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Building and expanding on principles of statistics, machine learn-
ing, and scientific inquiry, we propose the predictability, com-
putability, and stability (PCS) framework for veridical data science.
Our framework, composed of both a workflow and documen-
tation, aims to provide responsible, reliable, reproducible, and
transparent results across the data science life cycle. The PCS
workflow uses predictability as a reality check and considers the
importance of computation in data collection/storage and algo-
rithm design. It augments predictability and computability with
an overarching stability principle. Stability expands on statistical
uncertainty considerations to assess how human judgment calls
impact data results through data and model/algorithm perturba-
tions. As part of the PCS workflow, we develop PCS inference
procedures, namely PCS perturbation intervals and PCS hypoth-
esis testing, to investigate the stability of data results relative
to problem formulation, data cleaning, modeling decisions, and
interpretations. We illustrate PCS inference through neuroscience
and genomics projects of our own and others. Moreover, we
demonstrate its favorable performance over existing methods in
terms of receiver operating characteristic (ROC) curves in high-
dimensional, sparse linear model simulations, including a wide
range of misspecified models. Finally, we propose PCS documen-
tation based on R Markdown or Jupyter Notebook, with publicly
available, reproducible codes and narratives to back up human
choices made throughout an analysis. The PCS workflow and doc-
umentation are demonstrated in a genomics case study available
on Zenodo.

stability | prediction | computation | data science

Data science is a field of evidence seeking that combines data
with domain information to generate new knowledge. The

data science life cycle (DSLC) begins with a domain question or
problem and proceeds through collecting, managing, processing
(cleaning), exploring, modeling, and interpreting† data results to
guide new actions (Fig. 1). Given the transdisciplinary nature
of this process, data science requires human involvement from
those who collectively understand both the domain and tools
used to collect, process, and model data. These individuals make
implicit and explicit judgment calls throughout the DSLC. The
limited transparency in reporting such judgment calls has blurred
the evidence for many analyses, resulting in more false discov-
eries than might otherwise occur (2, 3). This fundamental issue
necessitates veridical data science, that is, principled inquiry to
extract reliable and reproducible information from data, with
an enriched technical language to communicate and evaluate
empirical evidence in the context of human decisions and domain
knowledge. Three core principles, predictability, computability,
and stability (PCS), provide the foundation for such a data-
driven language and a unified data analysis framework. They
serve as minimum requirements for veridical data science‡.

Many ideas embedded in PCS have been widely used across
various areas of data science. Predictability plays a central
role in science through Popperian falsifiability (4). If a model
does not accurately predict new observations, it can be rejected
or updated. Predictability has been adopted by the machine-

learning community as a goal of its own right and more generally
to evaluate the quality of a model or data result (5). While
statistics have always considered prediction, machine learning
emphasized its importance for empirical rigor. This was in large
part powered by computational advances that made it possible
to compare models through cross-validation (CV), developed by
statisticians Stone (6) and Allen (7).

The role of computation extends beyond prediction, setting
limitations on how data can be collected, stored, and analyzed.
Computability has played an integral role in computer science
tracing back to Alan Turing’s seminal work on the computabil-
ity of sequences (8). Analyses of computational complexity have
since been used to evaluate the tractability of machine-learning
algorithms (9). Kolmogorov built on Turing’s work through the
notion of Kolmogorov complexity, which describes the mini-
mum computational resources required to represent an object
(10, 11). Since Turing machine-based notions of computabiltiy
are not computable in practice, we treat computability as an
issue of algorithm efficiency and scalability. This narrow defi-
nition of computability addresses computational considerations
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at the modeling stage of the DSLC but does not deal with data
collection, storage, or cleaning.

Stability§ is a common-sense principle and a prerequisite for
knowledge. It is related to the notion of scientific reproducibil-
ity, which Fisher (12) and Popper (4) argued is a necessary
condition for establishing scientific results. While replicability
across laboratories has long been an important consideration
in science, computational reproducibility has come to play an
important role in data science as well. For example, ref. 13 dis-
cusses reproducible research in the context of computational
harmonic analysis. More broadly, ref. 14) advocates for “pre-
producibility” to explicitly detail all steps along the DSLC and
ensure sufficient information for quality control. Stability at the
modeling stage of the DSLC has been advocated in ref. 15 as
a minimum requirement for reproducibility and interpretabil-
ity. Modeling stage stability unifies numerous previous works,
including Jackknife, subsampling, bootstrap sampling, robust
statistics, semiparametric statistics, and Bayesian sensitivity anal-
ysis (ref. 15 and references therein). These methods have been
enabled in practice through computational advances and allow
researchers to investigate the reproducibility of data results.
Econometric models with partial identification (ref. 16 and ref-
erences therein) and fundamental theoretical results in statistics,
such as the central limit theorem (CLT), can also be viewed as
stability considerations.

In this paper, we unify and expand on these ideas through
the PCS framework. Our framework, which consists of the
PCS workflow and transparent PCS documentation, uses pre-
dictability as a reality check, computability to ensure results are
tractable, and stability to test the reproducibility of results rel-
ative to human decisions (PCS Principles in the DSLC). The
PCS workflow may be broadly interpreted as the practice of
incorporating these three principles into each step of the DSLC
(Fig. 1). We detail this workflow at the modeling stage through
basic PCS inference (PCS Inference through Perturbation Analy-
sis), which can be extended to other steps in the DSLC (Stability
Assumptions Initiate the DSLC) through data and model pertur-
bations. PCS documentation justifies decisions made throughout
the DSLC in R MarkDown or a Jupyter (iPython) Notebook
using narratives, code, and visualizations (PCS Documentation).
We draw connections between causal inference and the PCS
framework, demonstrating the utility of the latter for generating
scientific hypotheses (PCS Recommendation System for Scien-
tific Hypothesis Generation). We conclude by discussing areas
for further work, including additional vetting of the framework
and theoretical analyses on connections between the three prin-
ciples. A case study of our framework based on the authors’
work studying gene regulation in Drosophila is documented on
Zenodo.

PCS Principles in the DSLC
Given a domain problem and data, the purpose of the DSLC
is to generate knowledge, conclusions, and actions (Fig. 1). The
PCS framework aims at veridical data science through the three
fundamental principles. Below we discuss the roles of these three
principles, organizing our discussion with respect to the steps in
the DSLC.

