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Genomics has revolutionized biology, enabling the interrogation
of whole transcriptomes, genome-wide binding sites for proteins,
and many other molecular processes. However, individual genomic
assays measure elements that interact in vivo as components of
larger molecular machines. Understanding how these high-order
interactions drive gene expression presents a substantial statistical
challenge. Building on random forests (RFs) and random intersec-
tion trees (RITs) and through extensive, biologically inspired simu-
lations, we developed the iterative random forest algorithm (iRF).
iRF trains a feature-weighted ensemble of decision trees to detect
stable, high-order interactions with the same order of computa-
tional cost as the RF. We demonstrate the utility of iRF for high-
order interaction discovery in two prediction problems: enhancer
activity in the early Drosophila embryo and alternative splicing
of primary transcripts in human-derived cell lines. In Drosophila,
among the 20 pairwise transcription factor interactions iRF iden-
tifies as stable (returned in more than half of bootstrap repli-
cates), 80% have been previously reported as physical interactions.
Moreover, third-order interactions, e.g., between Zelda (Zld), Giant
(Gt), and Twist (Twi), suggest high-order relationships that are
candidates for follow-up experiments. In human-derived cells, iRF
rediscovered a central role of H3K36me3 in chromatin-mediated
splicing regulation and identified interesting fifth- and sixth-order
interactions, indicative of multivalent nucleosomes with specific
roles in splicing regulation. By decoupling the order of interac-
tions from the computational cost of identification, iRF opens addi-
tional avenues of inquiry into the molecular mechanisms underly-
ing genome biology.

high-order interaction | random forests | stability |
interpretable machine learning | genomics

H igh-throughput, genome-wide measurements of protein–
DNA and protein–RNA interactions are driving new

insights into the principles of functional regulation. For instance,
databases generated by the Berkeley Drosophila Transcrip-
tional Network Project (BDTNP) and the ENCODE consor-
tium provide maps of transcription factor (TF) binding events
and chromatin marks for substantial fractions of the regulatory
factors active in the model organism Drosophila melanogaster

and human-derived cell lines, respectively (1–6). A central
challenge with these data lies in the fact that chromatin
immunoprecipitation sequencing (ChIP-seq), the principal tool
used to measure DNA–protein interactions, assays a single
protein target at a time. In well-studied systems, regulatory fac-
tors such as TFs act in concert with other chromatin-associated
and RNA-associated proteins, often through stereospecific inter-
actions (5, 7); for a review see ref. 8. While several methods
have been developed to identify interactions in large genomics
datasets, for example refs. 9–11, these approaches either focus on
pairwise relationships or require explicit enumeration of higher-
order interactions, which becomes computationally infeasible for
even moderate-sized datasets. In this paper, we present a compu-
tationally efficient tool for directly identifying high-order interac-

tions in a supervised learning framework. We note that the inter-
actions we identify do not necessarily correspond to biomolecu-
lar complexes or physical interactions. However, among the pair-
wise Drosophila TF interactions identified as stable, 80% have
been previously reported (SI Appendix, section S4). The empir-
ical success of our approach, combined with its computational
efficiency, stability, and interpretability, make it uniquely posi-
tioned to guide inquiry into the high-order mechanisms underly-
ing functional regulation.

Popular statistical and machine-learning methods for detect-
ing interactions among features include decision trees and their
ensembles: CART (12), random forests (RFs) (13), Node Har-
vest (14), Forest Garrote (15), and Rulefit3 (16), as well as meth-
ods more specific to gene–gene interactions with categorical fea-
tures, such as logic regression (17), multifactor dimensionality
reduction (18), and Bayesian epistasis mapping (19). With the
exception of RFs, the above tree-based procedures grow shallow
trees to prevent overfitting, excluding the possibility of detect-
ing high-order interactions without affecting predictive accuracy.
RFs are an attractive alternative, leveraging high-order inter-
actions to obtain state-of-the-art prediction accuracy. However,
interpreting interactions in the resulting tree ensemble remains
a challenge.

We take a step toward overcoming these issues by proposing
a fast algorithm built on RFs that searches for stable, high-order
interactions. Our method, the iterative random forest algorithm
(iRF), sequentially grows feature-weighted RFs to perform soft
dimension reduction of the feature space and stabilize decision
paths. We decode the fitted RFs using a generalization of the
random intersection trees algorithm (RIT) (20). This procedure
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identifies high-order feature combinations that are prevalent on
the RF decision paths. In addition to the high predictive accu-
racy of RFs, the decision tree base learner captures the under-
lying biology of local, combinatorial interactions (21), an impor-
tant feature for biological data, where a single molecule often
performs many roles in various cellular contexts. Moreover,
invariance of decision trees to monotone transformations (12)
to a large extent mitigates normalization issues that are a major
concern in the analysis of genomics data, where signal-to-noise
ratios vary widely even between biological replicates (22, 23).
Using empirical and numerical examples, we show that iRF is
competitive with RF in terms of predictive accuracy and ex-
tracts both known and compelling candidate interactions in
two motivating biological problems in epigenomics and tran-
scriptomics. An open-source R implementation of iRF is avail-
able through CRAN (https://cran.r-project.org/web/packages/
iRF/index.html).

Our Method: Iterative RFs
The iRF algorithm searches for high-order feature interactions
in three steps. First, iterative feature reweighting adaptively
regularizes RF fitting. Second, decision rules extracted from
a feature-weighted RF map from continuous or categorical to
binary features. This mapping allows us to identify prevalent
interactions in the RF through a generalization of the RIT, a
computationally efficient algorithm that searches for high-order
interactions in binary data (20). Finally, a bagging step assesses
the stability of recovered interactions with respect to the boot-
strap perturbation of the data. We briefly review the feature-
weighted RF and RIT before presenting iRF.

Preliminaries: Feature-Weighted RF and RIT. To reduce the dimen-
sionality of the feature space without removing marginally unim-
portant features that may participate in high-order interactions,
we use a feature-weighted version of RF. Specifically, for a
set of nonnegative weights w =(w1, . . . ,wp), where p is the
number of features, let RF (w) denote a feature-weighted RF
constructed with w . In RF (w), instead of taking a uniform ran-
dom sample of features at each split, one chooses the j th fea-
ture with probability proportional to wj . Weighted-tree ensem-
bles have been proposed in ref. 24 under the name “enriched
random forests” and used for feature selection in genomic data
analysis. Note that with this notation, Breiman’s original RF
amounts to RF (1/p, . . . , 1/p).

iRF builds upon a generalization of the RIT, an algorithm
that performs a randomized search for high-order interactions
among binary features in a deterministic setting. More precisely,
the RIT searches for co-occurring collections of s binary fea-
tures, or order-s interactions, that appear with greater frequency
in a given class. The algorithm recovers such interactions with
high probability (relative to the randomness it introduces) at a
substantially lower computational cost than O(ps), provided the
interaction pattern is sufficiently prevalent in the data and indi-
vidual features are sparse. We briefly present the basic RIT algo-
rithm and refer readers to the original paper (20) for a complete
description.

Consider a binary classification problem with n observations
and p binary features. Suppose we are given data in the form
(Ii ,Zi), i =1, . . . ,n . Here, each Zi 2 {0, 1} is a binary label and
Ii ✓ {1, 2, . . . , p} is a feature-index subset indicating the indexes
of “active” features associated with observation i . In the context
of gene transcription, Ii can be thought of as a collection of TFs
and histone modifications with abnormally high or low enrich-
ments near the i th gene’s promoter region, and Zi can indicate
whether gene i is transcribed or not. With these notations, preva-
lence of an interaction S ✓ {1, . . . , p} in the class C 2 {0, 1} is
defined as

Pn(S |Z = C ) :=

Pn
i=1 1(S✓ Ii)Pn
i=1 1(Zi = C )

,

where Pn denotes the empirical probability distribution and 1(·)
the indicator function. For given thresholds 0  ✓0 < ✓1  1, the
RIT performs a randomized search for interactions S satisfying

Pn(S |Z = 1) � ✓1, Pn(S |Z = 0)  ✓0. [1]

For each class C 2 {0, 1} and a prespecified integer D , let
j1, ..., jD be randomly chosen indexes from the set of observa-
tions {i : Zi =C}. To search for interactions S satisfying con-
dition 1, the RIT takes D-fold intersections Ij1\Ij2 \ . . .\IjD
from the randomly selected observations in class C . To reduce
computational complexity, these interactions are performed in a
tree-like fashion (SI Appendix, section S1, Algorithm 1), where
each nonleaf node has nchild children. This process is repeated
M times for a given class C , resulting in a collection of survived
interactions S =

SM
m=1 Sm , where each Sm is the set of inter-

actions that remains following the D-fold intersection process in
tree m =1, . . . ,M . The prevalences of interactions across dif-
ferent classes are subsequently compared using condition 1. The
main intuition is that if an interaction S is highly prevalent in a
particular class, it will survive the D-fold intersection with high
probability.

iRFs. The iRF algorithm places interaction discovery in a super-
vised learning framework to identify class-specific, active index
sets required for the RIT. This framing allows us to recover high-
order interactions that are associated with accurate prediction in
feature-weighted RFs.

We consider the binary classification setting with training data
D in the form {(xi , yi)}ni=1, with continuous or categorical fea-
tures x=(x1, . . ., xp), and a binary label y 2 {0, 1}. Our goal is
to find subsets S ✓ {1, . . . , p} of features, or interactions, that
are both highly prevalent within a class C 2 {0, 1} and that pro-
vide good differentiation between the two classes. To encour-
age generalizability of our results, we search for interactions in
ensembles of decision trees fitted on bootstrap samples of D.
This allows us to identify interactions that are robust to small
perturbations in the data. Before describing iRF, we present a
generalized RIT that uses any RF, weighted or not, to generate
active index sets from continuous or categorical features. Our
generalized RIT is independent of the other iRF components in
the sense that other approaches could be used to generate the
input for the RIT. We remark on our particular choices in SI

Appendix, section S2.

Generalized RIT (Through an RF). For each tree t =1, . . .,T in the
output tree ensemble of an RF, we collect all leaf nodes and
index them by jt =1, ..., J (t). Each feature–response pair (xi , yi)
is represented with respect to a tree t by (Iit

,Zit ), where Iit

is the set of unique feature indexes falling on the path of the
leaf node containing (xi , yi) in the tth tree. Hence, each (xi , yi)
produces T such index set and label pairs, corresponding to
the T trees. We aggregate these pairs across observations and
trees as

R = {(Iit
,Zit ) : xi falls in leaf node it of tree t} [2]

and apply RIT on this transformed dataset R to obtain a set of
interactions.

