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1 Introduction

We congratulate the authors on their interesting and thought-provoking paper (called
the DBZ paper thereafter) and appreciate the Editor’s invitation to discuss. This paper
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addresses the difficult problem of high-dimensional statistical inference in the context
of sparse linear models and Lasso-related methods. Inference or uncertainty quantifi-
cation is central to statistics and at the frontier of modern statistics and is increasingly
attracting attention in machine learning and data science. The challenge of quantifying
uncertainty is particularly relevant in big data settings. That is, it commonly arises in
fields such as neuroscience where researchers are generating terabytes of fMRI data
with every experiment, in genomics where an individual’s genome can be sequenced
and analyzed in the blink of an eye, in social science where social media data allow
understanding into social influence at an unprecedented scale, and in astronomywhere
the arrival speed of data from telescopes makes online decisions unavoidable. In these
fields, data-driven scientific discoveries are becoming an accepted alternative to the
more traditional hypothesis-driven discoveries.

As we dive deeper and deeper into a realm in which questions are both raised and
answered on the basis of data analysis, it is vital to take a moment to pause, take a step
back, and ponder two key questions that highlight the validity of the answers derived
in our data-driven world:

1. How is uncertainty quantification used in these new data problems? For these new
data problems, it is still the case that a very uncertain answer should not be taken
seriously while a precise one deserves attention and resource to follow up.

2. What are effective metrics to assess whether an inference method is adequate or
good, in addition to coverage?Moremetrics are necessary because the effect size of
a new medical treatment is not adequately reflected in the coverage. Furthermore,
although ranking of the treatments is very useful for a patient, it is not addressed
by the coverage either.

At this point, we would like to note that our discussion surrounding these questions
will be strongly relevant for a wide variety of inference problems, reaching far beyond
the sparse linear model setting we focus on here.

To address the questions above, we propose two important metrics for assessing
the performance of an inferential procedure such as a confidence interval: MSE and
ranking. We will present some preliminary comparisons (in terms of MSE, coverage
and ranking) of various methods covered in the DBZ paper based on two data-inspired
sparse linearmodel simulations. Finally, in writing this discussion, we aim to stimulate
further discussions with the authors and others.

2 Statistical inference for informed decision making

In our view, one of the most important (if not the most important) contributions of
statistical inference is to help make informed decisions with appropriately quantified
uncertainties. To ground our discussion, we would like to describe a long-term inter-
disciplinary project with the Gallant Neuroscience Lab at UC Berkeley that studies
primate visual pathways. For a particular voxel in a human subject’s visual cortex
V1, fMRI brain signals (indirect correlates of aggregated neuron activities) were mea-
sured in the Gallant Lab. A predictive model has been built via the Lasso based on
features of images after Gabor transformations that are known to mimic V1 neurons.
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742 H. Liu, B. Yu

One scientific question to ask is: which Gabor features are driving the voxel response
among 10,921 features? A good statistical data analysis should help narrow down (or
recommend) possible driving or important features (and ultimately experiments have
to be run to validate such recommendations in the Gallant Lab).

2.1 Effect size and statistical confidence

The ability to recommend important predictors is a key feature that has led to the
success of data analytics in making data-driven discoveries in science and business
alike. Many of these analyses are based on linear models which allocate an estimated
coefficient to each feature. It is both natural and informative to look at the size of the
estimated coefficients for the features as a measure of “effect size” even before a mea-
sure of uncertainty (as scientists and statistics practitioners always do). The effect size
can be used to assess domain importance or domain significance, while the effect size
normalized relative to a uncertainty measure provides statistical significance. While
interpretations of both the raw coefficients themselves and the normalized versions
can differ, they are both important for down-stream decision making.

In the fMRI project, the effect size of a Gabor feature as measured by the estimated
coefficient multiplied by the size of that Gabor feature indicates the contribution of
that Gabor feature to the voxel response. For Gabor features with small average effect
sizes, the small effect sizes can be too small to be of interest, no matter how large
the normalized effect sizes are (or how statistically significant the results are). That
is, not only do we need to seek to surpass a statistical significance threshold for the
normalized coefficient, we must also target a domain significance threshold for the
raw coefficient.