Stability Assumptions Initiate the DSLC. The ultimate goal of the
DSLC is to generate knowledge that is useful for future actions,
be it a biological experiment, a business decision, or govern-

§We differentiate between the notions of stability and robustness as used in statistics.
The latter has traditionally been used to investigate performance of statistical meth-
ods across a range of distributions, while the former captures a much broader range of
perturbations throughout the DSLC as discussed in this paper. At a high level, stability
is about robustness.

Domain 
question Data collection Data cleaning

Exploration &
visualization

Modeling
Post hoc
analysis

Interpretation
of results

Update domain
knowledge

Fig. 1. The data science life cycle. The PCS workflow considers predictabil-
ity, computability, and stability at every step, with a strong emphasis
on stability.

ment policy. Stability is a useful concept to address whether
another researcher making alternative, appropriate¶ decisions
would obtain similar conclusions. At the modeling stage, sta-
bility has previously been advocated in ref. 15. In this context,
stability refers to acceptable consistency of a data result relative
to appropriate perturbations of the data or model. For exam-
ple, jackknife (17–19), bootstrap (20), and cross-validation (6,
7) may be considered appropriate perturbations if the data are
deemed approximately independent and identically distributed
(i.i.d.) based on domain knowledge and an understanding of the
data collection process.

Human judgment calls prior to modeling also impact data
results. The validity of an analysis relies on implicit stability
assumptions that allow data to be treated as an informative rep-
resentation of some natural phenomena. When these assump-
tions do not hold, conclusions rarely generalize to new settings
unless empirically proved by future data. This makes stability
assessments essential to guard against costly future actions and
false discoveries, particularly in science, business, and public pol-
icy, where data results are used to guide large-scale actions,
and in medicine, where human lives are at stake. Below we
outline stability considerations that impact the DSLC prior to
modeling.
Question or problem formulation. The DSLC begins with a
domain problem or a question, which could be hypothesis driven
or discovery based. For instance, a biologist may want to discover
biomolecules that regulate a gene’s expression. In the DSLC this
question must be translated into a question regarding the output
of a model or analysis of data that can be measured/collected.
There are often multiple translations of a domain problem into
a data science problem. For example, the biologist described
above could measure factors binding regulatory regions of the
DNA that are associated with the gene of interest. Alterna-
tively, the biologist could study how the gene covaries with
regulatory factors across time and space. From a modeling per-
spective, the biologist could identify important features in a
random forest or through logistic regression. Stability relative
to question or problem formulation implies that the domain
conclusions are qualitatively consistent across these different
translations.
Data collection. To answer a domain question, domain experts
and data scientists collect data based on prior knowledge and
available resources. When these data are used to guide future
decisions, researchers implicitly assume that the data are rele-
vant to a future time. In other words, they assume that conditions
affecting data collection are stable, at least relative to some
aspects of the data. For instance, if multiple laboratories collect
data to answer a domain question, protocols must be comparable
across experiments and laboratories if they expect to obtain con-
sistent results. These stability considerations are closely related

¶We use the term appropriate to mean well justified from domain knowledge and an
understanding of the data-generating process. The term “reasonable” has also been
used with this definition (15).
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to external validity in medical research, which characterizes sim-
ilarities between subjects in a study and subjects that researchers
hope to generalize results to. We discuss this idea more in
Predictability as Reality Check.
Data cleaning and preprocessing. Statistics and machine-learning
models or algorithms help data scientists answer domain ques-
tions. Using models or algorithms requires cleaning (prepro-
cessing) raw data into a suitable format, be it a categorical
demographic feature or continuous measurements of biomarker
concentrations. For instance, when data come from multiple lab-
oratories, biologists must decide how to normalize individual
measurements (for example, see ref. 21). When data scientists
preprocess data, they are implicitly assuming that their choices
do not unintentionally bias essential information in the raw
data. In other words, they assume that the knowledge derived
from data is stable with respect to their processing choices. If
such an assumption cannot be justified, they should use multi-
ple appropriate processing methods and interpret results that
are stable across these methods. Others have advocated eval-
uating results across alternatively processed datasets under the
name “multiverse analysis” (22). Although the stability principle
was developed independently of this work, it naturally leads to a
multiverse-style analysis.
Exploratory data analysis. Both before the modeling stage and
in post hoc analyses, data scientists engage in exploratory data
analysis (EDA) to identify interesting relationships in the data
and interpret results. When visualizations or summaries are used
to communicate these analyses, it is implicitly assumed that the
relationships or results are stable with respect to any decisions
made by the data scientist. For example, if the biologist believes
that clusters in a heatmap are biologically meaningful, the biol-
ogist should expect to observe the same clusters with respect to
any appropriate choice of distance metric, data perturbation, or
clustering method.

Predictability as Reality Check# . After data collection, clean-
ing/preprocessing, and EDA, models or algorithms‖ are often
used to identify more complex relationships in data. Many essen-
tial components of the modeling stage rely on the language of
mathematics, both in technical papers and in code. A seemingly
obvious but often ignored question is why conclusions presented
in the language of mathematics depict external reality and to
what extent we should trust mathematical conclusions to impact
this external reality.††

This concern has been articulated and addressed by many oth-
ers in terms of prediction. For instance, Philip Dawid (23) drew
connections between statistical inference and prediction under
the name “prequential statistics,” highlighting the importance of
forecasts in statistical analyses. David Freedman (24) argued that
when a model’s predictions are not tested against reality, con-
clusions drawn from the model are unreliable. Seymour Geisser
(25) advocated that statistical analyses should focus on predic-
tion rather than parametric inference, particularly in cases where
the statistical model is an inappropriate description of reality.
Leo Breiman et al. (5) championed the essential role of pre-
diction in developing realistic models that yield sound scientific
conclusions. It can even be argued that the goal of most domain
problems is prediction at the metalevel. That is, the primary
value of learning relationships in data is often to predict some
aspect of future reality.

#Predictability is a form of empirical validation. Other reality checks may be performed
beyond prediction (e.g., checking whether a model recovers known phenomena).