We now describe the three components of iRF. A depiction
is shown in Fig. 1 and the complete workflow is presented in SI

Appendix, section S1, Algorithm 2. We remark on the algorithm
further in SI Appendix, section S2.
1) Iteratively reweighted RF. Given an iteration number K ,
iRF iteratively grows K feature-weighted RFs RF (w (k)),
k =1, . . .,K , on the data D. The first iteration of iRF (k =1)
starts with w

(1) := (1/p, . . . , 1/p) and stores the importance
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Fig. 1. iRF workflow. Iteratively reweighted RFs (blue boxes) are trained
on full data D and pass Gini importance as weights to the next iteration. In
iteration K (red box), feature-weighted RFs are grown using w

(K) on B boot-
strap samples of the full data D(1), . . . ,D(B). Decision paths and predicted
leaf node labels are passed to the RIT (green box), which computes preva-
lent interactions in the RF ensemble. Recovered interactions are scored for
stability across (outer-layer) bootstrap samples.

(mean decrease in Gini impurity) of the p features as v
(1) =

(v (1)
1 , . . . , v (1)

p ). For iterations k =2, . . .,K , we set w (k) = v
(k�1)

and grow a weighted RF with weights set equal to the RF feature
importance from the previous iteration. Iterative approaches
for fitting RFs have been previously proposed in ref. 25 and
combined with hard thresholding to select features in micro-
array data.
2) Generalized RIT (through RF(w(K))). We apply the generalized
RIT to the last feature-weighted RF grown in iteration K . That
is, decision rules generated in the process of fitting RF (w (K))
provide the mapping from continuous or categorical to binary
features required for the RIT. This process produces a collection
of interactions S.
3) Bagged stability scores. In addition to bootstrap sampling in
the weighted RF, we use an “outer layer” of bootstrapping to
assess the stability of recovered interactions. We generate boot-
strap samples of the data D(b), b=1, . . .,B , fit RF (w (K)) on
each bootstrap sample D(b), and use the generalized RIT to iden-

tify interactions S(b) across each bootstrap sample. We define the
stability score of an interaction S 2 [B

b=1S(b) as

sta(S) =
1
B

·
BX

b=1

1{S2 S(b)},

representing the proportion of times (out of B bootstrap sam-
ples) an interaction appears as an output of the RIT. This aver-
aging step is exactly the bagging idea of Breimain (26).

iRF Tuning Parameters. The iRF algorithm inherits tuning param-
eters from its two base algorithms, RF and RIT. The predictive
performance of RF is known to be highly resistant to choice
of parameters (13), so we use the default parameters in the R
randomForest package. Specifically, we set the number of trees
ntree=500 and the number of variables sampled at each node
mtry=

p
p and grow trees to purity. For the RIT algorithm, we

use the basic version or algorithm 1 of ref. 20 and grow M =500
intersection trees of depth D =5 with nchild =2, which empir-
ically leads to a good balance between computation time and
quality of recovered interactions. We find that both prediction
accuracy and interaction recovery of iRF are fairly robust to
these parameter choices (SI Appendix, section S2.6).

In addition to the tuning parameters of RF and RIT, the iRF
workflow introduces two additional tuning parameters: (i) num-
ber of bootstrap samples B and (ii) number of iterations K .
Larger values of B provide a more precise description of the
uncertainty associated with each interaction at the expense of
increased computation cost. In our simulations and case studies
we set B 2 (10, 30) and find that results are qualitatively similar
in this range. The number of iterations controls the degree of reg-
ularization on the fitted RF. We find that the quality of recovered
interactions can improve dramatically for K > 1 (SI Appendix,
section S5). In Case Study I: Enhancer Elements in Drosophila

and Case Study II: Alternative Splicing in a Human-Derived Cell

Line, we report interactions with K selected by fivefold cross-
validation.

Simulation Experiments
We developed and tested iRF through extensive simulation stud-
ies based on biologically inspired generative models using both
synthetic and real data (SI Appendix, section S5). In particular,
we generated responses using Boolean rules intended to reflect
the stereospecific nature of interactions among biomolecules
(27). In total, we considered seven generative models built from
and (AND), or (OR), and exclusive OR (XOR) rules, with the
number of observations and features ranging from 100 to 5,000
and 50 to 2,500, respectively. We introduced noise into our
models both by randomly swapping response labels for up to
30% of observations and through RF-derived rules learned on
held-out data.

We find that the predictive performance of iRF (K > 1) is gen-
erally comparable with that of RF (K =1). However, iRF recov-
ers the full data-generating rule, up to an order-8 interaction in
our simulations, as the most stable interaction in many settings
where RF rarely recovers interactions of order >2. The computa-
tional complexity of recovering these interactions is substantially
lower than that of competing methods that search for interac-
tions incrementally (SI Appendix, section S6 and Fig. S18).

Our experiments suggest that iterative reweighting encourages
iRF to use a stable set of features on decision paths (SI Appendix,
Fig. S9). Specifically, features that are identified as important in
early iterations tend to be selected among the first several splits
in later iterations (SI Appendix, Fig. S10). This allows iRF to
generate partitions of the feature space where marginally unim-
portant, active features become conditionally important and thus
more likely to be selected on decision paths. For a full descrip-
tion of simulations and results, see SI Appendix, section S5.
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Case Study I: Enhancer Elements in Drosophila
Development and function in multicellular organisms rely on
precisely regulated spatiotemporal gene expression. Enhancers
play a critical role in this process by coordinating combinatorial
TF binding, whose integrated activity leads to patterned gene
expression during embryogenesis (28). In the early Drosophila

embryo, a small cohort of ⇠40 TFs drive patterning (for a review
see ref. 29), providing a well-studied, simplified model system
in which to investigate the relationship between TF binding and
enhancer activities. Extensive work has resulted in genome-wide,
quantitative maps of DNA occupancy for 23 TFs (30) and 13
histone modifications (6), as well as labels of enhancer status
for 7,809 genomic sequences in blastoderm (stage 5) Drosophila

embryos (1, 31). See SI Appendix, section S3 for descriptions of
data collection and preprocessing.

To investigate the relationship between enhancers, TF bind-
ing, and chromatin state, we used iRF to predict enhancer status
for each of the genomic sequences (3,912 training, 3,897 test).
We achieved an area under the precision-recall curve (AUC-
PR) on the held-out test data of 0.5 for K =5 (Fig. 2A). This
corresponds to a Matthews correlation coefficient (MCC) of
0.43 [positive predictive value (PPV) of 0.71] when predicted
probabilities are thresholded to maximize MCC in the train-
ing data.

Fig. 2B reports stability scores of recovered interactions for
K =5. We note that the data analyzed are whole embryo and
interactions found by iRF do not necessarily represent phys-
ical complexes. However, for the well-studied case of pair-
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Fig. 2. (A) Accuracy of iRF (AUC-PR) in predicting active elements from TF
binding and histone modification data. (B) The 20 most stable interactions
recovered by iRF after five iterations. Interactions that are a strict subset of
another interaction with stability score �0.5 have been removed for cleaner
visualization. iRF recovers known interactions among Gt, Kr, and Hb and
interacting roles of master regulator Zld. (C) Surface maps demonstrating
the proportion of active enhancers by quantiles of Zld, Gt, and Kr binding
(held-out test data). On the subset of data where Kr binding is lower than
the median Kr level, the proportion of active enhancers does not change
with Gt and Zld. On the subset of data with Kr binding above the median
level, the structure of the response surface reflects an order-3 AND interac-
tion: Increased levels of Zld, Gt, and Kr binding are indicative of enhancer
status for a subset of observations. (D) Quantiles of Zld, Gt, and Kr binding
grouped by enhancer status (balanced sample of held-out test data). The
block of active elements highlighted in red represents the subset of obser-
vations for which the AND interaction is active.

wise TF interactions, 80% of our findings with stability score
>0.5 have been previously reported as physical (SI Appendix,
section S4 and Table S1). For instance, interactions among
gap proteins Giant (Gt), Krüppel (Kr), and Hunchback (Hb),
some of the most well-characterized interactions in the early
Drosophila embryo (32), are all highly stable [sta(Gt-Kr)= 1.0,
sta(Gt-Hb)= 0.93, sta(Hb-Kr)= 0.73]. Physical evidence sup-
porting high-order mechanisms is a frontier of experimental
research and hence limited, but our excellent pairwise results
give us hope that high-order interactions we identify as stable
have a good chance of being confirmed by follow-up work.

iRF also identified several high-order interactions surrounding
the early regulatory factor Zelda (Zld) [sta(Zld -Gt-Twi)= 1.0,
sta(Zld -Gt-Kr)= 0.7]. Zld has been previously shown to play an
essential role during the maternal–zygotic transition (33, 34), and
there is evidence to suggest that Zld facilitates binding to regu-
latory elements (35). We find that Zld binding in isolation rarely
drives enhancer activity, but in the presence of other TFs, par-
ticularly the anterior–posterior (AP) patterning factors Gt and
Kr, it is highly likely to induce transcription. This generalizes
the dependence of Bicoid-induced transcription on Zld bind-
ing to several of the AP factors (36) and is broadly consistent
with the idea that Zld is potentiating, rather than an activating
factor (35).

More broadly, response surfaces associated with stable high-
order interactions indicate AND-like rules (Fig. 2C). In other
words, the proportion of active enhancers is substantially higher
for sequences where all TFs are sufficiently bound, compared
with sequences where only some of the TFs exhibit high levels
of occupancy. Fig. 2C demonstrates a putative third-order inter-
action found by iRF (sta(Kr-Gt-Zld)= 0.7). In Fig. 2C, Left, the
Gt-Zld response surface is plotted using only sequences for which
Kr occupancy is lower than the median Kr level, and the propor-
tion of active enhancers is uniformly low (<10%). The response
surface in Fig. 2C, Right is plotted using only sequences where
Kr occupancy is higher than median Kr level and shows that the
proportion of active elements is as high as 60% when both Zld

and Gt are sufficiently bound. This points to an order-3 AND
rule, where all three proteins are required for enhancer activa-
tion in a subset of sequences. In Fig. 2D, we show the subset of
sequences that correspond to this AND rule (highlighted in red),
using a superheat map (37), which juxtaposes two separately clus-
tered heat maps corresponding to active and inactive elements.
Note that the response surfaces are drawn using held-out test
data to illustrate the generalizability of interactions detected by
iRF. While overlapping patterns of TF binding have been previ-
ously reported (30), to the best of our knowledge this is the first
report of an AND-like response surface for enhancer activation.
Third-order interactions have been studied in only a handful of
enhancer elements, most notably eve stripe 2 (for a review see
ref. 38), and our results indicate that they are broadly important
for the establishment of early zygotic transcription and therefore
body patterning.

