III CHAN ZUCKERBERG

BIOHUB

e CA:L%%
() Berkeley
%"“fy p/;

IIIIIIIII OF CALIFORNIA BERKELEY LAB

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Veridical Data Science

Bin Yu
Statistics and EECS, UC Berkeley

Breiman Lecture, NeurlPS

Vancouver, Dec. 10, 2019



< ve-rid-i-cal
/va'ridak(a)l/

adjective FORMAL

truthful.

. coinciding with reality.
"such memories are not necessarily veridical”



Leo Breiman (1928-2005):
a data scientist and a modern day polymath

CLASSIFICATION
AND
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2001

Image credit: en.Wikipedia.org



2001

Statistical Science
2001, Vol. 16, No. 3, 199-231

Statistical Modeling: The Two Cultures

Leo Breiman

The Data Modeling Culture

The analysis in this culture starts with assuming
a stochastic data model for the inside of the black
box. For example, a common data model is that data
are generated by independent draws from

response variables = f(predictor variables,
random noise, parameters)

Machine Learning

The Algorithmic Modeling Culture

The analysis in this culture considers the inside of
the box complex and unknown. Their approach is to
find a function f(x)—an algorithm that operates on
x to predict the responses y. Their black box looks
like this:

October 2001, Volume 45, Issue 1, pp 5-32 | Cite as
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2019 Al is part of modern life

Alexa, Siri, ...
Wearable health devices

smakeit SUCCESS MONEY  WORK LIFE  VIDEO

Bill Gates: A.l is like nuclear energy —

‘both promising and dangerous’ On-line news
Published Tue, Mar 26 2019-8:45 AM EDT o Updated Tue, Mar 26 2019+11:40 AM EDT Self_derlng cars

@ s G £ ¥ Election campaigns
Precision medicine
Biology
Neuroscience
Cosmology
Material science
Chemistry

Law

Political science
Economics
Sociology

Streaming videos, on-line gaming, ...



Biomedical data problems are pressing

A UC-wide Conference on
ARTIFICIAL INTELLIGENCE
in Biomedicine

Leveraging the strength of the University of California system

medium.com

7. I JUNE 17-18, 2019

UCLA Luskin Conference Center

T0954/6CVZ 70965/602V 70995 75WSF Machine Learning and Personalization

B

Ground truth (green)
Predicted (blue)

Structures:

https://deepmind.com/blog/alphafold/ website of S. Saria at JHU



Data science is a key element of Al

Conway’s Venn Diagram

Goal:

Computer
science

Machine

learning combine data with domain

knowledge to make
decisions and generate new
knowledge

8/9/20



DS Life Cycle (DSLC): asystem

Domain
question

-
b 2
L 2
L2

Update domain 8 ?42 Data
knowledge vaway collection
JUDGMENT CALL \
Data
cleaning

MATURITY, EMOTIONS, AND THE TEENAGE BRAIN

Interpretation and

communication @

of results
Post-hoc analyses
and exploration 688 \

Data exploration
and visualization

Modeling and
algorithms

8/9/20 Image credits: R. Barter and toronto4kids.com



Veridical Data Science

Extracts reliable and reproducible information from data,
with an enriched technical language to communicate
and evaluate empirical evidence in the context of

human decisions and domain knowledge



Rest of the talk

e PCS framework for veridical data science
e |terative random forests
* PDR framework for interpretable machine learning

* ACD for interpreting DNNs



PCS framework for
veridical data science



PCS framework v.and kumbier (2019)

Three principles of data science : PCS

Predictability (P) (from ML) Veridical Data Science

0‘\ 0,, Predictability
\a‘ N “qﬁ
{j 2

pades

Computability (C) (from ML)

<
Stability (S) (from statistics) ’

Computability

PCS bridges Breiman’s two cultures (\\

\Stability

Image credit: R. Barter



PCS connects science with engineering

* Predictability and stability embed two scientific principles:

prediction and replication

Image credits: nstat.org, hub.jhu.edu, vox.com, Andras Libal



Stability is robustness for all parts of DSLC

Bernoulli 19(4), 2013, 1484—1500
DOI: 10.3150/13-BEJSP14

Stability

It unifies and extends a myriad of works on “perturbation” analysis.

