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A Fast Lightweight Approach to Origin-Destination IP Traffic
Estimation Using Partial Measurements

Gang Liang, Nina Taft and Bin Yu

Abstract— In this paper, we propose an approach to esti-
mating traffic matrices that incorporates lightweight Origin-
Destination (OD) flow measurements coupled with a computa-
tionally lightweight algorithm for producing the OD estimates.
There are two key ingredients in our method, called PamTram,
for PArtial Measurement of TRAffic Matrices. The first is to
actively select a small number of informative OD flows to measure
in each estimation time interval. To avoid the heavy computation
of an optimal selection, we use a heuristic based on intuition from
game theory. Randomized selection rules are developed based on
the goals of reducing errors and adapting to traffic changes. We
provide an algorithm for selecting a good flow to measure that
is fast because it avoids the computations, such as integrating
over past intervals, that are needed for optimal selection. The
second key aspect of our method is an explanation and proof
that an Iterative Proportional Fitting (IPF) algorithm can be
used to approximate the traffic matrix estimate when the goal
is a minimum mean squared error and the optimization starts
from a maximum entropy initial estimate.

In addition, we provide a one-step average error bound for
PamTram when the randomized selection rule is uniform and
no link counts are used. This bounds the average error for
the worst case selection rule. Finally, we validate our method
using data from Sprint’s European Tier-1 IP backbone network.
Results show that our method generates average errors below
the 10% carrier target error rate. Interestingly, we show that it
suffices to measure a single OD flow in each estimation interval,
which renders our partial measurement method very lightweight
in terms of measurement overhead.

Index Terms— iterative proportional fitting, minimax, origin-
destination traffic matrix, partial measurement, statistical game

I. I NTRODUCTION

Origin-destination (OD) traffic matrices are network profiles
that quantify the volume of traffic flow between all pairs
of nodes in a given network. The traffic represented is the
demand as it captures the traffic that originates at one node
and is destined for the other node. Such matrices serve as
important inputs for a variety of network traffic engineering
tasks, including capacity planning, load balancing, and traffic
provisioning; hence, the problem of estimating OD traffic
matrices for backbone networks has recently attracted much
interest from both service providers [1], [2], [3] and the
research community [4], [5], [6], [7], [8].

In communication networks, packets are forwarded by in-
ternal routers or switches according to a routing scheme.
The origin and destinations of these data packets are edge
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nodes that lie behind access routers. A general traffic matrix
can be defined at any level of granularity: the traffic sources
and destinations could be hosts, groups of hosts, routers or
even PoPs (a large collection of co-located routers). The
specification of a particular traffic matrix requires the selection
of the level of aggregation. In a router-to-router traffic matrix,
the traffic considered to be “sourced” at a given router includes
all of the clients and peers attached to that router. Most
research has focused on either router-to-router or PoP-to-PoP
matrices, and we continue in the same vain, as these are the
ones ISPs are primarily interested in. For a network withne

edge (or access) nodes, the number of possible OD traffic flow
pairs isn2

e. The OD matrix also has a timescale associated with
it - each entry gives an average volume level over some time
interval (1 min, 1 hour, 1 day, etc.). Traffic matrices should
be thought of as 3-dimensional matrices in which the third
dimension is time. Each OD traffic flow is actually a time
series, and thus the entire matrix evolves over time. It has
been shown ([2], [9]) that traffic matrices are quite dynamic
and exhibit strong diurnal patterns thus varying a great deal
within a 24 hour period.

Current approaches for obtaining traffic matrices can be
classified into two categories: direct and indirect. A direct
approach is a pure measurement one in which the entire
traffic matrix is repeatedly measured over time via monitoring
technologies such as Netflow on Cisco routers. This software
can either be resident on routers or located on separate
monitoring equipment. In [2], the authors explicitly calculated
the overheads of direct measurement using state-of-the-art
flow monitors. They showed that today’s solutions, which
essentially mandate a centralized solution, are prohibitive in
terms of communication and computation costs. They also
illustrated that by moving towards a more distributed approach,
the computation costs fall but the communications cost of full
measurement (albeit smaller) still remains high.

