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What is data science?
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Data science is the re-merging of
computational and statistical thinking in the

context of domain problems :
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Biomedical data problems are pressing
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An empirically proven subfield of ML is
predictive modeling

GenenTech:

Risk scores and predictive modeling
* Tools to improve clinical trials design/analysis

Basic biological research using —omics data
* Medical imaging automation



2011: Movie reconstruction using fMRI signals

/i

A. Vu T. Naselaris

Current Biology 21, 1641-1646, October 11, 2011 ©2011 Elsevier Ltd All rights reserved DOI 10.1016/}.cub.2011.08.031

Report
Reconstructing Visual Experiences from
Brain Activity Evoked by Natural Movies

The Invention Issue 2011

Yuval Benjamini




Data and reconstruction (nishimoto et al, 2011)

Clip reconstructed
from brain activity

This project was the starting point of our work on stability -
| wanted to Interpret the forward model to do science and for causality.



2014-2018

Iterative random forests to discover predictive
and stable high-order interactions

¥p  SumantaBasu™“', Karl Kumbier®', James B. Brown“***?, and Bin Yu“*4?

Co-authors

S. Basu K. Kumbier B. Brown

Culmination of 3+ years of work



2018: Chan Zuckerberg Biohub Intercampus Award
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Image credits: Rima Arnout.



2015-2019

The DeepTune framework for modeling and
characterizing neurons in visual cortex area V4

Abbasi-Asl, Chen, Bloniarz, Oliver, Willmore, Gallant, and Y. (submitted, 2018)
https://www.biorxiv.org/content/early/2018/11/09/465534

Culmination of 3+ years of work

Reza Abbasi-Asl Adam Bloniarz

In collaboration with

Mike Oliver Ben Willmore Jack Gallant ’


https://www.biorxiv.org/content/early/2018/11/09/465534

Scientific machine learning (sML)
(Machine learning or Al for science)

* It uses machine learning for scientific research to extract,
from data, discoveries, theory, and knowledge

* It builds scientific principles in machine learning
algorithms

* [t iterates between the above two steps

* It subjects itself to the scientific standard of the domain



Our approach to sML

“Embedded” students/postdocs work on site,

in the wet lab

. 4
_ Genersiaton

Generalization: workflow, algorithms, theory




sML calls for a data science
‘“strong inference”

“Why should there be such rapid advances in some fields and not in others?
| think the usual explanations that we tend to think of such as the
tractability of the subject, or the quality or education of the men drawn into
it, or the size of research contracts are important but inadequate. | have
begun to believe that the primary factor in scientific advance is an
intellectual one.

These rapidly moving fields are fields where a particular method of doing
scientific research is systematically used and taught, an accumulative method
of inductive inference that is so e)yfective that | think it should be given the
name of ‘strong inference.””’

John R. Platt in “Strong Inference” (1964)
Science, Vol. 146, 347-353



DS is conducted in a DS life cycle
an iterative process with “integrated” steps

Stability is a paramount consideration

Domain Exploration &

visualization

question e Data collection Eama Datacleaning Eame

5 Stability

Update domain Interpretation Post hoc

of results

< < <— Modeling

knowledge analysis
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What is data science strong inference?

* It is a particular process of carrying out a data science life cycle that is
systematically used and taught, an accumulative process of inductive
inference

* It devises multiple or alternative pathways of the process including
validation through prediction, interpretation, and follow-up
experiments and seeks consistent or stable, valid, and reproducible
conclusions

Exploration &
visualization

Domain
e Data collection B Datacleaning R

question

Stability

Update domain Interpretation Post hoc




Bernoulli 19(4), 2013, 1484-1500
DOI: 10.3150/13-BEJSP14

Stability

BIN YU

A platform to integrate a myriad of works in the literature and to
develop new methods...

It is @ minimum requirement for interpretability, reproducibility, and
scientific hypothesis generation or intervention design.



Stability Principle

Stability is fundamental after predictability - both need computability
Limiting results such as CLT are stability results

Stability Principle seeks stability based on clearly defined
1. Target(s) of interest (relevant to the domain problem in the DS cycle)
2. Appropriate perturbation(s) to inputs to the DS cycle, including
data cleaning methods, EDA, data, models/algorithms, synthetic
data, and ad-hoc human decisions
3. Appropriate Stability measure(s) on the target(s) after perturbation
Appropriateness of perturbations and stability metrics is

determined and debated based on subject knowledge, experience, judgment,
and data collection process, resource, regulation, interpretability,