It is a minimum requirement for interpretability, reproducibility, and
scientific hypothesis generation or intervention design.

Image credit: designnews.com



Stability tests DSLC by “shaking” every part

Shakes come from
human decisions

Image credits: R. Barter and toronto4kids.com



PCS workflow

* Workflow incorporates P, C, S into each step of the DSLC

* In particular, basic PCS inference applies PCS through data and model
perturbations at the modeling stage (with P as a first screening step
before perturbation intervals are made)

Image credits: R. Barter and toronto4kids.com



Data perturbations (existing)

* Cross-validation

* Bootstrap

* Subsampling

* Adding small noise to data
* Bootstrapping residuals

* Block-bootstrap



Data perturbations (recent)

Data modality choices

Synthetic data (mechanistic PDE models )

Data under different environments (invariance)
Differential Privacy (DP) (2020 US census)

* Adversarial attacks to deep learning algorithms

Fundoscopy Chest X-Ray Dermoscopy

absent/mild DR vs. Normal vs Pneumothorax Nevus vs Melanoma
moderate/severe DR

True
Normal

True
Disease

Original Modified Original Modified Original A . Modified“
Image Image Image Image Image Image

Image credits:groundai.com



Data perturbations (new)

* Data pre-processing (cleaning) matters

THE

NEW YORRER

THE REINHART AND ROGOFF
CONTROVERSY: A SUMMING UP

m By John Cassidy April 26,2013
<>

American Economic Review: Papers & Proceedings 100 (May 2010): 573-578
http://'www.aeaweb.org/articles.php?doi=10.1257/aer.100.2.573

Growth in a Time of Debt

By CARMEN M. REINHART AND KENNETH S. ROGOFF*

Covered widely in popular media, often as “high debt/GDP ratio is bad for
growth”.

It was used to support austerity policies in UK and Europe.



Data perturbations (new)

* Data cleaning versions: stability principle calls for replication

Herdon, Ash and Pollin (2014) was a replication and found that RR had
exclusive data selection (cleaning), coding errors, and unconventional
weighting. When corrected by Herdon, Ash and Pollin (2014), RR’s

conclusion fails to hold.

Image credit:: New Yorker



Model/algorithm perturbations (existing)

* Robust statistics
* Semi-parametric
* Lasso and Ridge
* Modes of a non-convex empirical minimization
* Kernel machines

* Sensitivity analysis in Bayesian modeling



Model/algorithm perturbations (new)

 Researcher to researcher (or team to team) perturbation

H. Larochelle A. Beygelzimer F. d'Alché-Buc  E. Fox

Example: 9 climate models

HadCM3

CCSR / NIES2 A2
MRI2

——— CGCM2

4 CSM 1.3

DOE PCM

GFDL_R30_c

CSIRO Mk2

——— ECHAM4 / OPYC

Temperature change (°C)
®

2 .
1
o ¥ v v
© &) o © o
o 2§ o5 &S « S
i S S S S S

The change in global-mean temperature estimated by nine climate models forced by the SRES A2 emission
scenario. (Source: IPCC TAR, Chapter 9)

Global
mean-temp
change



Human judgment calls ubiquitous in DSLC

* Which problem to work on

* Which data sets to use

* How to clean

* What plots

* What data perturbations

* What algorithm perturbations
* What post-hoc plots/results

* What interpretations

* What conclusions

JUDGMENT CALL

MATURITY, EMOTIONS, AND THE TEENAGE BRAIN

THE LARGEST PART OF
THE HUMAN BRAIN, THE
CORTEX, IS DIVIDED
INTO SEVERAL LOBES
WHICH MATURE FROM
BACK TO FRONT.