The indirect approach relies on alternative data that is more
readily available in networks, yet is incomplete. In particular,
the Simple Network Management Protocol (SNMP), supplies
statistics on links (such as total bytes seen in a given time
window) and is widely deployed in today’s ISP networks.
SNMP supplies the link load levels every 5 minutes in most
commercial networks. This is only partial information because
typically the number of internal link constraints is much
smaller than the number of OD pairs, thus creating an ill-
posed problem. Vardi (1996) was the first to investigate the
problem of estimating OD matrix through link traffic counts,
and coined the term “network tomography” to illustrate its
similarities with medical tomography. The challenge of the
indirect approach lies in its ill-posed nature. For a general
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network, the number of links is usually proportional to the
number of edge nodesne, which grows much more slowly than
the number of OD pairsn2

e. The problem becomes severely
under-constrained even for a modestne. For instance, in a
backbone network,ne is is in the range of 20-40 at the PoP
level, and is on the order of hundreds at the backbone router
level.

Many approaches to tackle these problems try to find a
simple model for OD flows, introduce constraints to ensure
the identifiability of the model, and then employ some form
of maximum likelihood estimation. Simple models, if they can
work, are attractive in that they limit the computations from
becoming excessive. Vardi [5] proposed a Poisson model as-
suming iid (independent identically distributed) Poisson distri-
butions for the OD traffic byte counts. Based on LAN network
data, Cao et. al. [4] revise the Poisson assumption to propose
a Gaussian model coupled with an assumption of a power-law
relationship between the mean and variance of an OD flow.
Vaton and Gravey [6] propose an empirical Bayesian method
and an iterative algorithm is used to learn the prior distribution.
In [10] the authors proposed the use of gravity models for
determining initial conditions for optimization methods (such
as maximum likelihood estimation) to avoid local minima
problems. In Zhang et. al. [1], a tomogravity model is proposed
to regularized the gravity parameter estimate such that the
final estimate is also faithful to the SNMP link counts. The
computation of these methods is usually very high. Liang
and Yu [11] propose a pseudo likelihood method to speed
up the parameter estimation for general network tomography
problems.

A key question regarding the indirect approaches is to what
level of accuracy can the hidden OD traffic be recovered sim-
ply from aggregated link traffic counts? Most of the indirect
methods achieveaverageerrors in the range 20-30%. However
carriers are hoping for error rates to fall below the 10% barrier.
In order to achieve lower error rates, recent research seeks
to obtain yet more data (referred to asside informationin
statistics) to bring into the problem. Nucci et. al. [9] propose
to use routing changes to obtained more information about
the underlying OD traffic. Zhang et. al. [10] use SNMP data
not only from inter-router links (as in the traditional problem),
but also from access and peering links in order to populate the
gravity model.

In this paper we propose the approach of using partial OD
flow measurements as a good type of side information to bring
into the problem. The idea is to measure a small number of
OD flows (e.g., one) directly using a flow monitor, in each
measurement interval, and then to vary the flow(s) measured
over the course of time. This idea was originally proposed
in [12]; however in that short paper neither the theoretical
foundation for this approach nor any validation using data
was carried out. We do both of those herein. Three partial
flow measurement approaches were proposed and evaluated
in the comparative study done in [8]. The notion of partial
flow measurement in those approaches is different because
they all propose to turn flow monitors on at all routers, for
a period of 24 hours to measure the traffic matrix throughout
its diurnal cycles. All flow monitors are then turned off until

sufficient change has been detected so as to require them to
be activated again, for another period of 24 hours, in order
to recalibrate the underlying models. While these approaches
proved useful, the one we include in this study is far more
lightweight. The measurement overhead in that study varied
from 5-30% depending upon the particular scheme; using their
same overhead metric, our approach yields a measurement
overhead of 1-5%.