‖Different model or algorithm choices could correspond to different translations of a
domain problem.

††The PCS documentation in PCS Documentation helps users assess whether this
connection is reliable.

Formulating prediction. We describe a general framework for
prediction with data D = (x, y), where x∈X represents input
features and y ∈Y the prediction target. Prediction targets y ∈
Y may be observed responses (e.g., supervised learning) or
extracted from data (e.g., unsupervised learning). Predictive
accuracy is a simple, quantitative metric to evaluate how well a
model represents relationships in D . It is well defined relative to
a prediction function, testing data, and an evaluation metric. We
detail each of these elements below.

Prediction function. The prediction function

h :X →Y [1]

represents relationships between the observed features and the
prediction target. For instance, in the case of supervised learning
h may be a linear predictor or decision tree. In this setting, y
is typically an observed response, such as a class label. In the
case of unsupervised learning, h could map from input features
to cluster centroids.

To compare multiple prediction functions, we consider

{h(λ) :λ∈Λ}, [2]

where Λ denotes a collection of models/algorithms. For exam-
ple, Λ may define different tuning parameters in lasso (26) or
random forest (27). For deep neural networks, Λ could describe
different network architectures. For algorithms with a random-
ized component, such as k-means or stochastic gradient descent,
Λ can represent repeated runs. More broadly, Λ may describe
a set of competing algorithms such as linear models, random
forests, and neural networks, each corresponding to a different
problem translation. We discuss model perturbations in more
detail in Algorithm or model perturbation.

Testing (held-out) data. We distinguish between training data
that are used to fit a collection of prediction functions and test-
ing data that are used to evaluate the accuracy of fitted prediction
functions‡‡. At a minimum, one should evaluate predictive accu-
racy on a held-out test set generated at the same time and under
the same conditions as the training data (e.g., by randomly sam-
pling a subset of observations). This type of assessment addresses
questions of internal validity, which describe the strength of a
relationship in a given sample. It is also often important to under-
stand how a model will perform in future conditions that differ
from those that generated the training data. For instance, a biol-
ogist may want to apply a model to new cell lines. A social
scientist might use a model trained on residents from one city to
predict the behavior of residents in another city. As an extreme
example, one may want to use transfer learning to apply part
of one’s model to an entirely new prediction problem. Testing
data gathered under different conditions from the training data
directly addresses questions of external validity, which describe
how well a result will generalize to future observations. Domain
knowledge and/or empirical validation are essential to assess the
appropriateness of different prediction settings. These decisions
should be reported in the proposed PCS documentation (PCS
Documentation).

Prediction evaluation metric. The prediction evaluation metric

` :H×X ×Y→R+ [3]

quantifies the accuracy of a prediction function h ∈H by measur-
ing the similarity between h(x) and y . We adopt the convention
that larger values of `(h, x, y) correspond to worse predictive
accuracy. ` should be selected to reflect domain-specific consid-
erations, such as the types of errors that are more costly. In fact,

‡‡In some settings, a third set of data is used to tune model parameters.
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there is an entire area of research devoted to evaluating proba-
bilistic forecasts through “scoring rules” (ref. 28 and references
therein). In some cases, it may be appropriate to consider mul-
tiple prediction evaluation metrics and focus on models that are
accurate with respect to all.

Prediction requires human input to formulate, including the
preferred structure of a model/algorithm and what it means for a
model to be suitably accurate. For example, the biologist study-
ing gene regulation may believe that the simple rules learned
by decision trees are an appealing representation of interac-
tions that exhibit thresholding behavior (29). If the biologist is
interested in a particular cell type, the biologist may evaluate
prediction accuracy on test data measuring only these environ-
ments. If the responses are binary with a large proportion of
class-0 responses, the biologist may choose ` to handle the class
imbalance. All of these decisions should be documented and
argued for (PCS Documentation) so that other researchers can
assess the strength of conclusions based on transparent evidence.
The accompanying PCS documentation provides a detailed
example.
Cross-validation. As alluded to earlier, CV has become a pow-
erful approach to select regularization parameters when data
are approximately i.i.d. (6, 7). CV divides data into blocks of
observations, trains a model on all but one block, and eval-
uates the prediction error over each held-out block. In other
words, CV incorporates the scientific principle of replication by
evaluating whether a model accurately predicts the responses
of pseudoreplicates. CV works more effectively as a tool to
select regularization parameters than as an estimate of predic-
tion error, where it can incur high variability due to the often
positive dependencies between the estimated prediction errors
in the summation of the CV error (30). Just as peer reviewers
make judgment calls on whether a laboratory’s experimental con-
ditions are suitable to replicate scientific results, data scientists
must determine whether a removed block represents a justifi-
able pseudoreplicate, which requires information from the data
collection process and domain knowledge.

Computability. In a broad sense, computability is the gatekeeper
of data science. If data cannot be generated, stored, managed,
and analyzed efficiently and scalably, there is no data science.
Modern science relies heavily on information technology as part
of the DSLC. Each step, from raw data collection and cleaning
to model building and evaluation, relies on computing technol-
ogy and falls under computability in a broad sense. In a narrow
sense, computability refers to the computational feasibility of
algorithms or model building.

Here we use computability in the narrow sense, which is closely
associated with the rise of machine learning over the last three
decades. Just as scientific instruments and technologies deter-
mine what processes can be effectively measured, computing
resources and technologies determine the types of analyses that
can be carried out. In particular, computability is necessary to
carry out predictability and stability analyses within the PCS
framework. Computational constraints can also serve as a device
for regularization. For example, stochastic gradient descent is
widely used for optimization in machine-learning problems (31).
Both the stochasticity and early stopping of a stochastic gradient
algorithm play the role of implicit regularization.

Computational considerations and algorithmic analyses have
long been an important part of statistics and machine learning.
Even before digital computing, calculus played a computational
role in statistics through Taylor expansions applied to different
models. In machine learning, computational analyses consider
the number of operations and required storage space in terms
of observations n , features p, and tuning (hyper)parameters.
When the computational cost of addressing a domain prob-
lem or question exceeds available computational resources, a

result is not computable. For instance, the biologist interested
in gene regulation may want to model interaction effects in a
supervised learning setting. However, there are O(ps) possible
order-s interactions among p regulatory factors. For even a mod-
erate number of factors, exhaustively searching for high-order
interactions is not computable. In such settings, data scientists
must restrict modeling decisions to draw conclusions. Thus it
is important to document why certain restrictions were deemed
appropriate and the impact they may have on conclusions (PCS
Documentation).