The more traditional threshold of statistical significance is a direct assessment of
importance relative to the uncertainty due to noise in the process of data generation.
While the statistical significance threshold is notoriously domain-agnostic (in that a
threshold of 0.05 is universal), a domain-knowledge-driven threshold for the effect
size would be strongly domain dependent. For example, in some applications a raw
coefficient of 2.5 is considered large, whereas in others a coefficient of 500 is con-
sidered large. Moreover, in many settings, we do not always know what is considered
large, for example because the technology used to generate the data (e.g., fMRI) is
relatively new.

To evaluate an inference method by considering whether an unnormalized effect
size passes a domain significance threshold, as described above, we propose the MSE
as a suitable metric. The MSE estimates how close an estimator (the estimated effect
size) is to the parameter value (true effect size), incorporating both bias and variance.
More precisely, the MSE is directly concerned with this estimated effect size, or raw
unnormalized coefficient value. We believe that, in addition to coverage, it is vital to
include MSE as a metric for inference method evaluation. Moreover, MSE directly
evaluates effect size estimation than the size of a confidence interval. The latter is
closely related to the standard deviation (or variance) of an estimator. Like MSE,
coverage deals with bias and variance together, but in an implicit way (unlike in
MSE).
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2.2 Ranking important features or covariates

Among the features that are recommended by a statistical investigation, being able to
arrange the features in order of importance is crucial. For example, in a gene–disease
association study, limited resources require researchers to pre-specify a number of
genes for further study; therefore, it seems more compelling to discover the most k
important genes than to test the significance of each gene. In this situation, ranking
the coefficients of each of the covariates is much more important than covering the
coefficients in high-dimensional models. In other words, from the decision-making
point of view, a more basic problem is to identify, for example, the best k or the worst
k among the features or covariates under consideration with a high probability of a
correct selection.

Ordering statistical findings to support decision making can be traced back at least
to the 1950s under the name of selection and ranking, including fundamental and
excellent work (Bahadur 1950; Bahadur and Robbins 1950; Bechhofer 1954; Bech-
hofer et al. 1968). As a leading researcher of selection and ranking, Professor Milton
Sobel pointed out (Mukhopadhyay 2000) “this new area would be a revolution in the
sense of replacing the general overuse of ‘Testing the Hypothesis of Equality’ by new
decision-theoretic models for ordering populations with prescribed confidence in the
resulting decision”.1 This work studied ranking and selecting the top k populations
with the highest populationmeans froma total of p populations,where each population
was observed with independent observations.

In our modern setting of high-dimensional inference, we often want to rank features
that are dependent. For example, the Gabor wavelet features from our fMRI project
do not form a set of independent features, implying that the existing selection and
ranking methods do not directly apply. Work needs to be developed to encompass
these modern problems in our selection and ordering setting.

2.3 Inference methods via bootstrap for sparse linear models

Let us now turn to the setting of DBZ and the world of high-dimensional sparse
linear models. In this section, we will review various inference methods based on
the bootstrap. In the DBZ paper, uncertainty is assessed on the estimated param-
eters in a sparse linear model under three bootstrap methods: bootstrapping the
de-biased Lasso procedures including a residual bootstrap, a multiplier wild boot-
strap and a special version of a paired bootstrap to construct individual confidence
interval and simultaneous confidence regions for parameters in high-dimensional lin-
ear models. The de-biased Lasso is designed to remove the bias of the Lasso and
to derive an asymptotically normal distributed estimator for each individual coef-
ficient in high-dimensional sparse linear models with Gaussian and homoscedastic
errors. Bootstrapping the de-biased Lasso can deal with non-Gaussian and het-
eroscedastic errors. Both empirical results and theoretical investigations show the

1 In 1950s,many statisticians including JackKiefer,Herbert Robbins, JackWolfowitz, R.C.Bose,Abraham
Wald and Milton Sobel thought that the area of ranking and selection is a “revolution”.
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advantage of the proposed methods. In particular, these methods perfectly control
the type I error and the familywise error rate at the expense of losing some power
and avoid the “beta-min” condition that seems to be needed by bootstrapping the
adaptive Lasso and bootstrapping the LassoOLS as in our earlier paper (Liu and Yu
2013), and the super-efficiency phenomenon will not occur. However, the confidence
intervals constructed by the new proposals of DBZ sometimes are large for small
coefficients.