Our contributions in this paper are multiple. First we intro-
duce a simple model to capture the 1-step temporal transitions
of a traffic matrix. Although this model does not match the full
OD flow behavior, and is not as rich as the models in [8], we
illustrate that it is sufficient for the purposes of accurate TM
estimation and enables the use of less intensive computations.
Second, we propose a methodology that iterates over two
steps. In one step we propose a mechanism to select the one
OD flow that will be measured in each interval, and in the
second step we compute an approximation to the minimum
Kullback-Leibler divergence estimate to populate the traffic
matrix. To select which flow(s) to measure we employ a game
theoretic randomization scheme to choose informative OD
pairs. Different OD flows will be measured in different time
intervals and the choice of which flows to measure is based on
previous estimates. Intuitively speaking, our choice of which
pair to measure is based on the probability that an OD flow
will generate large errors. The benefit of this approach is that
it permits adaptation to dynamic changes in the traffic matrix.
When changes in particular OD flows occur, those flows are
likely to generate larger errors; as our method progresses in
time, it eventually catches these changes. We contend that the
original ill-posed problem can be substantially improved even
if only a tiny fraction of OD pairs are measured in each time
interval.

Third, we prove that the iterative proportional fitting (IPF)
algorithm can be used for our two critical computational steps:
(i) it approximates the minimum Kullback-Leibler divergence
estimate (as used in [1], and (ii) can also be used to implement
our game for selecting which OD flow to measure. Because
IPF can be used inside these two steps of our methodology,
our overall procedure yields an efficient and fast algorithm that
is thus practical to implement. To handle the practical issue
of disseminating a command from a centralized station to a
router instructing it to take a measurement, we consider the
possibility of delayed execution of our OD flow measurement
choices. We demonstrate that even with 24 hours delay, our
schemes are very effective. Fourth, we compute a bound on
the 1-step error (the error of each successive estimate) and
illustrate that the errors drop very quickly after a few iterations.
Finally, we validate our methods on real data from a Tier-1
operational backbone.

This paper is organized as follows. In Section II, we briefly
state the OD traffic estimation problem. In Section III, we
explain our approach to partial measurement and introduce a
few minimax randomization selection schemes for selecting
those traffic matrix elements to measure. We prove that the
IPF procedure can be used to approximate both a minimum
mean squared estimate and to execute our game theoretic
selection scheme. We also discuss the evolution of errors
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and derive a bound on the error from one interval to the
next. The above methods are evaluated on a real network
dataset in Section IV. We evaluate a number of performance
metrics, including temporal and spatial errors, adaptability
and overheads. In order to understand how well our minimax
type schemes perform, we compare them to an oracle-based
scheme in which full knowledge about which pairs are most
informative is assumed. We conclude our paper in Section V
and provide proofs of the theorems in the Appendix.

II. OD TRAFFIC ESTIMATION PROBLEM

We denote the SNMP link counts asY = (Y1, ..., YJ)
for a network withJ links. Let X = (X1, · · · , XI) be the
vectorized version of the traffic matrix whereXi denotes the
i-th OD flow (for a total of I OD pairs). The OD traffic
matrixX has been aligned into a vector for the convenience of
mathematical manipulation. As in [5] and [4] there is a linear
relationship between the unobservedX and observedY :

Y = AX, (1)

whereA is anJ×I routing matrix, determined by the network
topology and the routing protocol. Mostly, elements ofA take
on the value of0 or 1 whereAj,i = 1 if OD pair i traverses
link j, and Aj,i = 0 otherwise. The elements ofA could
take on fractional numbers when traffic splitting is allowed.
Such Markovian routing schemes are discussed in [5]. In this
paper, we assume the network routing is fixed during each
measurement period, and the routing matrixA is known.

Since at each time point, a traffic matrix is also naturally
represented using two dimensional arrays, we will sometimes
use the notationXo,d to denote the specific OD traffic from
origin nodeo to destination noded. The total traffic originated
at nodeo is represented byXo,·, andX·,d captures the total
traffic destined for noded. It should be clear from the context
when the vector and matrix notations are used.

Since in the systemY = AX, A is known andY is
observable, the goal of the traffic matrix estimation problem
is to recoverX. Typically A is not full rank with J � I,
so the estimation of the distribution ofX is an ill-posed
inverse problem. Constraints have to be introduced to ensure
the identifiability of the model. Statistical modeling can be
viewed as introducing constraints by taking characteristics of
network traffic dynamics into account. There is a rich literature
in statistics ([13], [14]) devoted to this topic from the point of
view of regularization.