Increases in computing power also provide an unprecedented
opportunity to enhance analytical insights into complex natural
phenomena. We can now store and process massive datasets,
which can be used to simulate large-scale processes. Simula-
tions provide concrete, quantitative representations of natural
phenomena relative to known input parameters, which can be
perturbed to assess the stability of data results. As a result,
simulation experiments inspired by observed data and domain
knowledge are powerful tools to understand how results may
behave in real-world settings. They represent a best effort to
emulate complex processes, where the reliability of results is not
always clear. Pairing such simulation studies with empirical evi-
dence makes the DSLC more transparent for peers and users to
review, aiding in the objectivity of science.

Stability at the Modeling Stage. Computational advances have
fueled our ability to analyze the stability of data results in prac-
tice. At the modeling stage, stability measures how a data result
changes when the data and/or model are perturbed (15). Sta-
bility extends the concept of sampling variability in statistics,
which is a measure of instability relative to other data that could
be generated from the same distribution. Statistical uncertainty
assessments implicitly assume stability in the form of a distri-
bution that generated the data. This assumption highlights the
importance of other datasets that could be observed under sim-
ilar conditions (e.g., by another person in the laboratory or
another laboratory at another time).

The concept of a model (“true”) distribution§§ is a construct.
When randomization is explicitly carried out, the model dis-
tribution can be viewed as a physical construct. Otherwise, it
is a mental construct that must be justified through domain
knowledge, an understanding of the data-generating process, and
downstream utility. Statistical inference procedures use distribu-
tions to draw conclusions about the real world. The relevance
of such conclusions requires empirical support for the postu-
lated model distribution, especially when it is a mental construct.
In data science and statistical problems, practitioners often
do not make much of an attempt to justify this mental con-
struct. At the same time, they take the uncertainty conclusions
very seriously. This flawed practice is likely related to the high
rate of false discoveries (2, 3). It is a major impediment to
progress of science and to data-driven knowledge extraction in
general.

While the stability principle encapsulates uncertainty quantifi-
cation when the model distribution construct is well supported,
it is intended to cover a much broader range of perturbations,
such as problem formulation (e.g., different problem transla-
tions), preprocessing, EDA, randomized algorithms, and choice
of models/algorithms. Although seldom carried out in practice,
evaluating stability across the entire DSLC is necessary to ensure
that results are reliable and reproducible. For example, the biolo-
gist studying gene regulation must choose both how to normalize
raw data and what algorithm(s) will be used in analysis. When

§§We use the term “model” distribution to avoid confusion over whether it is well
justified.
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there is no principled approach to make these decisions, the
knowledge data scientists can extract from analyses is limited to
conclusions that are stable across appropriate choices (22, 32,
33). This ensures that other scientists studying the same data
will reach similar conclusions, despite slight variation in their
independent choices.
Formulating stability at the modeling stage. Stability at the mod-
eling stage is defined with respect to a stability target, an
appropriate perturbation to the data and/or algorithm/model,
and a stability metric to measure the change in target upon
perturbation. We describe each of these in detail below.

Stability target. The stability target

T (D ,λ) [4]

corresponds to the data result or estimand of interest. It depends
on input data D and a specific model/algorithm λ used to ana-
lyze the data. For simplicity, we will sometimes suppress the
dependence on D and λ in our notation. As an example, T
can represent responses predicted by h(λ). Other examples of
T include features selected by lasso with penalty parameter λ
or saliency maps derived from a convolutional neural network
(CNN) with architecture λ.

Data and model/algorithm perturbations. To evaluate the sta-
bility of a data result, we measure the change in target T
that results from a perturbation to the input data or learning
algorithm. More precisely, we define a collection of data per-
turbations D and model/algorithm perturbations Λ and compute
the stability target distribution

{T (D ,λ) :D ∈D,λ∈Λ}. [5]

For example, appropriate data perturbations include boot-
strap sampling when observations are approximately i.i.d., block
bootstrap for weakly dependent time series, generative mod-
els that are supported by domain knowledge (Data pertur-
bation), and probabilistic models that are justified from an
understanding of the data-generating process or explicit ran-
domization. When different prediction functions are deemed
equally appropriate based on domain knowledge, each may rep-
resent an appropriate model perturbation (Algorithm or model
perturbation).

It can be argued that the subjectivity surrounding appropri-
ate perturbations makes it difficult to evaluate results within the
PCS framework. Indeed, perturbation choices are both subjec-
tive human judgment calls and critical considerations of PCS.
The degree to which a data result can be trusted depends
on the justification for a perturbation. This is true if the per-
turbation comes from a probabilistic model, as in traditional
statistical inference, or some broader set of perturbations, as
in PCS. The goal of PCS is to use and explicitly document
perturbations that are best suited to assess stability in com-
plex, high-dimensional data rather than relying on probabilistic
models alone, which have little objective meaning when the
model is not justified. To ensure that results can be evaluated,
the case for an appropriate perturbation must be made in the
publication and in the PCS documentation (PCS Documenta-
tion). These transparent narratives allow readers to scrutinize
and discuss perturbations to determine which one should be
applied for a particular field and/or type of data, encouraging
objectivity.

Stability evaluation metric. The stability evaluation metric
s(T ; D, Λ) summarizes the stability target distribution in Eq.
5. For example, if T indicates features selected by a model
trained on data D , we may report the proportion of times
each feature is selected across data perturbations D ∈D. If T
corresponds to saliency maps derived from different CNN archi-
tectures λ∈Λ, we may report each pixel’s range of salience

across Λ. When the stability evaluation metric combines tar-
gets across model/algorithm perturbations, it is important that
these different targets are scaled appropriately to ensure
comparability.