Examples of data perturbation

* Cross-validation partition

* Bootstrap

* Subsampling

* Adding small amount of noise to data

* Bootstrapping residuals in linear regression and liner time
series models

* Block-bootstrap

* *Data perturbations through synthetic data such as
mechanistic simulation models

* *Adversarial examples in deep learning

* *Data under different environments/conditions
(invariance)

* Differential Privacy (DP)



Examples of model/algorithm perturbation

* Robust statistics models

* Semi-parametric models

* Lasso and Ridge models

* Different modes of a non-convex empirical minimization
* Different versions of Deep Learning algorithms

* Different kernel machines

* Sensitivity analysis of Bayesian modeling



PCS for DS strong inference

Y. and Kumbier (2019). Three principles of data science: PCS
https://arxiv.org/abs/1901.08152

The PCS framework for DS life cycle:
workflow and documentation

* PCS workflow:
- predictability as a check for reality (algorithmic modeling)
- computability as a necessity (algorithmic modeling)
- stability as a minimum requirement for reproducibility and
interpretability, and as a significant expansion of statistical
inference (data modeling)

* PCS documentation: narratives and codes to explain assumptions
and justify judgment calls



Remarks on P and C in PCS

* Predictability in broad sense: both global and local prediction
performance and relative to different perturbations (including
future data) and a first step in PCS inference

* Computability in the broad sense: computation considerations in
the DS life cycle starting with data collection

* Computability in the narrow sense: computational scalability
including storage, communication cost and speed, and using
appropriate simulation models to algorithmic development and
model validation



Dual roles of generative models (data
modeling culture) in PCS

We consider both probabilistic or PDE-driven generative
models

* They can concisely summarize past data and prior domain
knowledge with parameters in them estimated by current

data

* They can also be used to generate synthetic data as a form
of regularization with current data to add stability



6-step PCS documentation is the bridge

mental construct

Reality Models

Dangerous
inference & conclusions

Unsubstantiated assumptions

Data

Banking image credits: https://www.kapturecrm.com/banking-crm/ and http://nasmicrofinance.org/index.php/about-us-style-1/


https://www.kapturecrm.com/banking-crm/

PCS documentation in Rmarkdown:
narratives and codes

Stability formulation

Bootstrap sampling is a widely accepted perturbation scheme for problems in genomics that is a useful baseline for data where we have limited
understanding of the dependencies. However, sequences located in similar regions of genome space (i.e. nearby on the DNA) exhibit dependent
behavior that is possible to account for. In particular, enhancers that perform redundant tasks known as “shadow enhancers” are believed to
confer robustness to regulatory processes (Hong, Hendrix, and Levine 2008). (Cannavo et al. 2016) studied shadow enhancers in detail and found
that over 70% of loci they examined have anywhere from 2-5 shadow enhancers (Cannavo et al. 2016) with highly overlapping patterns of activity.
To account for this potential dependency along the genome, we also consider block bootstrap perturbations using blocks of 5 and 10 sequences.
We define the stability of an interaction to be the proportion of times it is recovered by RIT across B = 100 RFs trained on an outer layer of
bootstrap samples using the 3 proposed perturbation schemes.

# Block bootstrap for blocks of size 5 and 1(

block5.tr <- makeBlocks(gene.coords, idcs=train.id, size=5)
blockl0.tr <- makeBlocks(gene.coords, idcs=train.id, size=10)
block5.tst <- makeBlocks(gene.coords, idcs=test.id, size=5)

blockl0.tst <- makeBlocks(gene.coords, idcs=test.id, size=10)

iPython or Jupyter Notebook could also be used.



How to choose perturbations in PCS?

* One can never consider all possible perturbations

* A pledge to the stability principle in PCS would lead to null results if
too many perturbations were considered

* PCS requires documentation on the appropriateness of all the
perturbations

* To avoid null results, PCS encourages careful and well-founded
choices of the perturbations through PCS documentation.



Causality evidence spectrum

Mechanistic

Average effect
Individual level

Group level

Stable, replicable Effect depends on the group

Stability implicit in causal
inference: e.g. SUTVA

PCS works towards causality:

Predictability + stability (+ computability)

4

interpretability and hypothesis generation

25



Frontier in ML/Stats: interpretation

EU's General Data Protection Regulation (GDPR) (2016)
gives a “right” to explanation, and demands ML/Stats
algorithms to be human interpretable

Why did you predict
42 for this data point?

————— e — o

/ ’\*awkward silence*®
_____ N

Image credit: https://christophm.github.io/interpretable-ml-book/



https://christophm.github.io/interpretable-ml-book/

What is interpretable ML (iML)?