Case Study II: Alternative Splicing in a Human-Derived
Cell Line
In eukaryotes, alternative splicing of primary messenger RNA
(mRNA) transcripts is a highly regulated process in which mul-
tiple distinct mRNAs are produced by the same gene. In the
case of mRNAs, the result of this process is the diversification
of the proteome and hence the library of functional molecules
in cells. The activity of the spliceosome, the ribonucleoprotein
responsible for most splicing in eukaryotic genomes, is driven
by complex, cell-type–specific interactions with cohorts of RNA-
binding proteins (RBP) (39, 40), suggesting that high-order inter-
actions play an important role in the regulation of alternative
splicing. However, our understanding of this system derives from
decades of study in genetics, biochemistry, and structural biology.
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Learning interactions directly from genomics data has the poten-
tial to accelerate our pace of discovery in the study of co- and
posttranscriptional gene regulation.

Studies, initially in model organisms, have revealed that the
chromatin mark H3K36me3, the DNA-binding protein CTCF,
and a few other factors all play splice-enhancing roles (41–43).
However, the extent to which chromatin state and DNA-binding
factors interact en masse to modulate cotranscriptional splic-
ing remains unknown (44). To identify interactions that form
the basis of chromatin-mediated splicing, we used iRF to predict
thresholded splicing rates for 23,823 exons [RNA-seq percent-
spliced-in (PSI) values (https://github.com/guigolab/ipsa-nf);
11,911 training, 11,912 test], from ChIP-seq assays measuring
enrichment of chromatin marks and TF-binding events (253
ChIP assays on 107 unique TFs and 11 histone modifications).
Preprocessing methods are described in SI Appendix, section S3.

In this prediction problem, we achieved an AUC-PR on the
held-out test data of 0.51 for K =2 (Fig. 3A). This corresponds
to a MCC of 0.47 (PPV 0.72) on held-out test data when pre-
dicted probabilities are thresholded to maximize MCC in the
training data. Fig. 3B reports stability scores of recovered inter-
actions for K =2. We find interactions involving H3K36me3,
a number of interactions involving other chromatin marks, and
posttranslationally modified states of RNA Pol II. In particu-
lar, we find that the impact of serine 2 phosphorylation of Pol II
appears highly dependent on local chromatin state. Remarkably,
iRF identified an order-6 interaction surrounding H3K36me3
and S2 phospho-Pol II (stability score 0.5, Fig. 3 B and C) along

1

0

quantile

H
ig

h 
PS

I

0.0 0.5 1.0

H3K9me1 H4K20me1H3K79me2H3K36me3POLR2A POLR2AphosphoS2

POLR2A_POLR2AphosphoS2_H3K36me3_H3K79me2_H3K9me1_H4K20me1
POLR2A_H3K36me3_H3K4me1_H3K79me2
H3K36me3_H3K4me1_H3K79me2_H4K20me1
POLR2AphosphoS2_H3K36me3_H3K79me2_H3K9me3_H4K20me1
POLR2A_H3K36me3_H3K79me2_H3K9me3_H4K20me1
H3K36me3_H3K4me2
POLR2AphosphoS2_H3K27ac_H3K36me3_H4K20me1
POLR2A_POLR2AphosphoS2_H3K27ac_H3K36me3
POLR2A_H3K27ac_H3K36me3_H4K20me1
H3K36me3_H3K4me3_H4K20me1
H3K27ac_H3K36me3_H3K79me2_H4K20me1
POLR2A_H3K36me3_H3K4me3
H3K36me3_H3K79me2_H3K9ac
POLR2AphosphoS2_H3K36me3_H3K4me3
POLR2AphosphoS2_H3K27ac_H3K36me3_H3K79me2
POLR2A_H3K36me3_H3K9ac
H3K36me3_H3K4me3_H3K79me2
POLR2A_H3K27ac_H3K36me3_H3K79me2
POLR2AphosphoS2_H3K36me3_H3K4me1
POLR2A_POLR2AphosphoS2_H3K36me3_H3K79me2_H3K9me3

0.50 0.55 0.60 0.65 0.70 0.75 0.80

Splicing interactions

stability score

order 2
order 3
order 4
order 5
order 6

A B

C

Fig. 3. (A) Accuracy of iRF (AUC-PR) in classifying included exons from
excluded exons in held-out test data. iRF shows 7% increase in AUC-PR over
RF. (B) An order-6 interaction recovered by iRF (stability score 0.5) displayed
on a superheat map which juxtaposes two separately clustered heat maps of
exons with high and low splicing rates. Coenrichment of all six plotted fea-
tures reflects an AND-type rule indicative of high splicing rates for the exons
highlighted in red (held-out test data). The subset of Pol II, S2 phospho-Pol II,
H3K36me3, H3K79me2, and H4K20me1 was recovered as an order-5 inter-
action in all bootstrap samples (stability score 1.0). (C) The 20 most stable
interactions recovered in the second iteration of iRF. Interactions that are
a strict subset of another interaction with stability score �0.5 have been
removed for cleaner visualization.

with two highly stable order-5 subsets of this interaction (sta-
bility scores 1.0). A subset of highly spliced exons highlighted
in red is enriched for all six of these elements, indicating a
potential AND-type rule related to splicing events (Fig. 3C).
This observation is consistent with, and offers a quantitative
model for, the previously reported predominance of cotranscrip-
tional splicing in this cell line (45). We note that the search
space of order-6 interactions is >1011 and that this interaction
is discovered with an order-zero increase over the computa-
tional cost of finding important features using RF. Recovering
such interactions without exponential speed penalties represents
a substantial advantage over previous methods and positions
our approach uniquely for the discovery of complex, nonlinear
interactions.

Discussion
Systems governed by nonlinear interactions are ubiquitous in
biology. We developed a predictive and stable method, iRF,
for learning such feature interactions. iRF identified known and
promising interactions in early zygotic enhancer activation in the
Drosophila embryo and posits more high-order interactions in
splicing regulation for a human-derived system.

Validation and assessment of complex interactions in biologi-
cal systems are necessary and challenging, but new wet-lab tools
are becoming available for targeted genome and epigenome
engineering. For instance, the CRISPR system has been adjusted
for targeted manipulation of posttranslational modifications to
histones (46). This may allow for tests to determine whether
modifications to distinct residues at multivalent nucleosomes
function in a nonadditive fashion in splicing regulation. Sev-
eral of the histone marks that appear in the interactions we
report, including H3K36me3 and H4K20me1, have been previ-
ously identified (47) as essential for establishing splicing patterns
in the early embryo. Our findings point to direct interactions
between these two distinct marks. This observation generates
interesting questions: What proteins, if any, mediate these
dependencies? What is the role of Phospho-S2 Pol II in the inter-
action? Proteomics on ChIP samples may help reveal the com-
plete set of factors involved in these processes, and new assays
such as Co-ChIP may enable the mapping of multiple histone
marks at single-nucleosome resolution (48).

We have offered evidence that iRF constitutes a useful tool
for generating hypotheses from the study of high-throughput
genomics data, but many challenges await. iRF currently handles
data heterogeneity only implicitly, and the order of detectable
interaction depends directly on the depth of the tree, which is
on the order of log2(n). We are currently investigating local
importance measures to explicitly relate discovered interactions
to specific observations. This strategy has the potential to fur-
ther localize feature selection and improve the interpretability of
discovered rules. Additionally, iRF does not distinguish between
interaction forms, for instance additive vs. nonadditive. We are
exploring tests of rule structure to provide better insights into the
precise form of rule–response relationships.

To date, machine learning has been driven largely by the need
for accurate prediction. Leveraging machine-learning algorithms
for scientific insights into the mechanics that underlie natural
and artificial systems will require an understanding of why pre-
diction is possible. The stability principle, which asserts that sta-
tistical results should at a minimum be reproducible across rea-
sonable data and model perturbations, has been advocated in
ref. 49 as a second consideration to work toward understand-
ing and interpretability in science. Iterative and data-adaptive
regularization procedures such as iRF are based on prediction
and stability and have the potential to be widely adaptable to
diverse algorithmic and computational architectures, improving
interpretability and informativeness by increasing the stability of
learners.
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S1 Algorithms

The basic versions of the Random Intersection Trees (RIT) and iterative Random Forests (iRF) algorithms
are presented below. For a complete description of RIT, including analysis of computational complexity
and theoretical guarantees, we refer readers to the original paper (Shah and Meinshausen, 2014). For a full
description of iRF, we refer readers to Section 2.

Algorithm 1: Random Intersection Trees Shah and Meinshausen (2014)

Input: {(Ii, Zi); Ii ✓ {1, . . . , p}, Zi 2 {0, 1}}n
i=1, C 2 {0, 1}

Tuning Parameters: (D,M, nchild)
1 for tree m 1 to M do

2 Let m be a tree of depth D, with each node j in levels 0, . . . , D � 1 having nchild children, and
denote the parent of node j as pa(j). Let J be the total number of nodes in the tree, and index
the nodes such that for every parent-child pair, larger indices are assigned to the child than the
parent. For each node j = 1, . . . , J , let ij be a uniform sample from the set of class C
observations {i : Zi = C}.

3 Set S1 = Ii1
4 for j = 2 to J do

5 Sj  Iij \ Spa(j)

6 end

7 return Sm = {Sj : depth(j) = D}
8 end

Output: S = [M
m=1Sm

Algorithm 2: iterative Random Forests

Input: D, C 2 {0, 1}, B, K, w(1)  (1/p, . . . , 1/p)
1 (1) for k  1 to K do

2 Fit RF (w(k)) on D
3 w(k+1)  Gini importance of RF (w(k))
4 end

5 (2) for b 1 to B do

6 Generate bootstrap samples D(b) of the form {xb(i), yb(i)} from D
7 Fit RF (w(K)) on D(b)

8 R(b)  {(Iit , Zit
) : xb(i) falls in leaf node it of tree t}

9 S(b)  RIT(R(b), C)
10 end

11 (3) for S 2 [B
b=1S(b) do

12 sta(S) = 1
B
·
P

B

b=1 1
⇥
S 2 S(b)

⇤

13 end

Output: {S, sta(S)}S2[B

b=1S(b)

Output: {RF (w(K)) on D}
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S2 Remarks on iRF

S2.1 Iterative re-weighting

Generalized RIT can be used with any Random Forest (RF) method, weighted or not. We find that iterative
re-weighting acts as a soft dimension reduction step by encouraging RF to select a stable set of features on
decision paths. This leads to improved recovery of high-order interactions in our numerical simulations and
in real data settings. For instance, without feature re-weighting (k = 1) iRF rarely recovers interactions of
order > 2 in our simulations. Feature re-weighting (k > 1) allows iRF to identify order-8 data generating
rules as highly stable interactions for comparable parameter settings. In the enhancer case study, iRF (k = 5)
recovers 9 order-3 interactions with stability score > 0.5. Without iterative re-weighting, iRF (k = 1) does
not recover any order-3 interactions with stability score > 0.5. The fourth iteration of iRF also recovers
many additional order-3, order-4, and order-5 interactions with lower stability scores that are not recovered
in the first iteration. Although it is unclear which of these high-order interactions represent true biological
mechanisms without experimental follow-up, our simulation based on the enhancer data suggests that the
overall quality of recovered interactions improves with iteration (Figure S16).