The last lobe to mature is the frontal
lobe, which controls judgement and
self-control

FULLY DEVELOPED: 25 YEARS OLD

@ OCCIPITAL LOBE
TEMPORAL LOBE
PARIETAL LOBE

@ FRONTAL LOBE

Image credits: toronto4kids.com



PCS doc. bridges reality and models on github

Rea l |ty Models

Stability formulation JUDGMENT CALL

Bootstrap sampling is a widely accepted perturbation | warumiry, emorions, ano Tue esnace sram | 2t is @ useful baseline for data where we have limited
understanding of the dependencies. However, sequen me space (i.e. nearby on the DNA) exhibit dependent
behavior that is possible to account for. In particular, e  jzuz <s known as “shadow enhancers” are believed to
confer robustness to regulatory processes (Hong, Hen Zesiz: 1. 2016) studied shadow enhancers in detail and found
that over 70% of loci they examined have anywhere frc et al. 2016) with highly overlapping patterns of activity.
To account for this potential dependency along the gel rap perturbations using blocks of 5 and 10 sequences.
We define the stability of an interaction to be the propc «cross B = 100 RFs trained on an outer layer of
bootstrap samples using the 3 proposed perturbation

# Block bootstrap for blocks of size 5 and 10

blocks.tr <- makeBlocks(gene.coords, idcs=train.id, size=5)
blockl0.tr <- makeBlocks(gene.coords, idcs=train.id, size=10)
blocks.tst <- makeBlocks(gene.coords, idcs=test.id, size=5)
blockl0.tst <- makeBlocks(gene.coords, idcs=test.id, size=10)

Dangerous
inference & conclusions

¥ - |
Unsubstantiated assumptions

Data

Image credit: Rebecca Barter



How to choose perturbations in PCS?

* One can never consider all possible perturbations

* A pledge to the stability principle in PCS would lead to null results if
too many perturbations were considered

* PCS requires documentation on the appropriateness of all the
perturbations

* To avoid null results, PCS encourages careful and well-founded
choices of the perturbations through PCS documentation



Expanding statistical inference under PCS

e Modern goal of statistical inference is to provide one source of evidence to
domain experts for decision-making

e The key is to provide data evidence in a transparent manner so that domain
experts can understand as much as possible our evidence generation to
evaluate the evidence strength

Traditionally, p-value has been used as evidence for decisions, but its use has
been problematic that psychology journals banned it



“It is not p-value’s fault”

“The p-valueis a very valuable tool, but when possible it
should be complemented - not replaced - by confidence
Intervals and effect size estimates” — Yoav Benjamini

For one thing, normal approximation can’t back up small p-values
like 107%, and there are other problems before normal approx. is
used.



A critical examination of probabilistic
statements in statistical inference

Dangerous

inference & conclusions

22,7 |
55 2?7 9 Unsubstantiated assumptions

Data

Viewing data as a realization of a random process is an ASSUMPTION unless
randomization is explicit

When not, using r.v. actually implicitly assumes “stability”

If this assumption is not substantiated, all probabilistic statements are
questionable

Small p—values often measure model-bias

The use of “true” in the “true model” is misleading — we should use other
words like approximate or postulated



Inference beyond probabilistic models

Need trustworthiness
measure of an estimated
quantity of interest over
multiple probabilistic models
and/or without probabilistic
models




Proposed PCS inference (basic)

1.Problem formulation: Translate the domain question to be answered by
a model/algorithm (or multiple of them and seek stability). Specify a
target of interest.

2.Prediction screening for reality check: Filter models/algorithms based
on prediction accuracy on held out test data — a sample split approach
(it helps assess model bias)

3. Target value perturbation distribution: Evaluate the target of interest
across ‘“appropriate’” data and model perturbations

4. Perturbation interval reporting: Summarize the target value
perturbation distribution.



tpr

Feature importance study: PCS performs well

simulation results for lasso feature selection in linear model n=1000, p=630

Adding another method: Lasso (CV)+ asymptotic normal approx.

Gaussian t3 Block_100
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Climate scientists are practicing PCS inference

* 9 climate models provide a PCS perturbation range of (1.5, 5.5) for global
mean-temperature change by 2090

6
5 HadCM3
——— CCSR / NIES2
5) —— MRI2
- o] CGCM2
& g CSM 1.3
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The change in global-mean temperature estimated by nine climate models forced by the SRES A2 emission
scenario. (Source: IPCC TAR, Chapter 9)



Making Random Forests interpretable

by adding (more) stability



Iterative random forests to discover predictive
and stable high-order interactions

VP Sumanta Basu™®“', Karl Kumbier®', James B. Brown“**'?, and Bin Yu“®9?