(Murdoch, Singh, Kumbier, Abbasi-Asl, and Y., accepted by PNAS, 2019)
“Interpretable Machine Learning: Definitions, Methods and Applications”

https://arxiv.org/abs/1901.04592

“We define interpretable machine learning as the
extraction of relevant knowledge from a machine-learning
model concerning relationships either contained in data
or learned by the model. Here, we view knowledge as
being relevant if it provides insight for a particular
audience into a chosen problem. These insights are often
used to guide communication, actions, and discovery.”



iIML-PDR in one figure

(P) (D)
Predictive Descriptive
Problem, Data,  accuracy accuracy Post hoc

& Audience @—> Model ———  54)ysis

[ (R) relevancy \

Iterate

Ris key in the trade-off of Pand D



Desirable properties of
model-based interpretability

* Sparsity (e.g. sparse logistic regression for lung cancer
prediction)

* Simulatability (e.g. decision tree for lung cancer prediction)
* Modularity (e.g. generalized additive models, layers in DL)
* Domain-based feature engineering (e.g. credit score)

* Model-based feature engineering (e.g. clustering and
dimensionality reduction like PCA)

Murdoch et al (2019) contains iML references and examples to illustrate PDR.



PCS inference (basic)

1. Problem formulation: Translate the domain question to be answered by a
model/algorithm (or multiple of them and seek stability). Specify a target of
interest.

1. Prediction screening: Filter models/algorithms based on prediction accuracy on
held out test data — a sample split approach (it helps assess model bias)

1. Target value perturbation distribution: Evaluate the target of interest across
“appropriate” data and model perturbations

1. Perturbation interval reporting: Summarize the target value perturbation
distribution.

PCS documentation: transparent narratives and codes on Rmarkdown or Jupyter
Notebook



tpr

Feature importance simultation study

simulation results for lasso feature selection in linear model
n=1000, p=630

Adding another method: Lasso (CV)+ asymptotic normal approx.
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PCS theory after good PCS empirical evidence
to analyze iterative Learning Algorithms

Equivalent

Algorithmic
stability

Generalization

“Stable algorithms can
not converge too fast...”

Practical
computability:
convergence rate Y. Chen

C.Jin

* Chen, Jin and Y. (2018) https://arxiv.org/abs/1804.01619

““Stability and convergence trade-off of iterative optimization
algorithms”



Case-study of PCS: iRF (Basu et al, 2018)

Iterative random forests to discover predictive
and stable high-order interactions

¥p Sumanta Basu™™“', Karl Kumbier®', James B. Brown“**'? and Bin Yu®®9?

Co-authors

S. Basu K. Kumbier B. Brown

Culmination of 3+ years of work



Order-4 interaction regulate eve stripe 2 in Drosophila
development
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Isley et al. (2013), Levine et al. (2013)



Regulatory interactions through
predictability and stability

Natural
phenomenon
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Capturing the form of genomic interactions

Interactions are high-order and
combinatorial in nature

Interactions can vary across space
and time as biomolecules carry
out different roles in varied
contexts

Interactions exhibit thresholding
behavior, requiring sufficient
levels of constitutive elements
before activating
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From genomic to statistical interactions

Transcription is initiated when a collection of  activating TFs
achieve sufficient DNA occupancy

!
R(x) = H {x; > 1;}

€8

Order- s interaction,
SC{l,....phI8]=s



Random Forests (RFs)

Breiman (2001)

Draw T bootstrap samples and fit a
modified CART to each sample.

1. Grow CART trees to purity

2. When selecting splitting
feature, choose a subset of
mt ry features uniformly at
random and optimize CART
criterion over subsampled
features.




Our iterative Random Forests (iRFs)
Basu et al (2018)

Core ideas

1. Interpret RF decision paths
2. Stabilize RF decision paths

1. Assess interaction stability



Interpreting RF: decrease in Gini Impurity
as importance measvure of a feature

Proportion positive
responses

T~(r

O
O

O O

(77, Np)

Number of
observations

Ny~

O

© 0

(7, Nr)

Decrease in Gini Impurity:

Mean Decrease in Impurity:
On average, how much does

splitting on a feature decrease the
Gini Impurity?




Feature-weighted RF
Amaratunga et al. (2014)

Feature
weights

Random Forest:
At each node of the decision tfree, uniformly sample I I I I I
mtry features to evaluate splitting criteria.
] 2 3 4
5

Feature-weighted Random Forest:

At each node of the decision free, sample mtry
features with probability proportional to I
u =

w & ]le_ 1 2 3 4



Iteratively re-weighted RF stabilize decision paths

Iteratively re-weighted
Random Forests

Feature weights

lter 1

lter 2

...................................................