III. M ETHODOLOGY

A. Partial Measurement

On of the central ideas in our method is that of coupling
the inference activity with the direct measurement of a small
number (possibly just one) OD flow. To do this, it would
be necessary for flow monitors to be universally deployed
throughout a network. One might ask, if flow monitors are
deployed everywhere, why not just measure the traffic matrix
entirely? In [2] the authors outline the overheads involved
for both centralized and distributed versions of full direct

measurement. In both cases, the communications cost (infor-
mation being shipped to a central Network Operations Center)
remains very high. For this reasons, it is interesting to consider
more lightweight uses of direct OD flow measurement. Our
approach of measuring one, or a small number, of flows in
each measurement interval is indeed very lightweight.

A recent discovery illustrated that seemingly high dimen-
sional network OD traffic actually lives in a much lower
dimensional space [15]. This provides compelling intuition for
an active partial measurement approach, since it implies that
there is potential to learn a great deal about all the flows by
only measuring a few of them. In practice, it is challenging
to get a low rank representation because the network traffic
is volatile; hence, the representation changes over time. Our
proposed partial measurement approach is to use only a few
active measures to obtain some vital information to explore
this low dimensional space dynamically. We contend that
the original ill-posed problem will become more well-posed
even if only a tiny fraction of OD flows are selected to be
measured directly at each time point and the measured OD
flows from previous time points also help due to the often
present smoothness of the OD traffic.

B. Modeling

To model the OD flows, some previous efforts have chosen
to assume that an OD flow is either Poisson or Gaussian.
In this work we focus on the conditional random variable
X(t+1)|X(t), which is assumed to be a Gaussian distribution
(We defineη shortly.)

X(t+1)|X(t) ∼ N(X(t), η(t)diag(|X(t)|)). (2)

Note that the same power mean-variance relationship Gaussian
distribution was used in [4] and [11], and recently verified in
[16]. Here, instead of on the marginal distribution ofX(t), we
have it on the conditional distribution ofX(t+1) given X(t),
and the unknown parameterη(t) characterizes the variability
of the network traffic at timet. Theη(t) varies over time, and
we assume that they are bounded by a constantη > 0, that
is, η(t) < η. Empirical studies based our dataset in Section
IV suggest small values ofη(t) (cf. Fig. 4 (c)). Equation (2)
accounts for the phenomenon that large flows have large
variations, and this linear mean-variance relationship will be
validated in the experimental section. The covariance matrix of
this conditional distribution is diagonal, implying that all OD
flows are independent of each other: it is an approximation to
the real network traffic. The absolute value in the covariance
matrix is introduced to ensure mathematical accuracies. In
reality, the OD flowX(t) is always non-negative; as will be
seen below in our approach the estimate ofX(t) based on the
model is always guaranteed to be non-negative.

The motivation for this conditional model is to introduce a
time series structure between consecutive OD flows. In this
paper, we are interested in monitoring network OD traffic
continuously such that there is one traffic matrix (TM) estimate
available at each time interval. This conditional model enables
us to combinepast traffic matrix estimates and the current
link counts together to produce an estimate of acurrent
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traffic matrix. There are many ways to incorporate previous
estimates, such as using it as an initial condition for an
optimization procedure. To populate our traffic matrix we
will use an estimate based on the expectation of the current
random variable conditioned upon the link constraints and
the additional measurements we obtain, given the immediate
previous estimate.

In this approach, the transitions of the traffic matrix from
one time interval to the next is controlled by the parameterη
and smallη’s imply that these transitions are not excessive.
Clearly the validity of non-excessive transitions depends upon
the time scale the matrix intends to be used for. In our case,
we make estimates of a traffic matrix every 10 minutes. Our
model is intended to capturelocal behavior, that is, ”local” in
a temporal sense (over a short window of time). We realize
that our model would not be an accurate description of traffic
over long timescales such as many hours or days. However,
our intent is to capture the transitional behavior of a TM from
one (short) interval to the next. Even though this model is
coarse, it nevertheless works quite well for the purposes of
TM estimation, and retains the advantage of being simple.

