however, that
four chains were run examining the proportion of transi-
tions (see Gelman et al., 1995) before the value of 0.05 was
finally accepted. Similar to before, kernel density estima-
tion was used to estimate the marginal densities based on
the respective coordinate of the Metropolis sample. Fig-
ure 8 shows that Metropolis and AQMC give very similar
results.

density
2 3 4

1

0

density
0.0051.01.52.025

0.5

1.0
sigma sqrd

1.5 2.0
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4.2. Some results in higher dimensions

QMC must saturate a region with points in order to pro-
duce an accurate approximation. Since such saturation gets
exponentially more difficult as dimension increases, there
comes a point when QMC and AQMC are no longer fea-
sible. Exactly how high a dimension can be handled
depends on the particular f. For example, the one-di-
mensional marginal density of a unimodal, 10-dimensional
Gaussian with identity covariance matrix was well ap-
proximated in less than 200 000 total joint density evalu-
ations by AQMC (see Fig. 10). However, a bi-modal
Gaussian as in our earlier 4-dimensional example was
prohibitively difficult in only 8 dimensions. In particular,
after about 5 million joint density evaluations, the diag-
nostics still indicate the need for more points. Figure 9
shows the AQMC approximations at this point.

Figure 10 shows discretized L; and supremum norm
distances between approximations and truth for AQMC
(solid) and Metropolis (dashed) as a function of joint
density evaluations for the 10-dimensional Gaussian ex-
ample of the previous paragraph. The well-tuned Met-
ropolis chain was burned in 20 000 evaluations accounting
for the right shift of the dotted line. Clearly, AQMC needs
more evaluations to get started than Metropolis. But once
the region starts to get saturated relative to the variability
of f, AQMC appears just as accurate (in the L; and sup
norm sense) as Metropolis. When using less well-tuned
Metropolis chains, AQMC can eventually eclipse Met-

density
2 3 4

0

-1.0 -08 -06 -04 -02 0.0

alpha2

Fig. 8. AQMC (solid) and Metropolis (dashed) approximations to marginal posterior densities in AR(2) model. For Metropolis: 5000
iterations burned, then density estimation done on next 10 000 iterations. Transition kernel is Gaussian with covariance 0.05 times identity
matrix. For AQMC: (m, n)=(20, 1000) initially. Active points received 10 000, 6000, and 2000 evaluations respectively for a2, oy, and oy.
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Fig. 9. 8-dimensional Gaussian mixture of the same form as the
example in Section 3 (only with the modes a bit closer together).
Solid line is truth. Note poor performance of AQMC despite nearly
5 million joint density evaluations in total.

ropolis over the range of evaluations examined. In more
difficult examples, such as that of Fig. 9, the point of sat-
uration comes too late for AQMC to be of practical use.
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5. Discussion

In this section we discuss some of the strengths and
weaknesses of AQMC and Metropolis. Our view is that
AQMC (and QMC in general) is worth consideration in a
variety of situations. However, there are situations where
QMC-based methods are of less value. First, if the di-
mension s of the space is large, or the estimated domain of
f has too much volume relative to the variation of f, then
saturation with points can be computationally prohibitive.
How large is ‘too large’ depends on the particular f and
how much computational muscle one has. Our examples
show that a unimodal Gaussian with s = 10 was handled
painlessly by AQMC, but more challenging bi-modal in-
vestigations suggest that AQMC is too slow for such an f
around s = 8. Also, if marginal densities for several func-
tions of the underlying random variable are desired, Met-
ropolis handles this easily given a quality single sample
from the marginal distribution. However, QMC requires
analytical work to express the new marginal density in
terms of the old or possibly even a brand new QMC cal-
culation. A further strength of Metropolis was hinted at in
the AR(2) example. If there is more than one margin of
interest, QMC requires that each margin be treated sepa-
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Fig. 10. Marginal density approximations for 10-dimensional standard Normal. L, distances between approximations and truth as a function
of joint density evaluations. Solid lines are for AQMC, dashed for Metropolis.
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rately, whereas Metropolis can simply examine the differ-
ent margins of a single sample. In our example, three
margins is not enough to cause major problems, especially
since the marginal densities become successively easier to
approximate.