A stability analysis that reveals the target T is unstable (rel-
ative to a meaningful threshold for a domain problem) may
suggest an alternative analysis or target. This raises issues of mul-
tiplicity and/or overfitting if the same data are used to evaluate
new stability targets. Held-out test data offer one way to miti-
gate these concerns. That is, training data can be used to identify
a collection of targets that are suitably stable. These targets can
then be evaluated on the test data. More broadly, the process
of refining analyses and stability targets can be viewed as part
of the iterative approach to data analysis and knowledge gen-
eration described by ref. 34. Before defining a new target or
analysis, it may be necessary to collect new data to help ensure
reproducibility and external validity.
Data perturbation. The goal of data perturbation under the
stability principle is to mimic a process that could have been
used to produce model input data but was not. This includes
human decisions, such as preprocessing and data cleaning, as
well as data-generating mechanisms. When we focus on the
change in target under possible realizations of the data from
a well-supported probabilistic model, we arrive at well-justified
sampling variability considerations in statistics. Hence data per-
turbation under the stability principle includes, but is much
broader than, the concept of sampling variability. It formally
recognizes many other important considerations in the DSLC
beyond sampling variability. Furthermore, it provides a frame-
work to assess trust in estimates of T when a probabilistic model
is not well justified and hence sampling interpretations are not
applicable.

Data perturbations can also be used to reduce variability in
the estimated target, which corresponds to a data result of inter-
est. Random forests incorporate subsampling data perturbations
(of both the data units and predictors) to produce predictions
with better generalization error (27). Generative adversarial net-
works (GANs) use synthetic adversarial examples to retrain deep
neural networks and produce predictions that are more robust to
such adversarial data points (35). Bayesian models based on con-
jugate priors lead to marginal distributions that can be derived by
adding observations to the original data. Thus they can be viewed
as a form of data perturbation that implicitly introduces synthetic
data through the prior. Empirically supported generative mod-
els, including partial differential equations (PDEs), can be used
to explicitly introduce synthetic data. As with Bayesian priors,
synthetic data perturbations from generative models can be used
to encourages stability of data results relative to prior knowl-
edge, such as mechanistic rules based on domain knowledge (for
examples see ref. 36).
Algorithm or model perturbation. The goal of algorithm or
model perturbation is to understand how alternative analyses
of the same data affect the target estimate. A classic exam-
ple of model perturbation is from robust statistics, where one
searches for a robust estimator of the mean of a location fam-
ily by considering alternative models with heavier tails than the
Gaussian model. Another example of model perturbation is sen-
sitivity analysis in Bayesian modeling (37, 38). Many of the model
conditions used in causal inference are in fact stability concepts
that assume away confounding factors by asserting that different
conditional distributions are the same (39, 40).

Modern algorithms often have a random component, such as
random projections or random initial values in gradient descent
and stochastic gradient descent. These random components pro-
vide natural model perturbations that can be used to assess
the stability of T . In addition to the random components of a
single algorithm, multiple models/algorithms can be used to eval-
uate stability of the target. This is useful when there are many
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appropriate choices of model/algorithm and no established cri-
teria or established domain knowledge to select among them.
The stability principle calls for interpreting only the targets of
interest that are stable across these choices of algorithms or
models (32).

As with data perturbations, model perturbations can help
reduce variability or instability in the target. For instance, ref.
41 selects lasso coefficients that are stable across different regu-
larization parameters. Dropout in neural networks is a form of
algorithm perturbation that leverages stability to improve gener-
alizability (42). Our previous work (33) stabilizes random forests
to interpret decision rules in tree ensembles (33, 43), which are
perturbed using random feature selection (model perturbation)
and bootstrap (data perturbation).

Dual Roles of Generative Models in PCS. Generative models
include both probabilistic models and PDEs with initial or
boundary conditions. These models play dual roles in the PCS
framework. On one hand, they can concisely summarize past
data and prior knowledge. On the other hand, they can be used
to generate synthetic observations that offer a form of data
perturbation.

When a generative model is used to summarize data, a com-
mon target of interest is the model’s parameters. Generative
models with known parameters may be used for prediction or
to advance understanding through the mechanistic rules they
represent. Such models correspond to infinite data, although
finite under computational constraints. Generative models with
unknown parameters can be used to motivate surrogate loss
functions through maximum-likelihood and Bayesian modeling
methods. Mechanistic interpretations of such models should not
be used to draw scientific conclusions. They are simply useful
starting points to optimize algorithms that must be subjected to
empirical validation.

Generative models that approximate the data-generating pro-
cess, a human judgment call argued for in the PCS documen-
tation, can be used as a form of data perturbation. Here syn-
thetic data augment the observed data and serve the purpose
of domain-inspired regularization. The amount of synthetic data
to combine with the observed data reflects our degree of belief
in the models and is an interesting area for future exploration.
Using synthetic data for domain-inspired regularization allows
the same algorithmic and computing platforms to be applied
to the combined data. This style of analysis is reminiscent of
AdaBoost, which uses the current data and model to modify
the data used in the next iteration without changing the base
learner (44).

Connections among the PCS Principles. Although we have dis-
cussed the three principles of PCS individually, they share impor-
tant connections. Computational considerations can dictate
tractable predictive models/algorithms, particularly for large,
high-dimensional datasets. These computability issues are often
addressed in practice through scalable optimization methods
such as gradient descent (GD) or stochastic gradient descent
(SGD). Evaluating predictability on held-out data is a form of
stability analysis where the training/test sample split represents
a data perturbation. Other perturbations used to assess stability
require multiple runs of similar analyses. Parallel computation is
well suited for these perturbations.

PCS Inference through Perturbation Analysis
When data results are used to guide future decisions or actions,
it is important to assess the quality of the target estimate. For
instance, suppose a model predicts that an investment will gener-
ate a 10% return over 1 y. Intuitively, this prediction suggests that
“similar” investments return 10% on average. Whether or not a
particular investment will realize a return close to 10% depends

on whether returns for similar investments ranged from −20%
to 40% or from 8% to 12%. In other words, the variability of a
prediction conveys important information about how much one
should trust it.