Iterative re-weighting can be viewed as a form of regularization on the base RF learner, since it restricts
the form of functions RF is allowed to fit in a probabilistic manner. In particular, we find that iterative re-
weighting reduces the dimensionality of the feature space without removing marginally unimportant features
that participate in high-order interactions (Figure S10). Moreover, we find that iteratively re-weighted and
unweighted RF achieve similar predictive accuracy on held out test data. We note that other forms of
regularization such as (Deng and Runger, 2012) may also lead to improved interaction recovery, though we
do not explore them in this paper.

S2.2 Generalized RIT

The RIT algorithm could be generalized through any approach that selects active features from continuous
or categorical data. However, the feature selection procedure a↵ects recovered interactions and is thus an
important consideration in generalizing RIT to continuous or categorical features. There are several reasons
we use an RF-based approach. First, RFs are empirically successful predictive algorithms that provide a
principled, data-driven procedure to select active features specific to each observation. Second, randomness
inherent to tree ensembles o↵ers a natural way to generate multiple active index sets for each observation
xi, making the representations more robust to small data perturbations. Finally, our approach allows us to
interpret (in a computationally e�cient manner given by RIT) complex, high-order relationships that drive
the impressive predictive accuracy of RFs, granting new insights into this widely used class of algorithms.

S2.3 Node sampling

In the generalized RIT step of iRF, we represent each observation i = 1, . . . , n by T rule-response pairs,
determined by the leaf nodes containing observation i in each tree t = 1, . . . , T of an RF. We accomplish
this by replicating each rule-response pair (Ijt , Zjt

) in tree t based on the number of observations in the
corresponding leaf node. We view this as a natural representation of the observations in D, made more
robust to sampling perturbations through rules derived from bootstrap samples of D. Our representation is
equivalent to sampling rule-response pairs (Ijt , Zjt

) in RIT with probability proportional to the number of
observations that fall in the leaf node. However, one could sample or select a subset of leaf nodes based on
other properties such as homogeneity and/or predictive accuracy. We are exploring how di↵erent sampling
strategies impact recovered interactions in our ongoing work.

S2.4 Bagged stability scores

iRF uses two layers of bootstrap sampling. The “inner” layer takes place when growing weighted RF. By
drawing a separate bootstrap sample from the input data before growing each tree, we can learn multiple
binary representations of each observation xi that are more robust to small data perturbations. The “outer”
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layer of bootstrap sampling is used in the final iteration of iRF. Growing RF (w(K)) on di↵erent bootstrap
samples allows us to assess the stability, or uncertainty, associated with the recovered interactions.

S2.5 Relation to AdaBoost

In his original paper on RF (Breiman, 2001), Breiman conjectured that in the later stages of iteration,
AdaBoost (Freund and Schapire, 1995) emulates RF. iRF inherits this property, and in addition shrinks
the feature space towards more informative features. As pointed out by a reviewer, there is an interesting
connection between AdaBoost and iRF. Namely, AdaBoost improves on the least reliable part of the data
space, while iRF zooms in on the most reliable part of feature space. This is primarily motivated by the
goals of the two learners — AdaBoost’s primary goal is prediction, whereas iRF’s primary goal is to select
features or combinations of features while retaining predictive power. We envision that zooming in on both
the data and feature space simultaneously may harness the strengths of both learners. As mentioned in the
conclusion, we are exploring this direction through local feature importance.

S2.6 Sensitivity to tuning parameters

The predictive performance of RF is known to be highly robust to choice of tuning parameters (Breiman,
2001). To test iRF’s sensitivity to tuning parameters, we investigated the stability of both prediction accuracy
(AUC-PR) and interaction recovery across a range of parameter settings. Results are reported for both the
enhancer and splicing datasets presented in our case studies.

The prediction accuracy of iRF is controlled through both RF parameters and number of iterations.
Figures S1 and S2 report 5�fold cross-validation prediction accuracy as a function of number of iterations
(k), number of trees in the RF ensemble (ntree), and the number of variables considered for each split
(mtry). We do not consider tree depth as a tuning parameter since deep decision trees (e.g. grown to purity)
are precisely what allows iRF to identify high-order interactions. Aside from iteration k = 1 in the splicing
data, prediction accuracy is highly consistent across parameter choices. For the first iteration in the splicing
data, prediction accuracy increases as a function of mtry. We hypothesize that this is the result of many
extraneous features that make it less likely for important features to be among the mtry selected features
at each split. Our hypothesis is consistent with the improvement in prediction accuracy that we observe for
iterations k > 1, where re-weighting allows iRF to sample important features with higher probability. This
finding also suggests a potential relationship between iterative re-weighting and RF tuning parameters. The
extent to which RF tuning parameters can be used to stabilize decision paths and allow for the recovery of
high-order interactions is an interesting question for further exploration.

The interactions recovered by iRF are controlled through RIT parameters and the number of iterations.
Our simulations in Sections S5.1-S5.4 extensively examine the relationship between the number of iterations
and recovered interactions. Figures S3 and S4 report the stability scores of recovered interactions in the
enhancer and splicing data as a function of RIT parameters. In general, the stability scores of recovered
interactions are highly correlated between di↵erent RIT parameter settings, indicating that our results are
robust over the reported range of tuning parameters. The greatest di↵erences in stability scores occur for
low values of depth (D) and number of children (nchild). In particular, a subset of interactions that are
highly stable for larger values of nchild are less stable with nchild = 1. In contrast, a subset of interactions
that are highly stable for D = 3 are considered less stable for larger values of D. We note that the findings
in our case studies are qualitatively unchanged as tuning parameters are varied. Interactions we identified as
most stable under the default parameter choices remain the most stable under di↵erent parameter choices.

S2.7 Regression and multiclass classification

We presented iRF in the binary classification setting, but our algorithm can be naturally extended to
multiclass or continuous responses. The requirement that responses are binary is only used to select a subset
of leaf nodes as input to generalized RIT. In particular, for a given class C 2 {0, 1}, iRF runs RIT over
decision paths whose corresponding leaf node predictions are equal to C. In the multiclass setting, we select
leaf nodes with predicted class or classes of interest as inputs to RIT. In the regression setting, we consider
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leaf nodes whose predictions fall within a range of interest as inputs to generalized RIT. This range could
be determined in domain-specific manner or by grouping responses through clustering techniques.

S2.8 Grouped features and replicate assays

In many classification and regression problems with omics data, one faces the problem of drawing conclusion
at an aggregated level of the features at hand. The simplest example is the presence of multiple replicates
of a single assay, when there is neither a standard protocol to choose one assay over the other, nor a known
strategy to aggregate the assays after normalizing them individually. Similar situations arise when there are
multiple genes from a single pathway in the feature sets, and one is only interested in learning interactions
among the pathways and not the individual genes.

In linear regression based feature selection methods like Lasso, grouping information among features
is usually incorporated by devising suitable grouped penalties, which requires solving new optimization
problems. The invariance property of RF to monotone transformations of features and the nature of the
intersection operation used by RIT provide iRF a simple and computationally e�cient workaround to this
issue. In particular, one uses all the unnormalized assays in the tree growing procedure, and collapses
the grouped features or replicates into a “super feature” before taking random intersections. iRF then
provide interaction information among these super features, which could be used to achieve further dimension
reduction of the interaction search space.

S2.9 Interaction evaluation through prediction

We view the task of identifying candidate, high-order interactions as a step towards hypothesis generation in
complex systems. An important next step will be evaluationg the interactions recovered by iRF to determine
whether they represent domain-relevant hypotheses. This is an interesting and challenging problem that will
require subject matter knowledge into the anticipated forms of interactions. For instance, biomolecules are
believed to interact in stereospecific groups (Nelson et al., 2008) that can be represented through Boolean-
type rules. Thus, tests of non-additivity may provide insight into which iRF-recovered interactions warrant
further examination in biological systems.

We do not consider domain-specific evaluation in this paper, but instead assess interactions through
broadly applicable metrics based on both stability and predictability. We incorporated the Stability Principle
(Yu, 2013) through both iterative re-weighting, which encourages iRF to use a consistent set of features along
decision paths, and through bagged stability scores, which provide a metric to evaluate how consistently
decision rules are used throughout an RF. Here we propose two additional validation metrics based on
predictive accuracy.

Conditional prediction: Our first metric evaluates a recovered interaction S ✓ {1, . . . , p} based on the
predictive accuracy of an RF that makes predictions using only leaf nodes for which all features in S fall on
the decision path. Specifically, for each observation i = 1, . . . , n we evaluate its predicted value from each
tree t = 1, . . . T with respect to an interaction S as

ŷi(t;S) =

(
Zit

if S ✓ Iit
Pn(y = 1) else

where Zit
is the prediction of the leaf node containing observation i in tree t, Iit is the index set of features

falling on the decision path for this leaf node, and Pn(y = 1) is the empirical proportion of class 1 observations
{i : yi = 1}. We average these predictions across the tree ensemble to obtain the RF-level prediction for
observation i with respect to an interaction S

ŷi(S) =
1

T
·

TX

t=1

ŷi(t;S). (1)

Predictions from equation (1) can be used to evaluate predictive accuracy using any metric of interest. We
report AUC-PR using predictions ŷi(S) for each interaction S 2 S recovered by iRF. Intuitively, this metric
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asks whether the leaf nodes that rely on an interaction S are good predictors when all other leaf nodes make
a best-case random guess.