For problems that do not fall into any of the categories
listed in the previous paragraph, AQMC has several
strengths. As our examples show AQMC can be very ac-
curate. And by adaptively allocating resources AQMC can
be computationally competitive with Metropolis. Further,
approximating marginal densities with AQMC does not
require any density estimation. In addition to being an-
other source of subjectivity, density estimation can add
substantial computational costs — especially if several bin-
widths or smoothing kernels are explored. Also, we agree
with Cowles and Carlin (1996) who report (p. 902), ‘many
of the MCMC diagnostics proposed in the statistical lit-
erature to date are fairly difficult to use, requiring problem-
specific coding and perhaps analytical work.” Such diffi-
culty opens the door that much wider for human error. We
believe that faulty computer code does not get nearly the
credit it deserves for spoiling analyses. The possibility of
coding error exists in AQMC too, but the differing ap-
proaches of AQMC and Metropolis ensure that beyond the
joint density evaluations, no single bug can invalidate both
results. Moreover, the simple intuition of adding more
points where more points seem necessary means that
complicated problem-specific code need not be written to
use AQMC. In fact, we used the exact same code (aside
from joint density evaluations, of course) for all the ex-
amples given.

Finally, we have mentioned the lack of consensus in
applying Metropolis in terms of choosing the transition
kernel, burn length, run length, number of chains, etc. and
Fig. 7 demonstrates the importance of these decisions. Of
course, similar complaints can be made of AQMC. There
are no free lunches, and AQMC pays in having to guess the
approximate support of the joint density and having to
know when enough points have been laid down. But
knowing the approximate support of the joint density re-
quires a different sort of knowledge than knowing what is a
good transition kernel for a particular joint density. The
fact that these types of knowledge are different makes
AQMC an excellent check for the results of Metropolis and
vice versa. And in problems such as our AR(2) example
where partial or complete knowledge of the support of f is
available a priori, AQMC involves less guesswork or fine
tuning to implement.

6. Conclusion
Our experience with AQMC for approximating marginal

densities suggests that AQMC is highly accurate and
computationally competitive with Metropolis when the
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overall dimension is modest and both the number and di-
mension of marginal distributions of interest are small.
Furthermore, AQMC can be particularly effective if in-
formation about the support of the joint distribution is
available, as in the case of our AR(2) example. Most im-
portantly, once routines for generating points from (0, s)-
sequences are written, AQMC is straightforward and in-
tuitive to implement, and the batch-wise approach provides
a variety of useful diagnostics that are suggestive of the
magnitude of the approximation errors. Finally, by al-
lowing the researcher to focus computational resources
where needed, AQMC is able to handle problems beyond
the computational feasibility limits of regular QMC.

In the hands of an experienced practitioner who has
years of iterative sampling experience upon which to draw,
we do not doubt that Metropolis and Metropolis—Hastings
are powerful tools for exploring marginal distributions in a
wide class of problems. And it is also true that for high-
dimensional problems there is often no substitute for the
iterative sampling methods. However, for the non-expert
working in modest dimensions with only a few parameters
of interest, AQMC is an excellent alternative to Metropolis
— both as an independent check for results from a ‘black
box’ implementation of Metropolis and as an easy-to-use,
viable method in its own right. Furthermore, in moderate
dimensions where the support of the joint density is well
known, the intuitive AQMC may be preferable over a
Metropolis that requires complicated fine tuning.
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Appendix

Construction of (0,s)-sequences for prime bases

Here we show how to construct points from a (0,s)-
sequence in base b. This construction was introduced by
Faure and requires that » > 2 is prime and the dimension
satisfies s < b. We note that constructions for many non-
prime bases are available. Here we simply outline the steps
and refer interested readers to Niederreiter (1992) for
thorough details. Our notation and development draw
heavily from chapter four of Niederreiter (1992).

Forn=1,2,..., first find the base b expansion of n — 1.
That is find integers a; € {0,...,b — 1} such that

my

n—1=>Y ab". (15)
r=0

Here, m, is just the number of digits necessary to express
n—1in base b. For 1 <i<s, and 1 <j < m, define

i) = (Z c,»r<z'>ar> mod b, (16)
r=0

where

Cir(i) =0

_(_r 1)(1’—1)"_-"Jrl for j—1<r<m,
=

for0<r<j-—1

and 0° is taken to be 1 by convention. Then, the nth point
of a (0,s)-sequence in base b is given by x, = (x,gl), . ,x,(f))
where

XD = Z Vg ()b (17)
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