In traditional statistics, confidence measures describe the
uncertainty of an estimate due to sampling variability under
a well-justified probabilistic model. However, decisions made
throughout the DSLC add another layer of uncertainty that
may bias data results. This issue has been previously acknowl-
edged in the modeling stage by the authors of ref. 45, who
derive “hacking intervals” to assess the range of a summary
statistic optimized over a possible set of data and algorithm
perturbations. In the PCS framework, we propose perturba-
tion intervals or perturbation regions in general, to quantify the
stability of target estimates relative to different perturbations,
including data cleaning and problem translations. Perturba-
tion intervals are conceptually similar to confidence intervals.
The primary difference is that they are explicitly connected
to perturbations, justified in PCS documentation (PCS Doc-
umentation) and evaluated by independent reviewers and
domain experts.

As an example, perturbation intervals for a target parameter
from a single method based on bootstrap sampling specialize to
traditional confidence intervals based on the bootstrap. More
broadly, perturbation intervals quantify the variability of a tar-
get parameter value across the entire DSLC. For instance, a data
scientist may consider multiple preprocessing, subsampling, and
modeling strategies to predict investment returns. The resulting
perturbation intervals describe the range of returns across worlds
represented by each perturbation. Their reliability lies squarely
on whether the set of perturbations captures the full spectrum of
appropriate choices that could be made throughout the DSLC,
which should be evaluated by domain experts and independent
reviewers. This highlights the importance of perturbations that
could plausibly generate the observed data, represent the range
of uncertainty surrounding an analysis to the best degree pos-
sible, and are transparently documented for others to evaluate
(PCS Documentation).

As a starting point, we focus on a basic form of PCS inference
that generalizes traditional statistical inference. Our approach to
inference allows for a range of data and algorithm/model pertur-
bations, making it flexible in its ability to represent uncertainty
throughout the DSLC.

PCS Perturbation Intervals. The reliability of perturbation inter-
vals lies on the appropriateness of each perturbation. Conse-
quently, perturbation choices should be seriously deliberated,
clearly communicated, and evaluated by objective reviewers.
Here we propose a framework for PCS inference based on a sin-
gle problem translation and target estimand, leaving the case of
multiple translations/estimands to future work.¶¶

1) Problem formulation: Translate the domain question into a
data science problem. Define a prediction target y , appro-
priate data D and/or model Λ perturbations, prediction func-
tion(s) {h(λ) :λ∈Λ}, training/test split, prediction evaluation
metric `, stability metric s , and stability target T (D ,λ). Doc-
ument why these choices are appropriate in the context of the
domain question.

2) Prediction screening: For a threshold τ , screen out models
that do not fit the data (via prediction accuracy):

Λ∗= {λ∈Λ : `(h(λ), x, y)<τ}. [6]

¶¶The PCS perturbation intervals cover different problem translations through Λ and
are clearly extendable to include perturbations in the preprocessing step through D.
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Examples of appropriate threshold include domain accepted
baselines, the top k performing models, or models whose
accuracy is suitably similar to the most accurate model. If the
goal of an analysis is prediction, testing data should be held
out until reporting the final prediction accuracy of a model in
step 4. In such cases, Eq. 6 can be evaluated using a surrogate
sample-splitting approach (e.g., CV). If the goal of an analysis
extends beyond prediction (e.g., to feature selection), Eq. 6 may
be evaluated on held-out test data.

3) Target value perturbation distributions: For each of the sur-
vived models Λ∗ from step 2, compute the stability target
under each data perturbation D. This results in a joint dis-
tribution of the target over data and model perturbations
as in Eq. 5. For a collection of perturbations, requiring sta-
bility of T across all perturbations is more conservative in
terms of type I error than requiring stability for any single
perturbation. However, different domain questions require
control over different types of error. How and when to com-
bine results across perturbations is thus a human judgment
call that should be transparently justified and documented.

4) Perturbation result reporting: Summarize the target value
perturbation distribution using the stability metric s . For
instance, if T is one dimensional, we could summarize its
perturbation distribution using the 10th and 90th percentiles
or a visualization. If T is multidimensional, we could report
a low-dimensional projection of the perturbation distribu-
tion. When perturbation results combine targets across mod-
els/algorithms, they may need to be rescaled to ensure compa-
rability. When perturbation intervals are reported separately
for model/algorithm perturbation, predictive accuracy evalu-
ated in step 2 may be used as a measure of trust to rank each
interval.

At a high level, the PCS inference uses perturbation intervals
to identify the stable part of accurate models. If perturbation
results reveal instability among accurate models, PCS inference
can be used to interpret aspects that are shared (i.e., stable)
across these models. In this setting, PCS can be viewed as an
implicit application of Occam’s razor. That is, it draws conclu-
sions from the stable portion of predictive models to simplify
data results, making them more reliable and easier to interpret. If
perturbation intervals reveal that complex models are both stable
and accurate, PCS inference provides justification for the added
complexity.

PCS Hypothesis Testing. Hypothesis testing from traditional statis-
tics is commonly used in decision making for science and business
alike. The heart of Fisherian testing (46) lies in calculating the P
value, which represents the probability of an event more extreme
than in the observed data under a null hypothesis or distribution.
Smaller P values correspond to stronger evidence against the null
hypothesis or (ideally) the scientific theory embedded in the null
hypothesis. For example, we may want to determine whether a
particular gene is differentially expressed between patients with
breast cancer and a control group. Given i.i.d. random sam-
ples from each population, we could address this question in
the classical hypothesis-testing framework using a t test. The P
value describes the probability of seeing a difference in means
more extreme than observed if the genes are not differentially
expressed.

While hypothesis testing is valid philosophically, many of the
assumptions that it relies on are unrealistic in practice. For
instance, unmeasured confounding variables can bias estimates
of causal effects. These issues are particularly relevant in the
social sciences, where randomized trials are difficult or impos-
sible to conduct. Resource constraints can limit how data are
collected, resulting in samples that do not reflect the pop-
ulation of interest, distorting the probabilistic interpretations

of traditional statistical inference. Moreover, hypothesis test-
ing assumes empirical validity of probabilistic data-generating
models.## When randomization is not carried out explicitly, a
particular null distribution must be justified from domain knowl-
edge of the data-generating mechanism. Such issues are seldom
taken seriously in practice, resulting in settings where the null
distribution is far from the observed data. As a result, P values
as small as 10−5 or 10−8 are now common to report, despite the
fact that there are rarely enough data to reliably calculate these
values, especially when multiple hypotheses (e.g., thousands of
genes) are evaluated. When results are so far off on the tail of
the null distribution, there is no empirical evidence as to why the
tail should follow a particular parametric distribution. Moreover,
hypothesis testing as practiced today often relies on analytical
approximations or Monte Carlo methods, where issues arise for
such small probability estimates. In fact, there is a specialized
area of importance sampling to deal with simulating small prob-
abilities (48, 49), but these ideas have not been widely adopted
in practice.