Digression: Interactions in market baskets

Z1w’@‘11

— Feature-index sets




Random Intersection Trees (RIT)
Shah and Meinshausen (2014 ):fast computation uses sparsity

Randomly sampled o
class-C observation — w D@

“Survived”
@ O e < interaction




Random Intersection Trees (RIT)
Shah and Meinshausen (2014)
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Random Intersection Trees (RIT)
Shah and Meinshausen (2014)

Randomly sampled .
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Our Generalized RIT for Decision Trees
fast computation uses sparsity

Input: D, w®

T, C{1,...,p} Feature-index set

[split: 3] [spiit: 4]
- 6%
2,4,1

Output: Decision Paths and Predictiol

Z;, € {0,1} Prediction

Random Intersection Tre

S — RIT({ Zta it}ac>




Stability bagging

Stability Bagging
Qu tpout feature Draw B Bootstrap Samples

interaction sets with
stability scores:

{S, sta(S)}
SCH{l,...,p}

| B
sta(S :E ;ISES;)

Reference: (Breiman, 1996)



Computability of iRFs

e Same orderas RFs O(p X nlogn)
e Key difference between iRFs and RFs:
RIT (Random Intersection Trees) O(p™) ( kK ~ 1for very sparse data)

RIT is similar to Stochastic Gradient Descent (SGD) but for sparse 0-1
vectors in two ways:

- it uses one data point at each iteration
-- updates are local (using the the current data point and a previous fit)

RIT is also dissimilar to SGD in the sense that RIT uses a tree
construction for updates, not a sequential updates - this eliminates
possible solutions very quickly under sparsity
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2010; Fisher et al., 2012; Kvon et
al. 2014)

http://genome.ucsc.edu/cgi-bin/hgTracks?db=hg19




IRF increases stability hence

interpretability while maintaining

predictive accuracy

iRF ROC curve: enhancer
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IRF identifies 20 stable pairwise interactions
INn Drosophila — 80% are proven physical
inferactions in the literature

interaction (S)  sta(S) references
Gt, ZId 1 Harrison et al. (2011); Nien et al. (2011)
Twi, Z1d 1 Harrison et al. (2011); Nien et al. (2011)
Gt, Hb 1 Kraut and Levine (1991a,b); Eldon and Pirrotta (1991)
Gt, Kr 1 Kraut and Levine (1991b); Struhl et al. (1992); Capovilla et al. (1992); Schulz
and Tautz (1994)
Gt, Twi 1 Li et al. (2008)
Kr, Twi 1 Liet al. (2008)
Kr, Z1d 0.97  Harrison et al. (2011); Nien et al. (2011)
Gt, Med 097 -
Bed, Gt 0.93  Kraut and Levine (1991b); Eldon and Pirrotta (1991)

Bed, Twi 0.93  Liet al. (2008)
Hb, Twi 0.93  Zeitlinger et al. (2007)
Med, Twi 0.93  Nguyen and Xu (1998)

Kr, Med 0.9 =
D, Gt 087 -
Med, Z1d 0.83  Harrison et al. (2011)
Hb, Z1d 0.80  Harrison et al. (2011); Nien et al. (2011)
Hb, Kr 0.80  Niisslein-Volhard and Wieschaus (1980); Jéckle et al. (1986); Hoch et al. (1991)
D, Twi 0.73 -
Bed, Kr 0.67  Hoch et al. (1991, 1990)

Bed, ZId 0.63  Harrison et al. (2011); Nien et al. (2011)




Stable interactions reflect
Boolean-type rules

34 or 4t or higher order interactions are suggestions
for Crispr experiments.



IRF is backbone for our CZB biohub project

Next-generation
statistical machine learning tools
to find interacting gene variants

at manageable computational cost

€l=je ==hlsile Takis’on phenotypes of interest

N

Iteration 1

Image credit: Rima Arnout



Summary on PCS

“The PCS framework aims at responsible, reliable, reproducible
and transparent analysis across fields... It can be used as a
recommendation system for scientific hypothesis generation
and experimental design. In particular, we propose (basic) PCS
inference for reliability measures on data results, extending
statistical inference to a much broader scope as current data
science practice entails.” Y. and Kumbier (2019)

The PCS framework and iML-PDR are effective steps towards
data science strong inference.