Co-authors
‘ e ';

S. Basu K. Kumbier B. Brown

Culmination of 3+ years of work



Pattern Recognition vs. Pattern Discovery

Pattern Recognition: Pattern Discovery:
Finding something for which you already know to look Identifying structure that hasn’t been seen before




Iterative random forests (iRF) for pattern discovery in
combinatorially vast systems

Classical statistical approaches are not sufficient:

iv Geretic Varian's
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Embryonic development in Drosophila melanogaster

Overview of the Stages of Development
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Isley et al. (2013), Levine et al. (2013)



Regulatory interactions through
predictability and stability or PCS

Natural
phenomenon

Active enhancer

TF-B

-.0.0

Inactive enhancer

Prediction

Interpretation

Transcription is initiated
when activating
transcription factors reach
sufficient DNA occupancy




Capturing the form of genomic interactions

Interactions are high-order and
combinatorial in nature

Interactions can vary across space
and time as biomolecules carry
out different roles in varied
contexts

Interactions exhibit thresholding
behavior, requiring sufficient
levels of constitutive elements
before activating

I I [ I I T T
100 90 80 70 60 50 40 30 20 10 0

] S T A
AT B A R s

""" e0ese & "'"'""" T T

Morphogen Conc. (M)

(1) wny

Morphogen Conc. (M)

(Wolpert, 1969;
Jaeger and Reinitz, 2006)

(Spitz and Furlong, 2006)



From genomic to statistical interactions

Transcription is initiated when a collection of  activating TFs
achieve sufficient DNA occupancy

!
R(x) = H {x; > t;}

€S

Order- s interaction,
SC{l,....ph|5| =s



Random Forests (RFs)

Breiman (2001)

Draw T bootstrap samples and fit a
modified CART to each sample.

1. Grow CART trees to purity

2. When selecting splitting
feature, choose a subset of
mtry features uniformly at
random and optimize CART
criterion over subsampled
features.




iterative Random Forests (iRFs)
Basu, Kumbier, Brown and Yu (2018)

Core ideas

1. Soft dim reduction using importance index

>.  Random interaction trees to find
intersections of paths

3. Outer-loop bagging assesses stability

Similar computational and memory costs as RF



Iteratively re-weighted RF stabilize decision paths

Iteratively re-weighted
Random Forests

Feature weights

1 2 3

Iter 1

4 5
l importance index
lter 2
Ll
1 2 3
4 5 Re-weighting
................................................... l Amaratunga et al. (2014)

MDI-oob index: Wed 10:45 AM --12:45 PM at East Exhibition Hall B + C #5.



Digression: Interactions in market baskets
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Random Intersection Trees (RIT)
Shah and Meinshausen (2014): fast computation uses sparsity

Randomly sampled °
class-Cobservaton —— || @ # & @

“Survived”
@ 90 +<— interaction




Random Intersection Trees (RIT)
Shah and Meinshausen (2014)

Randomly sampled °
class-Cobservation — 'I' C D) @
“Survived”
P D @ +<— interaction
v AN
w ‘u, . @ w = B




Random Intersection Trees (RIT)
Shah and Meinshausen (2014)

Randomly sampled °
class-Cobservation — 'I' D @
“Survived”
YD @ «<— interaction
7~ AN
D
e N yd AN
| D @ T T P <




Generalized RIT for Decision Trees
fast computation uses sparsity

@
7, C {1 p} Feature-index set for leaf node
1 = AR .. . . |

containing observationi =1, ... , n =
intreet=1,...,T @ @ ) @

R s w
containing observationi=1, ... ,n
intree¢r=1,...,T

S+ RIT{Z;,, Z;,}.C)




Stability bagging

Stability Bagging
OUTpUT feature Draw B Bootstrap Samples

interaction sets with
stability scores:

{S, sta(S)}

SCH{l,...,p}

sta(S) = B’ Z 1(S €8

Reference: (Breiman, 1996)



Example: Enhancer activity in Drosophi
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IRF keeps predictive accuracy, and

finds stable interactions

iRF ROC curve: enhancer
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80% of pairwise interactions are validated

interaction (S)  sta(S) references
Gt, ZId 1 Harrison et al. (2011); Nien et al. (2011)
Twi, Z1d 1 Harrison et al. (2011); Nien et al. (2011)
Gt, Hb 1 Kraut and Levine (1991a,b); Eldon and Pirrotta (1991)
Gt, Kr 1 Kraut and Levine (1991b); Struhl et al. (1992); Capovilla et al. (1992); Schulz
and Tautz (1994)
Gt, Twi 1 Li et al. (2008)
Kr, Twi 1 Lietal (2008)
Kr, Z1d 0.97  Harrison et al. (2011); Nien et al. (2011)
Gt, Med 097 -
Bed, Gt 0.93  Kraut and Levine (1991b); Eldon and Pirrotta (1991)
Bed, Twi 0.93  Liet al. (2008)
Hb, Twi 0.93  Zeitlinger et al. (2007)
Med, Twi 0.93  Nguyen and Xu (1998)
Kr, Med 09 -
D, Gt 0.87 -
Med, Z1d 0.83  Harrison et al. (2011)
Hb, Z1d 0.80  Harrison et al. (2011); Nien et al. (2011)
Hb, Kr 0.80  Niisslein-Volhard and Wieschaus (1980); Jackle et al. (1986); Hoch et al. (1991)
D, Twi 0.73 -
Bed, Kr 0.67  Hoch et al. (1991, 1990)

Bed, Z1d 0.63  Harrison et al. (2011); Nien et al. (2011)




Stable interactions reflect
Boolean-type rules

34 or 4" or higher order interactions are suggestions
for Crispr experiments



2018: Chan Zuckerberg Biohub Intercampus Award
IRF is a cornerstone

CHAN ZUCKERBERG

B I 0 H U B PEOPLE PROJECTS

I° CHAN ZUCKERBERG BIOHUB AWARDS
$13.7 MILLION TO FUND NEW
INTERCAMPUS COLLABORATIVE
RESEARCH PROGRAMS TO ADVANCE
HUMAN HEALTH

SAN FRANCISCO — Sept. 26,2018

One of the 6 awards
genotype

phenotype

Project leaders:

Rima Arnout and Atul Butte (UCSF)
James Priest and Euan Ashyley (Stanford)
Ben Brown and Bin Yu (UC Berkeley) Multi-sca\Suuu echanism
Collaborators: learning and single

Chris Re (Stanford), Deepak Srivastava (UCSF) cell r,nOdels of
cardiovascular health

Image credits: Rima Arnout.



Interpreting iRF results
generates biological hypotheses



Other examples of interpretation need

* FDA wants interpretation of DL algorithms for radiology

e Stimuli to characterize a neuron

* Phrases making a sentence negative

DNN Prediction ACD Interpretation
not very good
I Positive
|
DNN | e -
egatve

not very good not very  good



(Faithful) interpretation builds trust

EU's General Data Protection Regulation (GDPR) (2016)
gives a “right” to explanation, and demands ML/Stats
algorithms to be human interpretable

Why did you predict
42 for this data point?

—— ——— -
td - —

Image credit: https://christophm.github.io/interpretable-ml-book/



https://christophm.github.io/interpretable-ml-book/

Some related work

o Lipton (2017)

e Doshi-Velez and Kim (2017)

e Molnar (2019) book



“Definitions, Methods and Applications
in Interpretable Machine Learning”

(Murdoch, Singh, Kumbier, Abbasi-Asl, and Y., PNAS, 2019)
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“We define interpretable machine learning as the
extraction of relevant knowledge from a machine-learning

model concerning relationships either contained in data
or learned by the model. Here, we view knowledge as
being relevant if it provides insight for a particular
audience into a chosen problem. These insights are often
used to guide communication, actions, and discovery.”