PCS hypothesis testing builds on perturbation intervals to
address these practical issues and the cognitively misleading
nature of small P values. It uses the null hypothesis to define con-
strained perturbations that represent a plausible data-generating
process, which in the best case corresponds to an existing sci-
entific theory. This includes probabilistic models, when they are
well founded, as well as other data and/or algorithm perturba-
tions. For instance, generative models based on PDEs can be
used to simulate data according to established physical laws.
Alternatively, a subset of data can be selected as controls (for
example, see ref. 50). By allowing for a broad class of pertur-
bations, PCS hypothesis testing allows us to compare observed
data with data that respect some simple structure known to
represent important characteristics of the domain question. Of
course, the appropriateness of a perturbation is a human judg-
ment call that should be clearly communicated in PCS doc-
umentation and debated by researchers. Much like scientists
deliberate over appropriate controls in an experiment, data sci-
entists should debate the appropriate perturbations in a PCS
analysis.
Formalizing PCS hypothesis testing. Formally, we consider set-
tings with observable input features x∈X , prediction target
y ∈Y , prediction functions {h(λ) :λ∈Λ}, and a null hypothesis
that qualitatively describes some aspect of the domain ques-
tion. PCS hypothesis testing translates the null hypothesis into
a constrained perturbation and generates data

D0 = {x0, y0} [7]

according to this perturbation.††† The particular choice of con-
strained perturbation should be explicitly documented and justi-
fied by domain knowledge. We use the constrained perturbation
to construct and compare perturbation intervals for both D0 and
D and evaluate whether the observed data are consistent with
the hypothesis embedded in D0.

PCS Inference in Neuroscience and Biology. The work in ref. 51
considers the null hypothesis that population-level structure in
single-neuron data is the expected byproduct of primary fea-
tures (e.g., correlations across time). This can be viewed as a
form of PCS inference. The authors use a maximum-entropy

##Under conditions, Freedman and Lane (47) showed that some tests can be approxi-
mated by permutation tests when data are not generated from a probabilistic model,
but these results are not broadly applicable.

†††A null hypothesis may correspond to multiple data or model/algorithm perturbations.
We focus on a single data perturbation here for simplicity.
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Fig. 2. ROC curves showing true positive rate (TPR) and false positive rate (FPR) for feature selection in a linear model setting with n = 250 observations.
Each plot corresponds to a different generative model. Color corresponds to method of inference: red, PCS; blue, selective inference; green, linear model
asymptotic normality. Error bars give the 10th and 90th percentiles over replicates.

approach, whose constraint is represented by the number of
moments, to generate data that share primary features with
the observed data but are otherwise random, and compare
population-level findings between the observed and simulated
data. In the accompanying PCS documentation, we consider the
null hypothesis that genomic interactions appear with equal fre-
quency among different classes of genomic elements. We use a
sample-splitting strategy which treats inactive elements (class-0
observations) as a baseline to determine whether interactions
appear with “unusual” frequency. Once again, these compar-
isons rely on human judgment to determine when results are
sufficiently different. These choices depend on the domain con-
text and how the problem has been translated. They should
be transparently communicated by the researcher in the PCS
documentation.

PCS Inference Simulation Studies in Sparse Linear Models. We
tested PCS inference in an extensive set of data-inspired sim-
ulation experiments in the sparse linear model setting that has
been widely studied by the statistics community over the past two
decades (SI Appendix). In total, we considered six distinct gener-
ative models intended to reflect some of the issues that arise in
practice. We compared our proposed PCS inference procedure
with selective inference and asymptotic normality results using
receiver operating characteristic (ROC) curves. These provide a
useful criterion to assess false positives and true positives, which
are both important considerations in settings where resources
dictate how many findings can be evaluated in follow-up anal-
yses/experiments. Across all models, PCS inference compares
favorably to both selective inference and asymptotic normality
results (Fig. 2). However, we note that the principal advantage of
PCS inference is that it can be easily generalized to more com-
plex settings faced by data scientists today as in the two examples
described above.

PCS Documentation
The PCS framework includes an accompanying R Markdown
or Jupyter (iPython) Notebook, which seamlessly integrates nar-
ratives, codes, and analyses. These narratives are necessary to
describe the domain problem and support assumptions and
choices made by the data scientist regarding computational
platform, data cleaning and preprocessing, data visualization,
model/algorithm, prediction metric, prediction evaluation, sta-
bility target, data and algorithm/model perturbations, stability
metric, and data conclusions in the context of the domain prob-
lem. These narratives should be based on referenced prior

knowledge and an understanding of the data collection pro-
cess, including design principles or rationales. The narratives in
the PCS documentation help bridge or connect the two paral-
lel universes of reality and models/algorithms that exist in the
mathematical world (Fig. 3). In addition to narratives justifying
human judgment calls (possibly with data evidence), PCS docu-
mentation should include all codes used to generate data results
with links to sources of data and metadata.

We propose the following steps in a notebook‡‡‡:

1) Domain problem formulation (narrative). Clearly state the
real-world question and describe prior work related to this
question. Indicate how this question can be answered in the
context of a model or analysis.

2) Data collection and storage (narrative). Describe how the
data were generated, including experimental design princi-
ples, and reasons why the data are relevant to answer the
domain question. Describe where data are stored and how
they can be accessed by others.

3) Data cleaning and preprocessing (narrative, code, visualiza-
tion). Describe and justify steps to convert raw data into
data for analysis. Ask whether more than one preprocessing
method should be used and examine their impacts on the final
data results.

4) Exploratory data analysis (narrative, code, visualization).
Describe any preliminary analyses that influenced modeling
decisions or conclusions along with code and visualizations to
support these decisions.

