
6 Yu and Kumbier / Front Inform Technol Electron Eng 2018 19(1):6-9

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Perspective:

Artificial intelligence and statistics∗

Bin YU†‡1,2, Karl KUMBIER1

1Department of Statistics, University of California, Berkeley, CA 94720, USA
2Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA

†E-mail: binyu@stat.berkeley.edu

Received Dec. 7, 2017; Revision accepted Jan. 10, 2018; Crosschecked Jan. 28, 2018

Abstract: Artificial intelligence (AI) is intrinsically data-driven. It calls for the application of statistical concepts
through human-machine collaboration during the generation of data, the development of algorithms, and the
evaluation of results. This paper discusses how such human-machine collaboration can be approached through the
statistical concepts of population, question of interest, representativeness of training data, and scrutiny of results
(PQRS). The PQRS workflow provides a conceptual framework for integrating statistical ideas with human input
into AI products and researches. These ideas include experimental design principles of randomization and local
control as well as the principle of stability to gain reproducibility and interpretability of algorithms and data results.
We discuss the use of these principles in the contexts of self-driving cars, automated medical diagnoses, and examples
from the authors’ collaborative research.
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Modern artificial intelligence (AI) can be traced
back to work from at least 1943 that highlighted
the connection between neural events and propo-
sitional logic (McCulloch and Pitts, 1943). Over
the years, AI has grown into a transdisciplinary
field, integrating and transforming ideas from com-
puter science, statistics/machine learning, psychol-
ogy, neuroscience, materials science, mechanical en-
gineering, and computer hardware design. Excite-
ment surrounding AI is now exploding. Ideas drawn
from the field form the core of both start-ups and
academic divisions, and new developments are be-
ing reported throughout the media with increased
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frequency. This excitement is driven in part by the
empirical success of AI products that are now avail-
able to consumers worldwide. The ‘magic’ of AI
can be captivating, with new AI products like the
Amazon Echo responding almost effortlessly with
in-depth answers to user queries. However, once
one recognizes that these detailed responses barely
extend beyond quoted Wikipedia articles, the sub-
stantial human input behind the ‘magic’ of AI is
illuminated.

The Echo is a smart speaker that uses a wire-
less connection to search information over the In-
ternet. This information is created by humans in
the form of writing, speech, and music. In other
words, the Echo’s responses are derived from human-
machine collaboration, analyzing manually gener-
ated data through algorithms designed and tested
by Amazon’s researchers (with the help of power-
ful computing and IT technologies). Similarly, AI
products based on computer vision rely on pow-
erful human-machine collaborations through deep
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learning algorithms engineered by researchers and
manually generated data such as the ImageNet
database, which contains roughly 14 million labeled
images representing over 1000 categories. Current
AI research shares this reliance on human-machine
collaboration, in both the data-generation phase and
algorithm design and testing. For instance, the au-
thors’ research group (Yu Group), in collaboration
with the Gallant Neuroscience Lab at UC Berkeley,
is combining convolutional neural networks (CNNs)
(trained on ImageNet) and regression methods to
characterize neurons in primate visual cortex area
V4.

Poster children of today’s AI applications
include self-driving cars and automated medical
diagnoses, such as those that identify the cause of
a stroke using computed tomography (CT) scans
(https://www.newyorker.com/magazine/2017/04/03/
ai-versus-md). Both applications rely heavily on
computer vision algorithms, which in turn rely
on manually generated data. Mr. Tim Brad-
shaw declared in his 2017 Financial Times article
(https://www.ft.com/content/36933cfc-620c-11e7-
91a7-502f7ee26895): “Self-driving cars prove to be
labor-intensive for humans.” He went on to describe
that most self-driving car companies hire hundreds
or thousands of people to label video footage to
teach algorithms to recognize obstacles such as
pedestrians. He then quoted Matt Bencke, the
founder and chief executive of Mighty AI, saying
“AI practitioners, in my mind, have collectively had
an arrogant blind spot, which is that computers will
solve everything.”

Properly framing data collection and analysis is
critical for AI products, and can be achieved through
human-machine collaboration using the statistical
framework of population, question of interest, repre-
sentativeness of training data, and scrutiny of results
(PQRS). The PQRS workflow represents key steps
in arriving at data-driven decisions, and is coined by
the first author in the process of co-creating and co-
teaching a new advanced undergraduate data science
course at Berkeley (http://www.ds100.org/sp17/).
A population (P) reflects the conditions under which
observations are generated. Understanding P helps
one recognize randomness in the data generating pro-
cess, and hence the uncertainty (or errors) in a data
result. The question of interest (Q) provides context
for an analysis, allowing one to incorporate domain

knowledge. Representativeness of training data (R)
is closely related to P and assesses whether the avail-
able training data provides relevant information on
a population (relative to the question asked). The
thought process of asking whether the population has
changed, or whether the training and test data are
similar, addresses P and R simultaneously. Finally,
scrutiny (S) describes the process of evaluating data
results or algorithm outputs in the context of PQR.

The PQRS workflow provides four concrete
steps to think through the cycle of data analysis and
algorithm development for data-driven decisions, in-
cluding those required for self-driving cars and au-
tomated medical diagnosis. For instance, answering
how dynamic weather, traffic, and construction con-
ditions affect pedestrian recognition can be viewed
through the lens of PQRS. Similarly, the relation-
ship between patient characteristics such as age, gen-
der, and previous medical conditions and automated
medical diagnoses can be approached using the steps
of PQRS. These steps require human input from do-
main experts who understand a problem’s context
and from analysts who must obtain data results. It
is always the case that such data results will be ap-
plied to new individuals or situations. Framing the
data collection and analysis can prevent incorrect an-
swers that result from improper context, which can
be fatal in the case of self-driving cars and medi-
cal diagnoses. PQRS provides effective conceptual
devices to integrate human input into these tasks,
rescuing the ‘magic’ of AI from failure and meeting
the challenges of dynamic environments head-on.