IML through the PDR desiderata

* P- Predictive accuracy for reality check

average (global) and point-wise (local)

* D- Descriptive accuracy: the degree to which an interpretation
method objectively captures the relationships learned by machine
learning models (both post-hoc and model-based methods can
increase D)

* R- Relevancy: interpretation method is “relevant” if it provides insight
for a particular audience into a chosen domain problem

Relevancy often plays a key role in determining the tradeoff between
predictive and descriptive accuracy



iIML-PDR in one figure

(P) (D)
Predictive Descriptive
Problem, Data,  accuracy accuracy Post hoc

& Audience —> Model ———  haysis

n: mﬂﬁﬁ

i lﬂl (R) relevancy

Iterate

R is key in the trade-off of Pand D



Model-based interpretability

* Sparsity (e.g. small sparse logistic regression for lung cancer
prediction)

» Simulatability (e.g. small decision tree for lung cancer
prediction)

* Modularity (e.g. generalized additive models, layers in DL)
* Domain-based feature engineering (e.g. credit score)

* Model-based feature engineering (e.g. clustering and
dimensionality reduction like PCA)



Post-hoc interpretability

* Data set level (global) interpretation (feature and interaction
importance, statistical significance score, visualization)

* Prediction-level (local) interpretation (feature importance and
alternatives)

Murdoch et al (2019) contains many examples from our own work and
others’ work to illustrate PDR.



Agglomerative Contextual Decomposition (ACD)

(1) How can we get feature-interaction importance for a DNN model
prediction in general? (ICLR 2018)

(2) How can we visualize these feature-interactions in an understandable
way? (ICLR, 2019)

(3) How can we use the importance scores and prior info to debias
algorithms? (submitted, 2019)



Previous work (post-hoc interpretation)

e gradient-based methods
o LIME Ribeiro et al. (2016)
o Integrated Gradients (1G) Sundarajan et al. (2017)

e contribution-based
o Occlusion [ saliency maps Dabkowski & Gal (2017)
o SHAP Lundberg & Lee (2017)



CD: Contextual Decomposmon
(Murdoch, Liu and Y. (2018). ICLR)

* Given a LSTM with weights, CD gives a prediction-level score for
each part of the input to “explain” the prediction

The movie was not Negtrtake

good

LSTM(wy, ..., wy) = SoftMax(yr + a7)

* yr corresponds to contributions solely from the phrase, ar other
factors



Agglomerative Contextual Decomposition (ACD)

*Singh, *Murdoch, Y. (2019). ICLR

CD is generalized to DNNs.
ACD is a hierarchical clustering algorithm with visualization, where the
joining metric is CD score

O CD/ACD code: github.com/csinva/acd



Positive
a great ensemble cast can’t lift this heartfelt enterprise out of the familiar.

6

n’t lift this heartfelt enterprise out of the familiar. .

a great ensemble cast this heartfelt enterprise out of the familiar. -2
: : " -0

a great ensemble this heartfelt enterprise of the familiar.

great ensemble heartfelt enterprise the familiar. -4

a great ensemble «cast ca n’t lift this - enterprise  out of the familiar

Negative
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Human experiments

A B
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3 o Occlusion
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SST MNIST ImageNet SST MNIST ImageNet

Telling a good model from a “bad” one  Whether Interpretation instills trust or not
using only interpretations



Improving models by regularizing ACD
explanations

Rieger, Singh, Murdoch, Y. (2019).
In submission

0 github.com/laura-rieger/deep-explanation-penalization



Using CD to identify fundamental cosmological
parameters of the universe

In Progress

Yu group

: ‘; . (@ Berkeley Center for Cosmological Physics

W. Ha, C. Singh, F. Sapienza
F. Lanussen, V. Boehm



Cosmological parameters such as ,;, determine
evolution of universe

Map of mass in
Accelerategzr)?pg?\z:gx t h e u n ive I"S e

Afterglow Light
Pattern  Dark Ages Development of
375,000 yrs. Galaxies, Planets, etc.

Inflation .

Fluctuations

1st Stars
about 400 million yrs.