Permutation importance: Our second metric is inspired by Breiman’s permutation-based measure of
feature importance (Breiman, 2001). In the single feature case, Breiman proposed permuting each column
of the data matrix individually and evaluating the change in prediction accuracy of an RF. The intuition
behind this measure of importance is that if an RF’s predictions are heavily influenced by a particular feature,
permuting it will lead to a drop in predictive accuracy by destroying the feature/response relationship. The
direct analogue in our setting would be to permute all features in a recovered interaction S and evaluate
the change in predictive accuracy of iRF. However, this does not capture the notion that we expect features
in an interaction to act collectively. By permuting a single feature, we destroy the interaction/response
relationship for any interaction that the feature takes part in. If S contains features that are components of
distinct interactions, permuting each feature in S would destroy multiple interaction/response relationships.
To avoid this issue, we assess prediction accuracy using only information from the features contained in S
by permuting all other features.

Specifically, let X⇡Sc denote the feature matrix with all columns in Sc permuted, where Sc is the com-
pliment of S. We evaluate predictions on permuted data X⇡Sc , and use these predictions to assess accuracy
with respect to a metric of interest, such as the AUC-PR. Intuitively, this metric captures the idea that if an
interaction is important independently of any other features, making predictions using only this interaction
should lead to improved prediction over random guessing.

Evaluating enhancer and splicing interactions: Figures S5 and S6 report interactions from both the
enhancer and splicing data, evaluated in terms of our predictive metrics. In the enhancer data, interactions
between collections of TFs Zld, Gt, Hb, Kr, and Twi are ranked highly, as was the case with stability
scores (Figure S5). In the splicing data, POL II, S2 phospho-Pol II, H3K36me3, H3K79me2, H3K9me1,
and H4K20me1 consistently appear in highly ranked interactions, providing further validation of the order-6
interaction recovered using the stability score metric (Figure S6).

While the interaction evaluation metrics yield qualitatively similar results, there is a clear di↵erence
in how they rank interactions of di↵erent orders. Conditional prediction and stability score tend to favor
lower-order interactions and permutation importance higher-order interactions. To see why this is the case,
consider interactions S0 ⇢ S ✓ {1, . . . , p}. As a result of the intersection operation used by RIT, the
probability (with respect to the randomness introduced by RIT) that the larger interaction S survives up
to depth D will be less than or equal to the probability that S0 survives up to depth D. Stability scores
will reflect the di↵erence by measuring how frequently an intersection survives across bootstrap samples. In
the case of conditional prediction, the leaf nodes for which S falls on the decision path form a subset of leaf
nodes for which S0 falls on the decision path. As a result, the conditional prediction with respect to S uses
more information from the forest and thus we would generally expect to see superior predictive accuracy.
In contrast, permutation importance uses more information when making predictions with S since fewer
variables are permuted. Therefore, we would generally expect to see higher permutation importance scores
for larger interactions. We are currently investigating approaches for normalizing these metrics to compare
interactions of di↵erent orders.

Together with the measure of stability, the two importance measures proposed here capture di↵erent
qualitative aspects of an interaction. Conceptually, the stability measure attempts to capture the degree
of uncertainty associated with an interaction by perturbing the features and responses jointly. In contrast,
the importance measures based on conditional prediction and permutation are similar to e↵ect size, i.e.,
they attempt to quantify the contribution of a given interaction to the overall predictive accuracy of the
learner. The conditional prediction metric accomplishes this by perturbing the predicted responses, while
permutation importance perturbs the features.
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S3 Data processing

S3.1 Drosophila enhancers

In total, 7809 genomic sequences have been evaluated for their enhancer activity (Berman et al., 2002; Fisher
et al., 2012; Frise et al., 2010; Kvon et al., 2014) in a gold-standard, stable-integration transgenic assay. In
this setting, a short genomic sequence (100-3000nt) is placed in a reporter construct and integrated into a
targeted site in the genome. The transgenic fly line is amplified, embryos are collected, fixed, hybridized and
immunohistochemistry is performed to detect the reporter (Tautz and Pfeifle, 1989; Weiszmann et al., 2009).
The resultant stained embryos are imaged to determine: a) whether or not the genomic segment is su�cient
to drive transcription of the reporter construct, and b) where and when in the embryo expression is driven.
For our prediction problem, sequences that drive patterned expression in blastoderm (stage 5) embryos
were labeled as active elements. To form a set of features for predicting enhancer status, we computed the
maximum value of normalized fold-enrichment (Li et al., 2008) of ChIP-seq and ChIP-chip assays (MacArthur
et al., 2009; ENCODE Project Consortium, 2012) for each genomic segment. The processed data are provided
in Supporting Data 1.

Our processing led to a binary classification problem with approximately 10% of genomic sequences
labeled as active elements. It is important to note that the tested sequences do not represent a random
sample from the genome — rather they were chosen based on prior biological knowledge and may therefore
exhibit a higher frequency of positive tests than one would expect from genomic sequences in general. We
randomly divided the dataset into training and test sets of 3912 and 3897 observations respectively, with
approximately equal portions of positive and negative elements, and applied iRF with B = 30, K = 5.
The tuning parameters in RF were set to default levels of the R randomForest package, and 500 Random
Intersection Trees of depth 5 with nchild = 2 were grown to capture candidate interactions.

S3.2 Alternative splicing

The ENCODE consortium has collected extensive genome-wide data on both chromatin state and splicing in
the human-derived erythroleukemia cell line K562 (ENCODE Project Consortium, 2012). To identify critical
interactions that form the basis of chromatin mediated splicing, we used splicing rates (Percent-spliced-in,
PSI values, (Pervouchine et al., 2012, 2016)) from ENCODE RNA-seq data, along with ChIP-seq assays
measuring enrichment of chromatin marks and transcription factor binding events (253 ChIP assays on 107
unique transcription factors and 11 histone modifications, https://www.encodeproject.org/). A complete
description of the assays, including accession numbers, is provided in Supporting Data 2.

For each ChIP assay, we computed the maximum value of normalized fold-enrichment over the genomic
region corresponding to each exon. This yielded a set of p = 270 features for our analysis. We took our
response to be a thresholded function of the PSI values for each exon. Only internal exons with high read
count (at least 100 RPKM) were used in downstream analysis. Exons with Percent-spliced-in index (PSI)
above 70% were classified as frequently included (y = 1) and exons with PSI below 30% were classified as
frequently excluded exons (y = 0). This led to a total of 23823 exons used in our analysis. The processed
data are provided in Supporting Data 3.

Our threshold choice resulted in⇠ 90% of observations belonging to class 1. To account for this imbalance,
we report AUC-PR for the class 0 observations. We randomly divided the dataset into balanced training
and test sets of 11911 and 11912 observations respectively, and applied iRF with B = 30 and K = 2. The
tuning parameters in RF were set to default levels of the R randomForest package, and 500 binary random
intersection trees of depth 5 with nchild = 2 were grown to capture candidate interactions.

S4 Evaluating Drosophila enhancer interactions

The Drosophila embryo is one of the most well studied systems in developmental biology and provides a
valuable test case for evaluating iRF. Decades of prior work have identified physical, pairwise TF interactions
that play a critical role in regulating spatial and temporal patterning, for reviews see Rivera-Pomar and Jäckle
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(1996) and Jaeger (2011). We compared our results against these previously reported physical interactions
to evaluate interactions found by iRF. Table S1 indicates the 20 pairwise TF interactions we identify with
stability score > 0.5, along with references that have previously reported physical interactions among each
TF pair. In total, 16 (80%) of the 20 pairwise TF interactions we identify as stable have been previously
reported in one of two forms: (i) one member of the pair regulates expression of the other (ii) joint binding
of the TF pair has been associated with increased expression levels of other target genes. Interactions for
which we could not find evidence supporting one of these forms are indicated as “ � ” in Table S1. We
note that high-order interactions have only been studied in a small number of select cases, most notably eve
stripe 2, for a review see (Levine, 2013). These limited cases are not su�cient to conduct a comprehensive
analysis of the high-order interactions we identify using iRF.

Table S1: Previously identified pairwise TF interactions recovered by iRF with stability score > 0.5

interaction (S) sta(S) references

Gt, Zld 1 Harrison et al. (2011); Nien et al. (2011)

Twi, Zld 1 Harrison et al. (2011); Nien et al. (2011)

Gt, Hb 1 Kraut and Levine (1991a,b); Eldon and Pirrotta (1991)

Gt, Kr 1 Kraut and Levine (1991b); Struhl et al. (1992); Capovilla et al. (1992); Schulz
and Tautz (1994)

Gt, Twi 1 Li et al. (2008)

Kr, Twi 1 Li et al. (2008)

Kr, Zld 0.97 Harrison et al. (2011); Nien et al. (2011)

Gt, Med 0.97 �
Bcd, Gt 0.93 Kraut and Levine (1991b); Eldon and Pirrotta (1991)

Bcd, Twi 0.93 Li et al. (2008)

Hb, Twi 0.93 Zeitlinger et al. (2007)

Med, Twi 0.93 Nguyen and Xu (1998)

Kr, Med 0.9 �
D, Gt 0.87 �

Med, Zld 0.83 Harrison et al. (2011)

Hb, Zld 0.80 Harrison et al. (2011); Nien et al. (2011)

Hb, Kr 0.80 Nüsslein-Volhard and Wieschaus (1980); Jäckle et al. (1986); Hoch et al. (1991)

D, Twi 0.73 �
Bcd, Kr 0.67 Hoch et al. (1991, 1990)

Bcd, Zld 0.63 Harrison et al. (2011); Nien et al. (2011)

S5 Simulation experiments

We developed iRF through extensive simulation studies based on biologically inspired generative models
using both synthetic and real data. In particular, we generated responses using Boolean rules intended to
reflect the stereospecific nature of interactions among biomolecules (Nelson et al., 2008). In this section, we
examine interaction recovery and predictive accuracy of iRF in a variety of simulation settings.

For all simulations in Sections S5.1-S5.3, we evaluated predictive accuracy in terms of area under the
precision-recall curve (AUC-PR) for a held out test set of 500 observations. To evaluate interaction recovery,
we use three metrics that are intended to give a broad sense of the overall quality of interactions S recovered
by iRF. For responses generated from an interaction S⇤ ✓ {1, . . . , p}, we consider interactions of any order
between only active features {j : j 2 S⇤} to be true positives and interactions containing any non-active
variable {j : j /2 S⇤} to be false positives. This definition accounts for the fact that subsets of S⇤ are
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still informative of the data generating mechanism. However, it conservatively considers interactions that
includes any non-active features to be false positives, regardless of how many active features they contain.