Bootstrapping the Lasso (Chatterjee and Lahiri 2010, 2011)2 or LassoOLS (Liu
and Yu 2013) is a simpler tool, both conceptually and computationally, for high-
dimensional inference in sparse linear models than the de-biased Lasso. They perform
comparably in terms of coverage probability and interval length as shown in the com-
prehensive empirical studies in Dezeure et al. (2014). Compared with bootstrapping
the de-biased Lasso, there are two advantages of bootstrapping the Lasso or Las-
soOLS. First, they are built on top of canonical statistical techniques, the bootstrap,
the Lasso (and the OLS), which are all well known to a broad range of scientists and
data scientists and hence easily accessible to them; second, they can be computational
faster when the number of replications in the bootstrap B is smaller than the number
of covariates p.

However, a “beta-min” condition was imposed in Chatterjee and Lahiri (2011) and
Liu and Yu (2013), and bootstrapping the Lasso or LassoOLS produces confidence
intervals close to zero lengths and zero coverage probabilities for small but nonzero
coefficients, e.g., confidence intervals [0, 0] in extreme cases. Small coefficients or
parameters (relative to noise size) are difficult to estimate, and we are curious to see
data problems in the real world where such coefficients are the focus (since we have
not encountered such a problem ourselves). Without such real problems, it is hard
to justify why we should compare methods based on their performances on small
coefficients and make recommendations to practitioners based on such comparisons.
Assume such data problems exist (which could be a big assumption), we then face
three choices: bootstrapping the de-biased Lasso or Lasso (or LassoOLS). None is
perfect or dominates the other two. For simplicity, let’s look at their behaviors for zero
coefficients. Bootstrapping the de-biased Lasso gives large confidence intervals and
potentially also has large biases, while bootstrapping the Lasso or LassoOLS gives
small confidence intervals (sometimes zero confidence intervals) and has small bias
and MSE. The coverage of the former is better because of the large intervals, but its
effect size estimate is disappointing. The latter is the opposite. It seems reasonable to
believe that to most people, a small confidence interval near zero means the coefficient
is small and we are sure about it, while a large confidence interval near zero says that
the coefficient is small, but we are not sure about it. The former seems to us a more
informative evidence to use in practice.

2 In paper (2010), Chatterjee and Lahiri showed that bootstrapping the Lasso is inconsistent whenever one
ormore regression coefficients are zero. They proposed bootstrapping the thresholded Lasso (Chatterjee and
Lahiri 2011) and bootstrapping the adaptive Lasso (Chatterjee and Lahiri 2013) and showed their validation
under the beta-min condition and other appropriate conditions. However, bootstrapping the Lasso performs
comparably (but is simpler) to the other two methods in simulations where the signal-to-noise ratio is not
high.
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3 MSE, coverage, and ranking in data-inspired simulation studies

It is relatively straightforward to investigate MSE and coverage using simulation stud-
ies in a variety of inference settings. In what follows, we will display the MSE and
coverage for each individual coefficient.

Due to correlations between covariates and subsequent dependencies between
coefficient estimates, ranking and selecting covariates/coefficients in modern linear
regression models are more complicated than in the traditional settings of Milton
Sobel and others. Traditionally, the t-statistic or p value is used to rank the impor-
tance of covariates in a linear regression model. In the bootstrapping setup, p value
cannot be estimated accurately using limited bootstrap replications, so we will not
consider it for ranking purpose. Since both a coefficient estimate and its confidence
interval length are related to the importance of covariates, a naive generalization of the
t-statistic is the ratio the coefficient estimate and its corresponding confidence interval
length. This new importancemeasure is proportional to the t-statistics if the coefficient
estimate follows normal distribution.We can rank the covariates by the absolute values
of the new importance measure. In our simulation, we consider confidence interval
length of confidence levels 90, 95, and 99% and find that 99% confidence interval
length works the best, which is comparable to the t-statistic. We call this ratio a gen-
eralized t-statistic. To deal with the special case of 0/0, we rank the coefficients with
zero estimates and zero-length confidence intervals at the end of the ranking sequence,
meaning that they are not important at all.

To evaluate the ranking performance, we use the ReDiscovery(k), which is defined
as the expected number of top k covariates being ranked within the top k again (Lu
et al. 2009). The larger the ReDiscovery(k), the better the ranking.

In the next sections, wewill focus on data-inspired simulation studies for comparing
(1) the bias-variance trade-off, MSE and coverage of the Lasso, the de-biased Lasso
and the LassoOLS, and (2) the ranking performance of bootstrapping these estimators.