Case study: iterative Random Forests (iRF) and signed iRF (siRF)
for hypothesis generation of Boolean interactions



Papers on PCS and iML

Prediction

1.* Three principles of data science:
predictability, computability and stability (PCS)
(Y. and K. Kumbier, 2019)
https://arxiv.org/abs/1901.08152

Comp@ability

Data Data at: ata ata ita Data Data Data

Stability

2%, Interpretable machine Iearnlng definitions, methods and applications

@ J. Murdoch, C. Singh, K. Kumber, R. Abbasi-Asl, and Y.
(2019) (PNAS, to appear)

https://arxiv.org/abs/1901.04592
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iRF and siRF papers and software
* iRF paper in PNAS (2019)

Iterative random forests to discover predictive
and stable high-order interactions

/) Sumanta Basu™™“', Karl Kumbier®', James B. Brown“***?, and Bin Yu“®9?

Open source R implementation: https://cran.r-project.org/web/packages/iRF/

* Refining interaction search through signed iterative Random Forests (s-iRF) by
Kumbier, Basu, Brown, Celniker and Yu (2019)

https://arxiv.org/pdf/1810.07287.pdf

Software: https://github.com/sumbose/iRF
containing both iRF and s-iRF



https://cran.r-project.org/web/packages/iRF/
https://arxiv.org/pdf/1810.07287.pdf
https://github.com/sumbose/iRF

Thanks to my group members and grants

Goal: quality research even if it is often slow

+ National Science Foundation
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An upcoming book:

Data Science in Action: A Book
Bin Yu'? and Rebecca Barter'

'Department of Statisitcs, UC Berkeley

2Department of Electrical Engineering and Computer Science, UC Berkeley

Data science in action

What skills do we teach?

Data Science In Action (DSIA) will teach the critical thinking, analytic, and
communication skills required to effectively formulate problems and find
reliable and trustworthy solutions.

DSIA teaches the reader skills that are adaptable to any data-based problem.

The primary skills taught are:

®

Critical thinking

3

Technical skills

\T.l

Communication

Core guiding principles

The DS Lifecycle

su
Communication Question formulation
of restlts and\data collection

1y ¥

VaAIi.dity and _ Data cleaning
stability analysis and exploration

S ¢

Prediction

The Data Science Lifecycle is an iterative process that takes the
analyst from problem formulation, data cleaning, exploration,
algorithmic analysis, and finally to obtaining a verifiable solution
that can be used for future decision-making.

Blending together concepts from statistics, computer science and
domain knowledge, the data science life cycle is an iterative
process that involves human analysts learning from data and
refining their project-specific questions and analytic approach as
they learn.

Three realms

Question

)4
? ?

Future

Decisions
Data

Readers will learn to view every data problem
through the lens of connecting the three realms:
(1) the question being asked and the data
collected (and the reality the data represents)
(2) the algorithms used to represent the data
(3) future data on which these algorithms will
be used to guide decision-making.
Guiding the reader to connect the three realms
is a means of guiding the reader through the
data science lifecycle.

Intended Audience

Anyone who wants to learn the intuition and critical thinking skills to become a data scientist or work with data scientists.

Neither a mathematical nor a coding background is required.

DSIA could form the basis of a semester- or multi-semester-long introductory data science university course, either as an

upper-division undergraduate or early graduate-level course.

PCS

Prediction
)

Stability

The PCS framework provides concrete techniques
for finding evidence for the connections between
the three realms.

Predictability: if the patterns found in the original
data also appear in withheld or new data, they
are said to be predictable. If an aanlysis or
algorithm finds predictable patterns, then these
patterns are likely to be capturing real
phenomena.

Computability: algorithmic and data efficiency and
scalability is essential to ensuring that the results
and solutions (e.g. a predictive algorithm) can be
applied to new data

Stability: minimum requirement for reproducibility.
If results change in the presence of minor
modifications of the data (e.g. via perturbations) or
human analytic decisions, then there might not
be a strong connection between the analysis/
algorithms and the reality that underlies the data.



Berkeley’s DS Intellectual and
Organizational Vision

Summary of the 2016 Report by the Faculty CS/Stat Faculty
Advisory Board of the Data Science Planning co-creating and co-teaching
Initiative data8.org and ds100.org

Prepared: 19 August 2016
Cathryn Carson, FAB Chair

DS Maijor, Fall 2018 (first class
Contents graduated in 2019)

A. Rationale for action: Why Berkeley, why now
B. Recommendations

1. Organizational form: Core and connections

2. Faculty FTE: Campus-wide surge and strategic foci New Associate Provost of Div. of
3. Fundraising pillar and revenue generation Data SCience and Dean Of |-SChOOl'

C. Situational challenges and next steps

D. The Faculty Advisory Board Jennifer ChayeS

Data8 Spring19 — 1500 students Data100 Spring19: 1,100students

Home » Education Program

Data Science Education Program




Thank You!

PCS :
Questions?