1. Interaction AUC: We consider the area under the receiver operating characteristic (ROC) curve
generated by thresholding interactions recovered by iRF at each unique stability score. This metric
provides a rank-based measurement of the overall quality of iRF interaction stability scores, and takes a
value of 1 whenever the complete data generating mechanism is recovered as the most stable interaction.

2. Recovery rate: We define an interaction as “recovered” if it is returned in any of the B bootstrap
samples (i.e. stability score > 0), or if it is a subset of any recovered interaction. This eliminates the
need to select thresholds across a wide variety of parameter settings. For a given interaction order
s = 2, . . . , |S|, we calculate the proportion of the total

�|S|
s

�
true positive order-s interactions recovered

by iRF. This metric is used to distinguish between models that recover high-order interactions at
di↵erent frequencies, particularly in settings where all models recover low-order interactions.

3. False positive weight: Let S = ST [SF represent the set of interactions recovered by iRF, where ST

and SF are the sets of recovered true and false positive interactions respectively. For a given interaction
order s = 2, . . . , |S|, we calculate P

S2SF :|S|=s
sta(S)

P
S2S:|S|=s

sta(S)
.

This metric measures the aggregate weight of stability scores for false positive order-s interactions,
S 2 SF : |S| = s, relative to all recovered order-s interactions, S 2 S : |S| = s. This metric also
includes all recovered interactions (stability score > 0), eliminating the need to select thresholds. It
can be thought of as the weighted analogue to false discovery proportion.

S5.1 Simulation 1: Boolean rules

Our first set of simulations demonstrates the benefit of iterative re-weighting for a variety of Boolean-type
rules. We sampled features x = (x1, . . . , x50) from independent, standard Cauchy distributions to reflect
heavy-tailed data, and generated the binary responses from three rule settings (OR, AND, and XOR) as

y(OR) = 1 [x1 > tOR |x2 > tOR |x3 > tOR |x4 > tOR] , (2)

y(AND) =
4Y

i=1

1 [xi > tAND] , (3)

y(XOR) = 1

"
4X

i=1

1(xi > tXOR) ⌘ 1 (mod 2)

#
. (4)

We injected noise into these responses by swapping the labels for 20% of the observations selected at random.
From a modeling perspective, the rules in equations (2), (3), and (4) give rise to non-additive main e↵ects
that can be represented as an order-4 interaction between the active features x1, x2, x3, and x4. Inactive
features x5, . . . , x50 provide an additional form of noise that allowed us to assess the performance of iRF
in the presence of extraneous features. For the AND and OR models, we set tOR = 3.2, tAND = �1 to
ensure reasonable class balance (⇠ 1/3 class 1 observations) and trained on samples of size 100, 200, . . . , 500
observations. We set tXOR = 1 both for class balance (⇠ 1/2 class 1 observations) and to ensure that
some active features were marginally important relative to inactive features. At this threshold, the XOR
interaction is more di�cult to recover than the others due to the weaker marginal associations between
active features and the response. To evaluate the full range of performance for the XOR model, we trained
on larger samples of size 200, 400, . . . , 1000 observations. We report the prediction accuracy and interaction
recovery for iterations k 2 {1, 2, . . . , 5} of iRF over 20 replicates drawn from the above generative models.
The RF tuning parameters were set to default levels for the R randomForest package (Liaw and Wiener,

10



2002), M = 100 RITs of depth 5 were grown with nchild = 2, and B = 20 bootstrap replicates were taken to
determine the stability scores of recovered interactions.

Figure S7A shows the prediction accuracy of iRF (AUC-PR), evaluated on held out test data, for each
generative model and a selected subset of training sample sizes as a function of iteration number (k). iRF
achieves comparable or better predictive performance for increasing k, with the most dramatic improvement
in the XOR model. It is important to note that only 4 out of the 50 features are used to generate responses
in equations (2), (3), and (4). Iterative re-weighting restricts the form of functions fitted by RF and may
hurt predictive performance when the generative model is not sparse.

Figure S7B shows interaction AUC by generative model, iteration number, and training sample size,
demonstrating that iRF (k > 1) tends to rank true interactions higher with respect to stability score than
RF (k = 1). Figure S7C breaks down recovery by interaction order, showing the proportion of order-s
interactions recovered across any bootstrap sample (stability score > 0), averaged over 20 replicates. For each
of the generative models, RF (k = 1) never recovers the true order-4 interaction while iRF (k = 4, 5) always
identifies it as the most stable order-4 interaction given enough training observations. The improvement
in interaction recovery with iteration is accompanied by an increase in the stability scores of false positive
interactions (Figure S7D). We find that this increase is generally due to many false interactions with low
stability scores as opposed to few false interactions with high stability scores. As a result, true positives can
be easily distinguished through stability score ranking (Figure S7B).

These findings support the idea that iterative re-weighting allows iRF to recover high-order interactions
without limiting predictive performance. In particular, improved interaction recovery with iteration indi-
cates that iterative re-weighting stabilizes decision paths, leading to more interpretable models. We note
that a principled approach for selecting the total number of iterations K can be formulated in terms of esti-
mation stability with cross validation (ESCV) (Lim and Yu, 2015), which would balance trade-o↵s between
interpretability and predictive accuracy.

S5.2 Simulation 2: marginal importance

Section S5.1 demonstrates that iterative re-weighting improves the recovery of high-order interactions. The
following simulations develop an intuition for how iRF constructs high-order interactions, and under what
conditions the algorithm fails. In particular, the simulations demonstrate that iterative re-weighting allows
iRF to select marginally important active features earlier on decision paths. This leads to more favorable
partitions of the feature space, where active features that are marginally less important are more likely to
be selected.

We sampled features x = (x1, . . . , x100) from independent, standard Cauchy distributions, and generated
the binary response y as

y = 1

"
X

i2SXOR

1(xi > tXOR) ⌘ 1 (mod 2)

#
, (5)

SXOR = {1, . . . , 8}. We set tXOR = 2, which resulted in a mix of marginally important and unimportant
active features, allowing us to study how iRF constructs interactions. For all simulations described in this
section, we generated n = 5000 training observations and evaluated the fitted model on a test set of 500 held
out observations. RF parameters were set to their default values with the exception of ntree, which was
set to 200 for computational purposes. We ran iRF for k 2 {1, . . . , 5} iterations with 10 bootstrap samples
and grew M = 100 RITs of depth 5 with nchild = 2. Each simulation was replicated 10 times to evaluate
performance stability.

S5.2.1 Noise level

In the first simulation, we considered the e↵ect of noise on interaction recovery to assess the underlying
di�culty of the problem. We generated responses using equation (5), and swapped labels for 10%, 15%, and
20% of randomly selected responses.
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Figure S8 shows performance in terms of predictive accuracy and interaction recovery for the 15% and
20% noise levels. At each noise level, increasing k leads to superior performance, though there is a substantial
drop in both absolute performance and the rate of improvement over iteration for increased noise levels.

The dramatic improvement in interaction recovery (Figure S8C) reinforces the idea that regularization is
critical for recovering high-order interactions. Figure S9 shows the distribution of iRF weights, which reflect
the degree of regularization, by iteration. iRF successfully recovers the full XOR interaction in settings where
there is clear separation between the distribution of active and inactive variable weights. This separation
develops over several iterations, and at a noticeably slower rate for higher noise levels, indicating that further
iteration may be necessary in low signal-noise regimes.

Marginal importance and variable selection: iRF’s improvement with iteration suggests that the
algorithm leverages informative lower-order interactions to construct the full data generating rule through
adaptive regularization. That is, by re-weighting towards some active features, iRF are more likely to produce
partitions of the feature space where remaining active variables are selected. To investigate this idea further,
we examined the relationship between marginal importance and the average depth at which features are
first selected across the forest. We define a variable’s marginal importance as the best case decrease in
Gini impurity if it were selected as the first splitting feature. We note that this definition is di↵erent from
the standard measure of RF importance (mean decrease in Gini impurity), which captures an aggregate
measurement of marginal and conditional importance over an RF. We considered this particular definition
to examine whether iterative re-weighting leads to more “favorable” partitions of the feature space, where
marginally unimportant features are selected earlier on decision paths.

Figure S10 shows the relationship between marginal importance and feature entry depth. On average
over the tree ensemble, active features enter the model earlier with further iteration, particularly in settings
where iRF successfully recovers the full XOR interaction. We note that this occurs for active features with
both high and low marginal importance, though more marginally important, active features enter the model
earliest. This behavior supports the idea that iRF constructs high-order interactions by identifying a core
set of active features, and using these, partitions the feature space in a way that marginally less important
variables become conditionally important, and thus more likely to be selected.

S5.2.2 Mixture model

Our finding that iRF uses iterative re-weighting to build up interactions around marginally important fea-
tures, suggests that the algorithm may struggle to recover interactions in the presence of other marginally
important features. To test this idea, we considered a mixture model of XOR and AND rules. A proportion
⇡ 2 {0.5, 0.75, 0.9} of randomly selected observations were generated using equation (5), and the remaining
proportion 1� ⇡ of observations were generated as

y =
Y

i2SAND

1 [xi > tAND] . (6)

We introduced noise by swapping labels for 10% of the responses selected at random, a setting where iRF
easily recovers the full XOR rule, and set SAND = {9, 10, 11, 12}, tAND = �0.5 to ensure that the XOR and
AND interactions were dominant with respect to marginal importance for ⇡ = 0.9 and ⇡ = 0.5 respectively.

Figure S11 shows performance in terms of predictive accuracy (A) and interaction recovery of XOR (B)
and AND (C) rules at each level of ⇡. When one rule is clearly dominant (AND: ⇡ = 0.5; XOR: ⇡ = 0.9),
iRF fail to recover the the other (Figure S11 B,C). This is driven by the fact that the algorithm iteratively
updates feature weights using a global measure of importance, without distinguishing between features that
are more important for certain observations and/or in specific regions of the feature space. One could address
this with local measures of feature importance, though we do not explore the idea in this paper.

In the ⇡ = 0.75 setting, none of the interactions are clearly more important, and iRF recovers subsets
of both the XOR and AND interactions (Figure S11). While iRF may recover a larger proportion of each
rule with further iteration, we note that the algorithm does not explicitly distinguish between rule types,
and would do so only when di↵erent decision paths in an RF learn distinct rules. Characterizing the specific
form of interactions recovered by iRF is an interesting question that we are exploring in our ongoing work.
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S5.2.3 Correlated features

In our next set of simulations, we examined the e↵ect of correlated features on interaction recovery. Responses
were generated using equation (5), with features x = (x1, . . . , x100) drawn from a Cauchy distribution with
mean 0 and covariance ⌃, and active set SXOR, |SXOR| = 8 sampled uniformly at random from {1, . . . , 100}.
We considered both a decaying covariance structure: ⌃ij = ⇢|i�j|, and a block covariance structure:

⌃ij =

8
><

>:

1, i = j

⇢, i, j ⇢ Gl and i 6= j

0, else

where Gl ✓ {1, . . . , p} and l = 1, . . . , L partition {1, . . . , p} into blocks of features. For the following
simulations, we considered both low and high levels of feature correlation ⇢ 2 {0.25, 0.75} and blocks of 10
features.