3.1 Simulation study setups based on real data sets

Our simulations are based on two real data sets: fMRI data introduced earlier (Kay
et al. 2008) and the Ames Iowa Housing data.3 The fMRI recorded measurements
of blood oxygen level-dependent activity at 1331 discretized 3D brain volumes (2 ×
2 × 2.5 mm): cube-like units called voxels. There are 1750 observations and 10,921
covariates (Gabor features) for each voxel. In the simulation, we consider one of the
voxels as the response and 2000 covariates having the top largest marginal correlations
with the response. The Ames Iowa Housing data contained information from the
Ames Assessor’s Office used in computing assessed values for individual residential
properties sold in Ames, IA, from 2006 to 2010. The response variable is the housing
price, and there are 1543 observations and 80 covariates in a training data set. After
removing 3 outliers and including some quadratic and two-way interaction terms, we
finally form a design matrix of dimensions 1540×243. We will refer to this data set as

3 http://www.amstat.org/publications/jse/v19n3/decock/AmesHousing.xls.
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Housing data for simplicity. The covariates in the fMRI data are more or less normally
distributed, while the covariates in the Housing data are not.

The true coefficients β∗ in the simulations are computed by the Lasso for the
two real data sets. The β∗ has 46 and 71 nonzero elements in the two data sets,
respectively. After β∗ is generated, we simulate Y = (y1, . . . , yn)T from a linear
regression model yi = xTi β∗ + εi by generating independent error terms. The error
terms are non-Gaussian and heteroscedastic, which are generated in two steps: (1)
generating ηi , i = 1, . . . , n i.i.d. from uniform distribution on [1, 3]. ηi ’s are used
to make the errors heteroscedastic, which are generated once and then kept fixed; (2)
generating εi , i = 1, . . . , n by the equation εi = σηi

ξi−1√
2
, where ξi , i = 1, . . . , n are

i.i.d. from χ2
1 distribution with one degree of freedom. We set the value of σ such that

the signal-to-noise ratio (SNR) equals 0.5, 1, 2 and 5, respectively. SNRs considered
here are much smaller and more realistic than those used in the DBZ paper and the
review paper (Dezeure et al. 2014) where the smallest SNR is around 3.5 and the
largest one is more than 100. For space limitation, we will only show the results for
SNR = 0.5 and SNR = 2 since the conclusions for the other two values are the same.
Moreover, we also consider generating i.i.d. Gaussian error terms, but end up with the
same qualitative comparison results.

We generate the error terms for 100 times and then compute the bias2, the mean
squared error (MSE), coverage probability of each individual coefficient and rank the
importance of covariates based on the generalized t-statistic.

3.2 Simulation results

3.2.1 Bias-variance trade-off, MSE and coverage

As the authors pointed out, the de-biased Lasso “is not designed for variable selection
or the estimation of the coefficients, and the l2 estimation error of the de-biased Lasso
is of order σ 2 p/n, compared with σ 2s log(p)/n for the Lasso,” where σ 2 is the noise
variance, s is number of nonzero coefficients, p is the number of covariates and n is the
sample size. However, limited research has been done on the bias-variance trade-off
of the de-biased Lasso estimate for each individual regression coefficient.

Figures 1 (fMRI) and 2 (Housing) show the bias2 (first row), variance (second row)
andmean squared error (MSE; third row) of the de-biasedLasso against the LassoOLS.
To have a better display, the bias2, variance and MSE are rescaled by dividing M =
max j=1,...,p(β

∗
j )

2. Each scatter point stands for one individual coefficient, and red
points are presented for nonzero coefficients, while green points are presented for zero
coefficients. We find that, for the fMRI data set, the de-biased Lasso reduces the bias
of the LassoOLS for nonzero coefficients, but increases the bias for zero coefficients.
Overall, theLassoOLShas smaller bias2,which is 4–16%smaller than de-biasedLasso
and 84–98% smaller than Lasso; see Figures S3 and S4 in Electronic Supplementary
Material for comparison of the LassoOLS to the Lasso. For the housing data set,
where the covariates are not normally distributed, even for nonzero coefficients, the
de-biased Lasso has larger biases than both the Lasso and the LassoOLS. In terms
of variance, Lasso performs the best, which is 35–72% smaller (overall) than the
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Fig. 1 Relative bias2 (first column), variance (second column) andMSE (third column) of de-biased Lasso
against LassoOLS for each individual coefficient based on fMRI data set. Red points are presented for
nonzero coefficients, and green points are presented for zero coefficients. The diagonal solid line corresponds
to when two methods perform the same (color figure online)
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Fig. 2 Relative bias2 (first column), variance (second column) andMSE (third column) of de-biased Lasso
against LassoOLS for each individual coefficient based on housing data set. Red points are presented for
nonzero coefficients, and green points are presented for zero coefficients. The diagonal solid line corresponds
to when two methods perform the same (color figure online)