This modelling assumption has an alternate interpretation
as a state-space model, which is used to describe internal
unobservable states that evolve over time. The relationship
between the observable and unobservable variables is usually
specified as linear functionals typically with noise terms.
In terms of state-space system notations, our model can be
rewritten as follows:

X(t+1) = X(t) +
√
|X(t)|ε(t) (3a)

Y (t+1) = AX(t+1), (3b)

where the observable link trafficY (t) ∈ RJ is a linear
function of the unobservable OD trafficX(t) ∈ RI at time
t. The routing matrixA, relating the unobservable states and
observations together, is a known sparse matrix (i.e., with
many zero entries). The errorsε(t) are identical independent
distributed normal random variables:

ε(t) ∼ N(0, η(t)), (4)

where, as discussed earlier,η(t) (< η) is a unknown parameter
quantifying the dynamics of the underlying OD traffic. We
would like to comment that there is no need to estimateη(t)’s
in the OD flow estimation and selection because they only
serve as scalers irrelevant to the final estimate. It will become
clear by the equations in the following sections.

The partial measurements can be incorporated into our
model as follows. LetM (t) be the measurement matrix at time
t, andZ(t) be the new vector of observations. We appendM (t)

below the routing matrixA according to,

C(t) =
(

A

M (t)

)
,

whereM (t) is ak×I matrix in which each row is a unit vector:
it containse′i if X

(t)
i measured. The matrixC(t) now describes

the relationship between the OD flows and link counts. Thus
Z(t) = C(t)X(t) is the total observation available at timet.
The firstJ entries in this vector contain the link counts while

any additional entries contain the measured OD flows. In this
paper,k, the rank ofM (t) is preset, i.e., the number of OD
pairs to be measured is determined. It is possible to treat it
as a tuning parameter in different scenarios, however we find
excellent performance whenk = 1 and hence there is little
motivation to explore other values (at least for the dataset we
study).

Equation 3b is now replaced so that our new system
equations, with the measurements incorporated, are given by

X(t+1) = X(t) +
√
|X(t)|ε(t) (5a)

Z(t+1) = C(t)X(t+1), (5b)

Given this system we will populate our traffic matrix with
the estimate

X̂(t+1) = E(X(t+1)|X(t) = X̂(t), Z(t)) (6)

Algorithm 1 Summary of the PamTram approach

Initialization: SetX̂0 = 1
for each time intervalt do

1. Measure OD pairs selected at stept− 1;
2. EstimateX(t) based on dataZ(1), · · · , Z(t) as in (6);
3. Determine OD pairs to measure att + 1.

end for

Our proposed PamTram approach is summarized in Algo-
rithm 1. In this method, the initial traffic matrix̂X(0) is set
to be component-wise vector1. This initial choice of traffic
matrix is not very important as the algorithm will quickly
adjust itself to the right region. We could start with any
constant vector, and this is equivalent to a maximum entropy
estimation in the following sense: after normalization by the
total OD traffic (which is naturally done during IPF), the OD
traffic problem can be viewed as finding the best projection
to the linear space of probability distributions specified by the
link equations in terms of Csiszar’sI -projection [17]. Any
constant vector thus corresponds to a uniform distribution
starting point to be projected. This is intuitively appealing
because a maximum entropy estimate implies that we start
knowing nothing and thus need no prior knowledge. Step
2 corresponds to the usual optimization problem for traffic
matrix estimation. Many of the previous methods could be
applied here. We will provide a fast implementation of an
existing method. The challenge in step 3 is to determine which
OD flows to measure.

In the subsequent sections, we will explain how we carry
out steps 2 and 3 of this method. Before doing so we first
introduce our error metric because minimizing this error is the
objective of our optimization problem in step 2, and because
these errors are also used in step 3 to assist in selection of
which OD flow to measure. The intuition is to select flows
that will reduce errors.

C. Error Metric

In this paper, we propose to use a variant of the mean square
error (MSE) as the error metric to assess the performance of
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an estimator. Let̂X be an estimate of the unknown OD traffic
X, then the MSE ofX̂ is defined as

MSE(X̂,X) = ||X̂ −X||2.

One drawback of the MSE metric is that it is very sensitive to
large traffic flows’ errors which are usually large in absolute
scale. Model (3) postulates that the variance is proportional to
the mean (conditionally on the previous traffic flow) and this
relationship is used to devise the following scaled metric to
mitigate the problem of MSE:

sMSE(X̂,X) =
||X̂ −X||2

||X||1
=
∑

i(X̂i −Xi)2∑
i |Xi|

.