Prediction accuracy and interaction recovery are fairly consistent for moderate values of ⇢ (Figures S12,
S13), while interaction recovery degrades for larger values of ⇢, particularly in the block covariance setting
(Figure S13B,C). For instance when ⇢ = 0.75, iRF only recovers the full order-8 interaction at k = 5,
and simultaneously recovers many more false positive interactions. The drop in interaction recovery rate
is greater for larger interactions due to the fact that for increasing ⇢, inactive features are more frequently
selected in place of active features. These findings suggest both that iRF can recover meaningful interactions
in highly correlated data, but that these interactions may also contain an increasing proportion of false
positive features.

We note that the problem of distinguishing between many highly correlated features, as in the ⇢ = 0.75
block covariance setting, is di�cult for any feature selection method. With a priori knowledge about the
relationship between variables, such as whether variables represent replicate assays or components of the
same pathway, one could group features as described in Section S2.8.

S5.3 Simulation 3: big p

Our final set of synthetic data simulations tested the performance of iRF in settings where the number of fea-
tures is large relative to the number of observations. Specifically, we drew 500 independent, p�dimensional
standard Cauchy features, with p 2 {1000, 2500}. Responses were generated using the order-4 AND inter-
action from equation (3), selected to reflect the form of interactions recovered in the splicing and enhancer
case studies. We injected noise into the responses by swapping labels for 20% and 30% of randomly selected
observations.

Figures S14 and S15 show prediction accuracy and interaction recovery of iRF at each of the di↵erent
noise levels. Prediction accuracy improves noticeably with iteration and stabilizes at the 20% noise level
(Figures S14A, S15A). For k = 1, iRF rarely recovers correct interactions and never recovers interactions
of order > 2, while later iterations recover many true interactions (Figures S14C, S15C). These findings
indicate that iterative re-weighting is particularly important in this highly sparse setting and is e↵ectively
regularizing RF fitting. Based on the results from our previous simulations, we note that the e↵ectiveness
of iterative re-weighting will be related to the form of interactions. In particular, iRF should perform worse
in settings where p >> n and interactions have no marginally important features.

S5.4 Simulation 4: enhancer data

To test iRF’s ability to recover interactions in real data, we incorporated biologically inspired Boolean rules
into the Drosophila enhancer dataset analyzed in Section 4 (see also Section S3.1 for a description of the
dataset). These simulations were motivated by our desire to assess iRF’s ability to recover signals embedded
in a noisy, non-smooth and realistic response surface with feature correlation and class imbalance comparable
to our case studies. Specifically, we used all TF binding features from the enhancer data and embedded a
5-dimensional AND rule between Krüppel, (Kr), Hunchback (Hb), Dichaete (D), Twist (Twi), and Zelda
(Zld):
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y = 1[xkr > 1.25&xhb > 1.25&xD > 1.25&xtwi > 1.25&xzld > 75]. (7)

The active TFs and thresholds were selected to ensure that the proportion of positive responses was compa-
rable to the true data (⇠ 10% active elements), and the interaction type was selected to match the form of
interactions recovered in both the enhancer and splicing data.

In this set of simulations, we considered two types of noise. For the first, we incorporated noise by
swapping labels for a randomly selected subset of 20% of active elements and an equivalent number of
inactive elements. We note that this resulted in a fairly limited proportion of swapped labels among class
0 observations due to class imbalance. Our second noise setting was based on an RF/sample splitting
procedure. Specifically, we divided the data into two disjoint groups of equal size. For each group, we
trained an RF and used it to predict the responses of observations in the held out group. This process
resulted in predicted class probabilities for each observation i = 1, . . . , n. We repeated this procedure 20
times to obtain the average predicted probability that yi = 1. With a slight abuse of notation, we denote this
predicted probability as ⇡i. For each observation we sampled a Bernoulli noising variable ỹi ⇠ Bernoulli(⇡i)
and used these to generate a binary response for each observation

yi = ỹi |1[xkr > 1.25&xhb > 1.25&xD > 1.25&xtwi > 1.25&xzld > 75].

That is, the response for observation i was to set 1 whenever the noising variable ỹi or equation (7) was
active. This noising procedure introduced an additional ⇠ 5% of class 1 observations beyond the ⇠ 10% of
observations that were class 1 as a result of equation (7). Intuitively, this model derives its noise from rules
learned by an RF. Feature interactions that are useful for classifying observations in the split data are built
into the predicted class probabilities ⇡i. This results in an underlying noise model that is heterogeneous,
composed of many “bumps” throughout the feature space.

In each setting, we trained on samples of 200, 400, . . . , 2000 observations and tested prediction perfor-
mance on the same number of observations used to train. We repeated this process 20 times to assess
variability in interaction recovery and prediction accuracy. The RF tuning parameters were set to default
levels for the R randomForest package, M = 100 random intersection trees of depth 5 were grown with
nchild = 2, and B = 20 bootstrap replicates were taken to determine the stability scores of recovered
interactions.

Figure S16A shows that di↵erent iterations of iRF achieve comparable predictive accuracy in both noise
settings. When the number of training observations increases beyond 400, the overall quality of recovered
interactions as measured by interaction AUC improves for iterations k > 1. In some instances, there is a
drop in the quality of recovered interactions for the largest values of k after the initial jump at k = 2 (Figure
S16). All iterations frequently recover true order-2 interactions, though the weighted false positive rate for
order-2 interactions drops for iterations k > 1, suggesting that iterative re-weighting helps iRF filter out
false positives. Iterations k > 1 of iRF recover true high-order interactions at much greater frequency for a
fixed sample size, although these iterations also recover many false high-order interactions (Figure S16C,D).
We note that true positive interactions are consistently identified as more stable (Figure S17), suggesting
that the large proportion of weighted false discoveries in Figure S16D is the result of many false positives
with low stability scores.

S6 Computational cost of detecting high-order interaction

We used the enhancer data from our case studies to demonstrate the computational advantage of iRF
for detecting high-order interactions in high-dimensional data. Rulefit3 serves as a benchmark, which has
competitive prediction accuracy to RF and also comes with a flexible framework for detecting nonlinear
interactions hierarchically, using the so-called “H-statistic” (Friedman and Popescu, 2008). For moderate to
large dimensional datasets typically encountered in omics studies, the computational complexity of seeking
high-order interactions hierarchically (select marginally important features first, then look for pairwise inter-
action among them, and so on) increases rapidly, while the computation time of iRF grows far more slowly
with dimension.
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We fit iRF and Rulefit3 on balanced training samples from the enhancer dataset (7809 samples, 80
features) using subsets of p randomly selected features, where p 2 {10, 20, . . . , 80}. We ran Rulefit3 with
default parameters, generating null interaction models with 10 bootstrap samples and looked for higher
order interactions among features whose H-statistics are at least one null standard deviation above their
null average (following (Friedman and Popescu, 2008)). The current implementation of Rulefit3 only allows
H-statistic calculation for interactions of up to order 3, so we do not assess higher order interactions. We ran
iRF with B = 10 bootstrap samples, K = 3 iterations, and the default RF and RIT tuning parameters. The
run time (in minutes) and the AUC for di↵erent values of p, averaged over 10 replications of the experiment
by randomly permuting the original features in enhancer data, are reported in Figure S18.

The plot on the left panel shows that the runtime for Rulefit3’s interaction detection increases exponen-
tially as p increases, while the increase is linear for iRF. The search space of Rulefit3 is restricted to all
possible interactions of order 3, while iRF searches for arbitrarily high-order interactions, leveraging deep
decision trees in RF. The linear vs. polynomial growth of computing time is not an optimization issue, it is
merely a consequence of the exponentially growing search space of high-order interactions.

In addition to the comparison with Rulefit3, we profiled memory usage of the iRF R package using the
splicing dataset described in Section 5 (n = 11911, p = 270) with B = 30 and K = 3. The program was run
on a server using 24 cores (CPU Model: Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz, clock speed: 1200
MHz, Operating System: Ubuntu 14.04). The profiling was done using R functions Rprof and summaryRprof.
iRF completed in 26 minutes 59 seconds, with a 499910 Mb memory consumption.
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S7 List of datasets

Scripts and data used for the case studies and simulations described in this paper are available on Zenodo.

Scripts

1. enhancer.R: R script used to run iRF on the enhancer data.

2. splicing.R: R script used to run iRF on the splicing data.

3. booleanSimulations.R: R script used to run iRF for boolean generative models (Sections S5.1-S5.3).

4. enhancerSimulations.R: R script used to run iRF for enhancer data simulations (Section S5.4).

5. runtime/irf.R: R script used to run the runtime analysis for iRF (Section S6).

6. runtime/rulefit.R: R script used to run the runtime analysis for Rulefit3 (Section S6).

7. runtime/rulefit: R package for running Rulefit3 (Friedman and Popescu, 2008). The package we
provide is set up for use on linux systems. Other versions are available through statweb.stanford.edu.

Datasets

1. irfSuppData1.csv: Processed data for the enhancer case study (Supporting Data 1).

2. irfSuppData2.csv: Description of the splicing assays including ENCODE accession number, assay
name, and assay type (Supporting Data 2).

3. irfSuppData3.csv: Processed data used for the splicing case study (Supporting Data 3).

4. enhancer.Rdata: An Rdata file containing all variables required to run the enhancer.R script:

• X: 7809 ⇥ 80 feature matrix, rows corresponding to genomic regions and columns corresponding
to assays.

• Y: length 7809 response vector, 1 indicating active element.

• train.id: length 3912 vector giving the indices of training observations.

• test.id: length 3897 vector giving the indices of testing observations.

• varnames.all: 80 ⇥ 2 data frame, the first column giving a unique identifier for each assay and
the second column giving collapsed terms used to group replicate assays.

5. splice.Rdata: An Rdata file containing all variables required to run the splicing.R script:

• x: 23823⇥270 feature matrix, rows corresponding to exons and columns corresponding to assays.