Big Bang Expansion
13.77 billion years

Adaptation of NASA WMAP
Science Team Image



CNN predicts well, but what does it learn?

e ®,
VT
LAY M
X

2

Need to go beyond just identifying important pixels...



CD can measure the importance of different
frequencies in the image to the model’s prediction

Original image 0.225 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Frequency band +0.1

0.1 0.2 0.3 0.4



Goals of (faithful) interpretation

e Save on data collection
e understand which features drive the predictions
e give trust to using deep learning

e distill the DL model into a simple model (e.g. generative and mechanistic)
Success of these goals serves as validation

““Data science process: one culture”



) Predictability
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Summary & e
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nd exploration \ and visualization
Modeling and
algorithms

formulation
g is 8 widely accepted pertu

te domai

Stability

Veridical data science (trustworthy Al) through

e PCS framework (workflow and documentation on github) advocating best
practices for a responsible, reliable, reproducible and transparent DSLC to
reach trustworthy data conclusions

e PCS inference incorporating data and model (researcher) perturbations

e PDR interpretation framework guides selection and evaluation of
interpretation methods

e Case studies: iRF (siRF), ACD (*DeepTune omitted)

e Domain knowledge is important and PCS generates testable hypotheses
towards causality

Hope PCS and PDR are useful for your projects



Domain

auestion Predictability

Stability formulation

Bootstrap sampling is a widely accepted perturbation scheme for problems in genomics that is a useful baseline for data where we have limited
understanding of the dependencies. However, sequences located in similar regions of genome space (L. nearby on the DNA) exhibit dependent
behavior that is possible to account for. In particular, enhancers that perform redundant tasks known as “shadow enhancers" are believed to

confer robustness to regulatory processes (Hong, Hendrix, and Levine 2008). (Cannavé et al. 2016) studied shadow enhancers in detail and found
that over 70% of oci they examined have anywhers from 2-5 shadow enhancers (Cannavo et al. 2016) with highly overlapping patterns of activty.
o account for this potential dependency along the genome, we also consider block bootstrap perturbations using blocks of 5 and 10 sequences.

We define the stability of an interaction to be the proportion of times it i recovered by RIT across B = 100 RFs trained on an outer layer of
bootstrap samples using the 3 proposed perturbation schemes.

e @)
PCS next steps =4 -
e @\O/Q o

Modeling and
algorithms

Das Data Dara Data | Tats Data Data Data Dot

= <- makeBlocks(gene.coords, idcs=train.id,
makeBLocks (gen

oords, ain.id, s

makeBLocks gen

¥ st.id, s
<- makeBlocks (gene.coords, idcs=test.id,

Stability

e PCS-compliant projects

e Unpacking PCS for emergency medicine and social science

e Theory on PCS and fast algorithms to implement perturbations

e PCS computing platform

e PCS-guided DS book in prep



(P) (D)
Predictive Descriptive
Problem, Data,  accuracy accuracy Post hoc
& Audience —> Model ———  4;,sis

PDR next steps Bl e
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Iterate

e Cosmology projects (CNN-ACD, and iRF)
e Cancer drug discovery project (PCS-compliant)
e Epistasis discovery project (PCS-compliant)

e Simons Inst workshop at Berkeley on June 29 - July 2, 2020
“Interpretable Machine Learning in Natural and Social Sciences”

(co-organizers: Hima Lakkaraju, Zack Lipton, David Madigan, and BY.,
part of Simons summer cluster with Shai Ben-David and Ruth Urner)



People make “veridical’”’ happen

Thanks to my group

Critical
thinking

WTHE Ut

Algorithms
Inference

Humanly
understandable
conclusions

8/9/20 82



Opportunities and challenges

Within DS/ML/AI community, we need

* transdisciplinary, trans-methodological people with communication
skills

* position and vision papers

* attention to energy consumption impact on climate change



Opportunities and challenges
Outfacing for DS/ML/Al community, we need

* A few COMMON, robust and reliable “products”

* Certification and labels for open-source and SAFE software

* Rigorous evaluation process of new algorithms (modularity is a virtue)