Other error metrics have been used in the past (e.g., [10]);
a common one is the relative error defined as :

Rel-Error(X̂i, Xi) =
|X̂i −Xi|
|Xi|

.

It has been shown that in real networks, roughly 95% of the
total load in the traffic matrix is carried by less than 1/2 or 1/3
of the flows [9]. Moreover, the volume of flow in these OD
pairs can span several orders of magnitude. Hence there are
typically very small traffic flows that generate extremely large
relative errors but are essentially irrelevant. Our scaled MSE
metric avoids this drawback, and works well as a performance
metric for both large and small flows. We point out that in
practice, the relative error is a useful measure to network
operators as it is intuitively appealing; thus we also report
on this metric in the results section.

Since we will use this sMSE error metric for assessing
performance, we can also use it as our objective function inside
the optimization of step 2 in our method. It is important to
note that the scaling factor is a quantity that does not involve
X̂, hence in effect, minimizing the scaled MSE is the same
as minimizing the MSE metric.

Based on the model we are using, we can derive a bound
on the expected scaled MSE error. Suppose for a moment that
X(t) were known and we take no measurements. Then using
X(t) as a sensible estimate forX(t+1), the average error would
be

E
(

sMSE(X(t), X(t+1))
)
≈ η(t) ≤ η.

This indicates that the expected error will be close toη(t),
which quantifies the variability of the traffic (according to our
model) if we start from the previous true OD flowX(t). In
practice, two factors are at play. On one hand, we do not know
X(t) but only its estimateX̂(t). On the other hand, we can
add measurements to better the parameter estimation. The final
expected error metric will be influenced by both factors.

D. IPF and Minimum Mean Square Error Estimation

We now state the algorithm, and its properties, for estimat-
ing OD traffic when both link traffic counts and some direct
measurement information are gathered (Step 2 in Alg. 1).
Since our goal is to estimate the traffic matrix on the order of
once every 10 minutes, we seek a fast online solution. In this
paper, we propose to use the iterative proportional fitting (IPF)

algorithm to populate the traffic matrix. This IPF algorithm
was used first by Cao et al. [4] as a post-processing step in
their OD estimation algorithm based on a Gaussian OD traffic
model. We describe IPF in the framework ofI -projection in
the space of probability distributions.

I -projection, first studied by Csisźar [17], gives a geometric
view to minimum Kullback-Leibler (KL) divergence inference
problems, where the KL divergence plays the role of squared
Euclidean distance. Given a probability functionq, minimizing
KL divergence over the first argument

p̂ = arg min
p∈L

D(p||q). (7)

can be viewed as a problem of projectingq into a convex set
L of a probability distribution space. Linear constraints are
special cases of convex sets. Algorithmically, this geometric
view suggests that an alternating minimizing type of algorithm
[17] is useful for solving the minimization problem (7) if the
constraint setL is the intersection of a series of convex con-
straint sets{Ll : l = 1, · · · , L}. Several iterative algorithms
[18], [19], [17] have been proposed to solve problem (7) with
only linear constraints.

The OD flow estimateX̂(t) is component-wise non-
negative, so it can be viewed as a probability function after
scaling, and the IPF procedure, which applies when allfl(y)
take only 0-1 values, is most relevant in OD traffic matrix
inference. Below is the pseudo code of the IPF algorithm:

Algorithm 2 IPF Algorithm

Given µ = X̂(t−1) andY = AX(t);
for k = 1, · · · ,K or till convergedo

for j = 1, · · · , J do
α =

∑
i 1{Aj,i=1}µi/Yj

µi = µi/α for all i with Aj,i = 1
end for

end for
return µ.

There are several appealing properties for IPF: 1) it is easy
to implement; 2) it converges in exponential rates (cf. Liang et.
al. [12]), and is thus very fast in practice. The IPF algorithm
can be run satisfactorily in the order ofO(IJ) with a preset
finite number of iterations. The starting point at timet is
determined byX̂(t−1), the estimate obtained from the previous
step. It is reasonable to expect the starting value to be in a
small neighborhood of the OD trafficX(t) to be estimated; this
further speeds up the convergence rate. Further, Theorem 1
justifies the use of IPF for the OD flow estimation from a
statistical viewpoint.