The final component of the PQRS workflow, S,
builds on notions of interpretability to evaluate data
results. Interpretability comes in a variety of forms
that include, but are not limited to, algorithmic in-
terpretability (i.e., how an algorithm maps features
to responses) and domain interpretability (i.e., what
a data result says in the context of a particular prob-
lem). Human input is critical here as well, because
interpretability must be defined with respect to an
individual (e.g., expert vs. non-expert). In the area
of automated medical diagnosis, and more broadly,
human interpretability of algorithms and data re-
sults is becoming a necessity. In fact, the EU General
Data Protection Regulation (2016) has stipulated
the ‘right’ of users to explanations of algorithms and
data results. Thus, automated medical diagnosis al-
gorithms have to be explainable to both doctors and
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patients.
Currently, many supervised learning algorithms

that are widely used in AI products cannot be well
explained. For example, deep learning algorithms
are notoriously difficult to interpret even for deep
learning researchers, despite the fact that they de-
liver state-of-the-art prediction performance. To aid
interpretability and increase reproducibility of algo-
rithms and data results, Yu (2013) has advocated
for the use of the stability principle. This princi-
ple is conceptually simple to understand and prac-
tically easy to use. It unifies a myriad of works in
the literature, starting at least in the 1940s, and
provides a platform for developing new stability-
based methods. On one hand, it combines the philo-
sophical principle of knowledge stability with the
reproducibility principle of science. On the other
hand, it connects to statistical inference or uncer-
tainty assessment. Applying the stability principle
requires human input to clearly define both appro-
priate perturbation(s) to data and/or models and
stability measure(s). For instance, deep learning al-
gorithms are stable for prediction-based metrics, but
not for interpretability metrics that rely on the fit-
ted weights. Appropriateness is a heavily loaded
word and should be judged carefully by humans in
terms of both the data generation process and do-
main knowledge.

For algorithm development related to auto-
mated medical diagnosis, at least two forms of data
perturbations seem appropriate. One is to use a
sub-sample of all CT scans from all patients in the
training set and study the stability of the algorithm
outputs relative to the different sub-samples. The
other is to add a small amount of noise to the scans
to see how the diagnosis changes. The tolerable level
of instability is a domain matter that users must de-
velop in context and in collaboration with subject
matter experts such as doctors. It is one measure of
uncertainty to take into account when conveying the
diagnosis result to a patient.

The stability principle can be applied to inter-
pret supervised learning algorithms whose means of
prediction are otherwise impenetrable, making it eas-
ier for humans to scrutinize results. For example, the
authors’ research group incorporates stability into its
current genomics work to identify candidate regula-
tory interactions. Specifically, the group stabilizes
random forest decision paths through the iterative

random forests (IRF) algorithm (Basu et al., 2018)
to recover the high-order, non-linear interactions
learned by the popular supervised learning method.
The algorithm integrates domain knowledge regard-
ing the thresholding phenomenon of biomolecular in-
teractions (Wolpert, 1969) through the thresholding
mechanism of decision trees. IRF empirically demon-
strates the value of the stability principle, identifying
a high-quality set of stable interactions, of which 80%
of the pairwise interactions have been previously re-
ported in fruit-fly genomics experiments. This holds
great promise for effectively directing experimental
efforts to discover third- or higher-order interactions
at the frontiers of systems biology. Note that the
scrutiny step in this project required both stable, in-
terpretable interactions and human-generated wet-
lab data to evaluate the quality of pairwise results.

Causal effects can also be viewed through the
lens of stability as interpretable and stable mech-
anisms underlying a data generating process. To
help doctors decide on drug treatment plans, ran-
domized experiments (or A/B tests) are used to as-
sign patients to treatment and control groups and
evaluate the effect of a drug. This brings up the ran-
domization principle of statistical experimental de-
sign for effective data collection in causal inference
(Imbens and Rubin, 2015). For personal or precision
medical diagnosis and treatment, it can be preferable
to find a smaller subgroup of patients who are similar
to the patient under consideration and carry out the
stability analysis for this group. This type of analy-
sis represents an instance of the ‘local control’ princi-
ple of statistical experimental design, which reduces
uncertainty or variability induced by conditioning,
or grouping, according to features of a patient that
are related to the outcome. This is a challenging
proposition because it is difficult to find the relevant
dimensions by which patients are grouped, even with
‘big data’, and such groups can be very small with
low estimation power. Once again, interpreting algo-
rithmic outputs so they can be scrutinized by subject
matter experts, relative to a question of interest, can
aid in this decision process.

Data-driven decisions are at the core of AI.
These decisions often rely on human input, particu-
larly for cutting-edge AI products such as Amazon
Echo, self-driving cars, and automated medical di-
agnosis. For these particular products, reliance on
manual inputs will probably decrease. However, the
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demand will be taken up by new AI applications.
The PQRS workflow provides one approach for
incorporating human input into AI products through
simple statistical ideas including experimental design
principles (Box et al., 2005) of randomization and lo-
cal control as well as the stability principle. Integrat-
ing these concepts into analyses is useful for efficient
and effective collection and use of data and for inter-
pretability and reproducibility of AI algorithms and
data results. The authors view it as AI’s holy grail
to reproduce the unconscious mind, which is yet to
be clearly defined for human intelligence, and see an
AI future in which humans and statistics continue to
play indispensable roles.
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