(e.g. taking things apart like in red-tagging in software development)



For veridical data science,
academic/industry/government leadership and
funding agencies need to incentivize

* Quality research and trustworthy publication, not paper counting
* “Team-brain” to solve complex transdisciplinary problems

* Fair collaborative environment so that the best arguments win



Our papers

1. Veridical data science
B. Yu and K. Kumbier (2020), PNAS

Veridical Data Science

(old title: Three principles of data science: ,
predictability, computability and stability (PCS)) A9} edictability

) d
J“ J“ 0‘\ .
DO

LN

V7
AN
AN

Computability

i\

(\Stability

2. Definitions, methods and applications in interpretable machine learning
J. Murdoch, C. Singh, K. Kumber, R. Abbasi-Asl, and B. Yu
(2019), PNAS

(P) (D)
Predictive Descriptive

Problem, Data,  accuracy accuracy Post hoc
& Audience —> Model ——— analysis
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(R) relevancy
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Iterate



Upcoming book on data science by MIT Press

Coming at the end of 2021 with a free on-line interactive version in the spring

Veridical Data Science: A Book _ — g
Bin Yu'? and Rebecca Barter’ 29 AR 3 Berkﬁley

‘Department of Statistics, UC Berkeley ; D
0 ’ = 6o UNIVERSITY OF CALIFORNIA
2Department of Electrical Engineering and Computer Science, UC Berkeley : e

. o o - o

What skills does the book teach? Core guiding principles for the book

Veridical Data Science (VDS) will teach the critical thinking, analytic,

human-interaction and communication skills required to effectively The DS Lifecyc/e Three realms PCS frame work

formulate problems and find reliable and trustworthy solutions.

VDS explains concepts using visuals and plain English, rather than Question

math and code.

The primary skills taught are: Communicaion **"2" Guestion formulation

of results and data collection ”
Post hoc analysl \Data cleaning
Critical thinking and intepretation_ and exploration ? ?
of results \ /
Modeling F;'g"t;e Decisions
The Data Science Lifecycle is an iterative Readers will learn to view every data The PCS framework provides concrete
process that takes the analyst from problem problem through the lens of connecting  techniques for finding evidence for the
formulation, data cleaning, exploration, the three realms: connections between the three realms.
algorithmic analysis, and finally to obtaining (1) the question being asked and the Predictability: if the patterns found in the
a verifiable solution that can be used for data collected (and the reality the original data also appear in withheld or
future decision-making. data represents) new data, they are said to be predictable.
(2) the algorithms used to represent the If an analysis or algorithm finds predictable
Blending together concepts from statistics, data patterns, then these patterns are likely to
computer science and domain knowledge, (3) future data on which these algorithms be capturing real phenomena.
Technical skills the data science life cycle is an iterative will be used to guide decision-making. Computability: algorithmic and data

process that involves human analysts learning Guiding the reader to connect the three efficiency and scalability is essential to
from data and refining their project-specific realms is a means of guiding the reader ensuring that the results and solutions
questions and analytic approach as they learn.  through the data science lifecycle. (e.g. a predictive algorithm) can be

efficiently applied to new data.
. Stability: minimum requirement for

Intended Reader/Audience reproducibility. If results change in the

presence of minor modifications of the

data (e.g. via perturbations) or human

analytic decisions, then there might not

be a strong connection between the

analysis/algorithms and the reality that

underlies the data.

Anyone who wants to learn the intuition and critical thinking skills to become a data
scientist or work with data scientists.

Neither a mathematical nor a coding background is required.

VDS could form the basis of a semester- or multi-semester-long introductory data
science university course, either as an upper-division undergraduate or early graduate-
level course.

SIS Interested? Get in touch!
Bin Yu Rebecca Barter
Email: binyu@stat.berkeley.edu Email: rebeccabarter@berkeley.edu
Website: https://www.stat.berkeley.edu/~binyu/Site/Welcome.html Website: www.rebeccabarter.com

Twitter: @rlbarter




Thank you!

Visit Bin Yu’s website for more info
https://binyu.stat.berkeley.edu/
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