Theorem 1:For the network dynamic model (3), condition-
ing onX(t−1), if the mean vectorµ (i.e., X(t−1)) is assumed
known, then the IPF estimate of̂X(t) is approximately the
minimum MSE estimate.

This implies that the iterative proportional fitting (theI -
projection estimate) approximately gives the minimum MSE
estimate whenµ = X(t−1) is known. In a real problem,
X(t−1) is unknown hence replaced by the previous estimate
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X̂(t−1). Another advantage of the algorithm is that the result-
ing OD flow estimate is positive, which is not guaranteed by
the minimum MSE error estimate.

The true minimum MSE estimate ofX(t) is the conditional
expectation ofX(t) given all observations:

E(t) = E
(
X(t)

∣∣∣Z(1), · · · , Z(t)
)

.

The computation of such a quantity is very high: it involves
an integration over all past data points. In order to avoid such
high computational cost, an approximation is use instead

E(t) = E
(
E
(
X(t)|X(t−1), Z(t)

) ∣∣∣Z(1), · · ·Z(t)
)

≈ E(X(t)|X̂(t−1), Z(t)).

As stated in Theorem 1, the IPF algorithm can be used to
compute this conditional expectation approximately starting
from X̂(t−1).

E. Measurement Selection Scheme

We now address the issue of how to select the OD flows to
measure in each time interval (Step 3 in Alg. 1). The idea is
to choose a scheme that will select the most informative of the
unobservable flows. Clearly, the choice has to be made based
solely on the observable variables. We focus on selecting a
single OD flow because even just measuring one OD flow per
interval provides excellent performance. Our ideas here could
be generalized to selecting a few flows, although we don’t
believe there is much motivation to do so.

We realize that in practical systems, since the flow monitor
is attached to a link when we turn it on, we will in fact capture
all the flows sourced at that link. If the source node is a router
and we turn a flow monitor on at all the links of this router,
then again, we will obtain more OD flow measurements than
one (in fact, we would obtain one row of the traffic matrix).
However, in this paper we study the case of measuring only
a single OD flow to understand the impact of this idea. In
practice since we have more than one OD flows the errors
will be lower than we calculate using only one OD flow.
Our methodology for selecting which OD flow to measure
remains the same whether or not just one OD flow is used or
all elements of the corresponding OD row are used.

First, let us consider what an optimal solution would entail.
SupposeX is a multivariate random variable (not necessary
normal) with: E(X) = µ, andV ar(X) = Σ, where bothµ
and Σ are known (or can be estimated). Then the minimum
MSE predictor forX is just µ with the MSE error

E||X − µ||2 = trace(Σ).

Hence ideally, we would like to select an OD pair such that the
resulting conditional covariance matrix given all observations

Σ(t) = Var
(
X(t)

∣∣∣Z(1), · · · , Z(t)
)

(8)

has the smallest trace. In other words, to determine the
observation matrixM (t) such that the trace of the conditional
variance is minimized

M (t) = arg min
M(t)

traceΣ(t).

But this approach is not attractive because the computation of
Σ(t), involving integration over all past observations, is too
costly. Neither can we use

Var
(
X(t)

∣∣∣X(t−1) = X̂(t−1), Z(t)
)

as an an approximation to the conditional covariance (8)
because in generalVar(D) = Var(E(C|D))+E(Var(C|D)),
and it is difficult to approximate

Var
(

E

(
X(t)

∣∣∣∣Z(t), X(t−1) = X̂(t−1)

) ∣∣∣∣Z(1), · · · , Z(t)

)
.

Since usingΣ(t) to choose the optimal OD flow to measure
is too computationally intensive, we develop instead heuristic
randomization schemes motivated by game theory. Consider
for a moment a uniform randomization scheme in which
each OD flow is picked to measure at next step with equal
probability 1/I. The following theorem bounds the one-step
error performance (the error made from one interval to the
next) assuming uniform random sampling of flows.