LassoOLS and 81–99% smaller than de-biased Lasso. As a result, the Lasso has the
best overall MSE: 11–30% better than the LassoOLS and 86–99% better than the
de-biased Lasso.
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Figure 3 displays coverage probability (95% confidence interval) against MSE
for each individual coefficient based on fMRI data. Three methods are compared:
bootstrapping the de-biased Lasso, bootstrapping the LassoOLS and bootstrapping
the Lasso. We see that in order to cover the true coefficients, bootstrapping the de-
biased Lasso requires to increase the variances of the estimates, which results in
relatively large MSEs, especially for small and zero coefficients. On the other hand,
although bootstrapping theLassoOLS (orLasso) does not produce the correct coverage
for nonzero coefficients, it can estimate these coefficients with greater accuracy and
is able to correctly identify zero coefficients. Moreover, when SNR increases, its
coverage performance improves. Results for Housing data are similar; see Figure S1
in Electronic Supplementary Material.

3.2.2 Ranking and selection of covariates

To compare the ranking performance, we compute the ReDiscovery(k) for k =
1, . . . , 20 and show them in Fig. 4 in the main text and Figure S2 in Electronic Sup-
plementary Material for fMRI data and Housing data, respectively. It is clear that
bootstrapping the LassoOLS produces more accurate rankings, especially when SNR
is low. Together with its conceptual and computational simplicity, and associated easy
accessibility and good reproducibility, for the rankingmetric, bootstrappingLassoOLS
seems a good choice.
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Fig. 3 Coverage probability (95% CI) against MSE for large individual coefficients (the first 20 largest),
small individual coefficients (the nonzero coefficients except the first 20 largest) and zero individual coef-
ficients based on fMRI data set. Three methods are compared: bootstrapping the de-biased Lasso (blue
points), bootstrapping the LassoOLS (red points) and bootstrapping the Lasso (green points) (color figure
online)
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Fig. 4 Comparison of ranking performance of bootstrapping the Lasso (green), bootstrapping the de-biased
Lasso (blue) and bootstrapping the LassoOLS (red) based on fMRI data set (color figure online)

4 Conclusion

Estimation and inference in high-dimensional models both appear in decision making
as effect size assessment and uncertainty quantification. We made a case for MSE to
be an additional metric (to coverage) for evaluation of statistical methods to support
decision making. We also made a case for ranking as a useful and relevant metric for
evaluating recommendations from modern statistical analysis. Ranking and selecting
important covariates/coefficients can bemore fundamental and desirable than covering
the true coefficient or testing its significance. In two real data-derived simulation
studies of sparse linear models with low- and medium-size SNRs, we showed that: (1)
the de-biasedLasso is designed to get desired coverage but performs disappointedly for
the MSE of estimating the whole coefficients vector or even estimating an individual
coefficient because the de-biased Lasso pays a high penalty for variance in order
to reduce bias, while the LassoOLS and the Lasso entertain overall smaller MSEs,
and (2) bootstrapping the LassoOLS (or Lasso) can work better than bootstrapping
the de-biased Lasso in terms of ranking covariates. Together with its conceptual and
computational simplicity, we believe bootstrapping the LassoOLS (or Lasso) is a
useful and effective method to support decision making. When SNR is not very low
(> 2), bootstrapping the LassoOLS seems better; otherwise, bootstrapping the Lasso
is preferred.

However, more research both from empirical studies and from theoretical investi-
gations is necessary to fully assess the importance ofMSE and ranking as performance
metrics on statistical methods for decision-making support. Moreover, the effect of
non-Gaussian predictors on the performance of compared inference methods deserves
further investigation too.
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