• y: length 23823 response vector, 1 indicating a highly spliced exon.

• train.id: length 11911 vector giving the indices of training observations.

• test.id: length 11912 vector giving the indices of testing observations.

• varnames.all: 270⇥ 2 data frame, the first column giving a unique identifier for each assay and
the second column giving collapsed terms used to group replicate assays.

6. rfSampleSplitNoise.Rdata: An Rdata file containing RF predicted probabilities used for noising the
enhancer simulation:

• pred.prob: 7809⇥20 matrix, giving the predicted probability that each genomic element is active.
These probabilities were generated using the sample splitting procedure described in Section S5.4
and used to noise the enhancer simulation.
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Figure S1: Enhancer data cross-validation AUC-PR change from baseline as a function of RF tuning
parameters, evaluated over 5 folds. Baseline performance is given by Random Forest (k = 1) with default
parameters (ntree= 500, mtry= 8). Error bars indicate the minimum and maximum change in AUC-PR
across folds. [A] Prediction accuracy as a function of number of trees (ntree), with number of splitting
variables (mtry) set to default (bppc = 8). [B] Prediction accuracy as a function of mtry, with ntree set
to default (500).
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Figure S2: Splicing data cross-validation AUC-PR change from baseline as a function of RF tuning pa-
rameters, evaluated over 5-folds. Baseline performance is given by Random Forest (k = 1) with default
parameters (ntree= 500, mtry= 16). Error bars indicate the minimum and maximum change in AUC-PR
across folds. For iterations k > 1, performance is robust to choice of tuning parameters. [A] Prediction
accuracy as a function of number of trees (ntree), with the number of splitting variables (mtry) set to default
(bppc = 16). [B] Prediction accuracy as a function of mtry, with ntree set to default (500).
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Figure S3: Enhancer data interaction stability scores as a function of RIT parameters. Each point rep-
resents a single interaction, and the point’s coordinates indicate its stability score under two parameter
settings. Lower panels give Pearson correlation between interaction stability scores across pairs of parameter
settings. [A] Interaction stability scores as a function of the number of trees in RIT. Number of children
and depth are set to default levels of 2 and 5 respectively. [B] Interaction stability scores as a function of
number of children in RIT. Number of trees and depth are set to default levels of 500 and 5 respectively.
[C] Interaction stability scores as a function of depth in RIT. Number of trees and number of children are
set to default levels of 500 and 2 respectively.
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Figure S4: Splicing data interaction stability scores as a function of RIT parameters. Each point represents
a single interaction, and the point’s coordinates indicate its stability score under two parameter settings.
Lower panels give Pearson correlation between interaction stability scores across pairs of parameter settings.
[A] Interaction stability scores as a function of the number of trees in RIT. Number of children and depth
are set to default levels of 2 and 5 respectively. [B] Interaction stability scores as a function of number of
children in RIT. Number of trees and depth are set to default levels of 500 and 5 respectively. [C] Interaction
stability scores as a function of depth in RIT. Number of trees and number of children are set to default
levels of 500 and 2 respectively.
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Figure S5: Prediction-based validation metrics for enhancer data. Each plot shows the top 20 interactions
with respect to prediction based importance metrics. Lower-order interactions that are a strict subset of
some higher-order interactions have been removed for clearer visualization. The interactions reported here
are qualitatively similar to those with high stability scores. [A] Conditional prediction. [B] Permutation
importance.
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Figure S6: Prediction-based validation metrics for splicing data. Each plot shows the top 20 interactions
with respect to prediction based importance metrics. Lower-order interactions that are a strict subset of
recovered higher-order interactions have been removed for clearer visualization. [A] Conditional prediction.
[B] Permutation importance. The interactions reported here are qualitatively similar to those with high
stability scores.
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Figure S7: iRF performance for order-4 AND, OR, and XOR rules over 20 replicates. Results are shown
for models trained using 100, 300, and 500 observations in the AND and OR models. Training sample size
is increased to 200, 600, and 1000 in the XOR model to account for the low marginal importance of features
under this rule. [A] Prediction accuracy (AUC-PR) improves with increased number of training observations
and is comparable or improves for increasing k. [B] Interaction AUC improves with increasing k. For larger
values of k, iRF always recovers the full data generating rule as the most stable interaction (AUC of 1) with
enough training observations. [C] Recovery rate for interactions of all orders improves with increasing k. In
particular, k = 1 fails to recover any order-4 interactions. [D] Weighted false positives increase in settings
where iRF recovers high-order interactions as a result of many false positives with low stability scores.
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Figure S8: iRF performance for order-8 XOR rule over 10 replicates as a function of noise level. All models
were trained using 5, 000 observations. [A] Prediction accuracy (AUC-PR) improves for increasing k and at a
slower rate for increased noise levels. [B] Interaction AUC improves with increasing k. [C] Recovery rate for
interactions of all orders improves with increasing k. In particular, k = 1 does not recover any interactions
of order > 2 at either noise level. Recovery of higher order interactions drops substantially at higher noise
levels. [D] Weighted false positives increase in settings where iRF recovers high-order interactions as a result
of many false positives with low stability scores. For order-2 interactions, later iterations of iRF filter out
many of the false positives identified in earlier iterations.
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Figure S9: iRF weights for active (blue) and inactive (red) features as a function of iteration and noise level
over 10 replicates. The distribution of weights in later iterations shows a clear separation between active
and inactive features, indicating that iRF has identified active features as important and incorporates them
into the model with higher probability in later iterations.
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Figure S10: Average entry depth for active (blue) and inactive (red) features across the forest as a function
of marginal importance, iteration, and noise level. Results are reported for a single replicate. In later
iterations, the average depth at which active variables are selected is noticeably lower than inactive variables
with comparable marginal importance, indicating that the active features appear earlier on decision paths.
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Figure S11: iRF performance for mixture model as a function of mixture proportion (⇡) over 10 replicates.
All models were trained using 5000 observations. [A] Prediction accuracy (AUC-PR) is generally poor since
iRF tends to learn rules that characterize only a subset of the data. [B] Interaction AUC for the XOR
rule. iRF fails to recover this marginally less important rule unless it is represented in a large proportion of
the data (⇡ = 0.9). [C] Interaction AUC for the AND rule. iRF recovers the full rule as the most stable
interaction for k � 3 (AUC of 1) for ⇡ = 0.5 despite the fact that the AND interaction is only active in
half of the observations. Perfect recovery of the AND rule in a setting where iRF fails to recover the XOR
rule indicates that iterative re-weighting based on Gini importance encourages iRF identify rules with more
marginally important features.
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Figure S12: iRF performance for order-8 XOR rule over 10 replicates as a function of correlation level
(decaying covariance structure). All models were trained using 5000 observations. [A] Prediction accuracy
(AUC-PR) improves for increasing k. [B] Interaction AUC improves with increasing k, but is more variable
than uncorrelated settings. [C] Recovery rate for interactions of all orders improves with increasing k. In
particular, iRF with k = 1 rarely recovers any interactions of order > 2. [D] Weighted false positives increase
in settings where iRF recovers high-order interactions as a result of many false positives with low stability
scores. For order-2 interactions, later iterations of iRF filter out many of the false positives identified in
earlier iterations.
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Figure S13: iRF performance for order-8 XOR rule over 10 replicates as a function of correlation level
(block covariance). All models were trained on 5000 observations. [A] Prediction accuracy (AUC-PR)
improves with increasing k. [B] Interaction AUC improves with increasing k and drops for large values of
⇢. Variability is comparable to the decaying covariance case and greater than in uncorrelated settings. [C]

Recovery rate for interactions of all orders improves with increasing k. In particular, iRF with k = 1 rarely
recovers any interactions of order > 2. [D] Weighted false positives increase in settings where iRF recovers
high-order interactions as a result of many false positives with low stability scores. For order-2 interactions,
later iterations of iRF filter out many of the false positives identified in earlier iterations.
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Figure S14: iRF performance for order-4 AND rule over 10 replicates with class labels swapped for 20% of
observations selected at random. All models were trained using 500 observations. [A] Prediction accuracy
(AUC-PR) improves and stabilizes with increasing k. [B] Interaction AUC improves dramatically with
increasing k. For k > 3, iRF often recovers the full order-4 AND rule as the most stable interaction (AUC
of 1). [C] Recovery rate improves with increasing k. For k = 1, iRF rarely recovers any portion of the data
generating rule while for k > 3 iRF often recovers the full data generating rule. [D] Weighted false positives
are low for interactions of order > 2 and drop with iteration for interactions of order-2, suggesting that iRF
identifies active features through iterative re-weighting.
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Figure S15: iRF performance for order-4 AND rule over 10 replicates with class labels swapped for 30% of
observations selected at random. All models were trained using 500 observations. [A] Prediction accuracy
(AUC-PR) gradually improves with increasing k. [B] Interaction AUC gradually improves with increasing k
but does not achieve perfect recovery of the data generating rule. [C] Recovery rate improves with increasing
k, but iRF recovers higher-order interactions less frequently than at lower noise levels. [D] Weighted false
positives are comparable across k and particularly high for order-2 interactions.
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Figure S16: iRF performance for the enhancer data simulations by noise type. Results are shown for models
trained using 400, 1200, and 2000 observations. [A] Prediction accuracy (AUC-PR) remains consistent with
increasing k in both noise models. [B] Interaction AUC improves after iteration k = 1, especially for larger
training samples where high-order interactions are recovered. Some settings show a drop in interaction AUC
as k increases from 2 to 5, emphasizing the importance of tuning K. [C] Recovery rate improves beyond
k = 1 for high-order interactions and is fairly consistent for k = 2, . . . , 5. [D] Weighted false positives drop
beyond k = 1 for order-2 interactions as iterative re-weighting encourages the selection of active features.
With larger training samples, iRF recovers many interactions among both active and inactive features.
The stability scores of interactions among active features are consistently higher than interactions including
inactive features.
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Figure S17: Distributions of iRF stability scores for active and inactive variables by iteration (k) and noise
type. Both models were trained using 2000 observations. Interactions among active features are consistently
identified as more stable in both noise settings, and higher order interactions are only identified in later
iterations.
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Figure S18: Runtime (left) of interaction detection and Area under ROC curve (right) of prediction by
Rulefit and iRF on subsets of the enhancer data with p 2 {10, 20, . . . , 80} features and balanced training and
test sets, each of size n = 731. The results are averaged over 10 di↵erent permutations of the original features
in the enhancer dataset. The two algorithms provide similar classification accuracy in test data, although
computational cost of iRF grows much slower with p, compared to the computational cost of Rulefit.
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