5) Modeling and post hoc analysis (narrative, code, visual-
ization). Carry out PCS inference in the context of the
domain question. Specify appropriate model and data pertur-
bations. If necessary, specify null hypotheses and associated
perturbations.

6) Interpretation of results (narrative and visualization). Trans-
late the data results to draw conclusions and/or make
recommendations in the context of the domain problem.

This documentation gives the reader as much information as
possible to make informed judgments regarding the evidence and
process for drawing a data conclusion in the DSLC. A case study
of the PCS framework in the genomics problem discussed earlier
is documented on Zenodo.

‡‡‡
This list is reminiscent of the list in the “data wisdom for data science” blog that B.Y.
wrote at http://www.odbms.org/2015/04/data-wisdom-for-data-science/.
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Fig. 3. Assumptions made throughout the DSLC allow researchers to use models such as decision trees, neural networks, or probability distributions as an
approximation of reality, which may include physical, chemical, or biological laws. Narratives provided in PCS documentation can help justify assumptions
to connect these two worlds.

PCS Recommendation System for Scientific Hypothesis
Generation
In general, causality implies predictability and stability over many
experimental conditions, but not vice versa. The causal inference
community has long acknowledged connections between stability
and estimates of causal effects. For instance, many researchers
have studied paradoxes surrounding associations that lead to
unstable estimates of causal effects (52–54). Estimates in the
Neyman–Rubin potential outcomes framework rely on a sta-
ble treatment across observational units (55, 56). Sensitivity
analyses test the stability of a causal effect relative to unmea-
sured confounding (57, 58). Stability, particularly with respect
to predictions across experimental interventions, has even been
proposed as a criterion to establish certain causal relationships
under the name “invariance” (39, 59–62).

PCS inference builds on these ideas, using stability and pre-
dictability to rank target estimates for further studies, includ-
ing follow-up experiments. In our recent works on DeepTune
(32), iterative random forests (iRF) (33), and signed itera-
tive random forests (siRF) (43), we use PCS inference to
make recommendations as inputs to downstream human deci-
sions. For example, PCS inference suggested potential rela-
tionships between neurons in the visual cortex and visual
stimuli as well as third- and fourth-order interactions among
biomolecules that are candidates for regulating gene expression.
Predictability and stability do not replace physical experiments
to prove or disprove causality. However, we hope computa-
tionally tractable analyses that demonstrate high predictability
and stability suggest hypotheses or intervention experiments that
have higher yields than otherwise. This hope is supported by
the fact that 80% of the second-order interactions identified by
iRF (33) had been verified in the literature through physical
experiments.

Conclusion
In this paper, we unified PCS into a framework for veridical
data science, composed of both a workflow and documentation.
The PCS framework aims to provide responsible, reliable, repro-
ducible, and transparent results across the DSLC. It is a step
toward systematic and unbiased inquiry in data science, simi-
lar to strong inference (63). Prediction serves a reality check,
evaluating how well a model/algorithm represents the natural
phenomena that generated the data. Computability concerns
with respect to algorithm efficiency determine the tractability of
the DSLC and point to the importance of data-inspired simu-
lations. Stability relative to data and model perturbations was
advocated in ref. 15 as a minimum requirement for data results’
reproducibility and interpretability.

We made important conceptual progress on stability by
extending it to the entire DSLC, including problem formulation,
data collection, data cleaning, and EDA. In addition, we devel-
oped PCS inference to evaluate the variability of data results
with respect to a broad range of perturbations encountered in
modern data science. Specifically, we proposed PCS perturba-
tion intervals to evaluate the reliability of results and hypothesis
testing to draw comparisons with simple structure in the data.
We demonstrated that PCS inference performs favorably in a
feature selection problem through data-inspired sparse linear
model simulations and in a genomics case study. To commu-
nicate human judgment calls in the DSLC, we proposed PCS
documentation, which integrates narratives justifying choices
with reproducible codes and visualizations. This documentation
makes data-driven decisions as transparent as possible for others
to evaluate.

In summary, we have offered a conceptual and practical frame-
work to guide the DSLC, but many open problems remain.
Basic PCS inference needs to be extended to multitransla-
tions of the same domain question and vetted in practice well
beyond the case studies in this paper and in our previous
works, especially by other researchers. Additional case stud-
ies will help unpack subjective human judgment calls in the
context of specific domain problems. The knowledge gained
from these studies can be shared and critiqued through trans-
parent documentation. Based on feedback from practice, the-
oretical studies of PCS procedures in the modeling stage are
also called for to gain further insights under empirically vetted,
stylized models. Finally, although there have been some theo-
retical studies on the connections between the three principles
(refs. 64 and 65 and references therein), much more work is
necessary (66).

Data Availability. All data discussed in this paper are available to
readers.
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10. M. Li, P. Vitányi, “An introduction to Kolmogorov complexity and its applications”

in Texts in Computer Science, D. Gries, F. B. Schneider, Eds. (Springer, New York, NY,
2008), vol. 9.

11. A. N. Kolmogorov, On tables of random numbers. Sankhya Indian J. Stat. Ser. A 25,
369–376 (1963).

12. R. A. Fisher, The Design of Experiments (Oliver & Boyd, Edinburgh, London, UK, 1937).
13. D. L. Donoho, A. Maleki, I. U. Rahman, M. Shahram, V. Stodden, Reproducible

research in computational harmonic analysis. Comput. Sci. Eng. 11, 8–18 (2009).
14. P. B. Stark, Before reproducibility must come preproducibility. Nature 557, 613 (2018).
15. B. Yu, Stability. Bernoulli 19, 1484–1500 (2013).
16. C. F. Manski, Public Policy in an Uncertain World: Analysis and Decisions (Harvard

University Press, 2013).
17. M. H. Quenouille et al., Problems in plane sampling. Ann. Math. Stat. 20, 355–375

(1949).
18. M. H. Quenouille, Notes on bias in estimation. Biometrika 43, 353–360 (1956).
19. J. Tukey, Bias and confidence in not quite large samples. Ann. Math. Stat. 29, 614

(1958).
20. B. Efron, Bootstrap methods: Another look at the jackknife. Ann. Statist. 7, 1–26

(1979).
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