Theorem 2:Let ω(t−1) be the scaled MSE error at stept−1,

ω(t−1) = sMSE
(
X̂(t−1), X(t−1)

)
.

Assume no link measurementsY are made, and only one OD
pair is selected for measurement by uniform random sampling,
then the expected value ofω(t), the error metric ofX̂(t), is
approximately bounded by

E(ω(t)) ≤ I − 1
I

ω(t−1) + η(t) ≤ I − 1
I

ω(t−1) + η,

where I is the number of total OD pairs. Whent goes to
infinity, Jη is an upper bound of the expected error.

This theorem is a comforting result in the sense that using a
uniform randomization scheme is not going to lead to an error
metric that can grow without bound. All of our alternative
randomization schemes produce errors less than the uniform
randomization scheme hence this bound on the average error
appears to be a worst case bound. In the theorem, the expected
value of the next step error metric is bounded by the sum of
two parts: the first is the reduced previous error metric due
to the randomized measurement, and the second part isη,
that is due to the intrinsic uncertainty of the network dynamic
system. Whent grows, the expected error will be bounded
regardless where we start. This is an appealing property of
the randomized measurement approach.

In practice, link measurementY (t) is obtained, then the
residual of the parameter estimate at timet is

R(t) = X(t) − E

(
X(t)

∣∣∣∣X(t−1) = X̂(t−1), Y (t)

)
.

In order to reduce the scaled MSE (or equivalently the MSE),
one should measure the OD pairs with the largest absolute
residual(s). NoteX̂(t−1) is only an estimate. The picking the
large residual can be viewed as a game between the nature
(the network) and us, in which the nature sets the starting
valueX(t−1) against us. Suppose our goal is to maximize the
probability of picking the largest residual, i.e.,

L(X(t−1), i) = 1
(

R
(t)
i = max

j
R

(t)
j

)
.
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The next theorem shows that theuniform is in fact the mini-
max rule, which guards ourselves against the worst scenarios.

Theorem 3:The uniform random sampling(p(i) = 1/I) is
the minimax decision rule of the pick-largest-random-number
game with a 0-1 payoff (loss) function.

It is arguable that the network is an intelligent adversary;
hence, choosing OD pairs uniformly will likely give relative
poor results because the information in the previous traffic
estimate is not exploited. LikelŷX(t−1) will be close to the
true state of the natureX(t−1) – that is, we can guess pretty
well the move of the nature (network). If we assumeX(t−1) =
X̂(t−1), thenR(t) is a mean zero normal random variable with
variance (independent ofY (t))

Λ(t) = Σ(t) − Σ(t)A′(AΣ(t)A′)−1AΣ(t), (9)

whereΣ(t) = η(t)diag(X̂(t−1)), and the probability ofR(t)
i

being the largest residual in absolute value is

Q(i) = P

(
|R(t)

i | = max
j
|R(t)

j |
)

. (10)

So a sensible randomization scheme is to pickith OD flow
with probability Pmaxen(i) = Q(i) in the above equation
exactly. It is well know that it is the maximum entropy
solution, which minimizes the negative log loss function if
the distributionQ is assumed to be known:

Pmaxen = arg min
P

−
∑

i

log P (i) log
(

Q(i)
P (i)

)
= Q.

Hence, we call this randomization schememaxen.
The uniform and maxen randomization schemes approach

the measurement selection from two different points of view.
On one hand, the uniform scheme ignores the knowledge about
the network from previous time intervals. On the other hand,
the maxen randomization scheme is based on the rationale
that the system will not change much and exploits the existing
estimated OD traffic to its advantage. However, the network
doesn’t always behave the same way as before and the uniform
scheme gives opportunities to depart from the existing model.
Hence we combine these two schemes to produce a more
efficient randomization scheme. Letα ∈ (0, 1). A weighted
minimax randomization is defined as:

PwMaxen = αPuniform + (1− α)Pmaxen.

Here we assume that the parameterα is preset and can be
tuned to adapt the network traffic pattern. We usually set it as
a relative small number, such as0.2, to favor more the existing
estimated models. In the experiment section, we will discuss
the performance difference of various randomization schemes.

For these randomization schemes, the uniform is easy to
realize, but the implementation of the maxen randomization
rule is difficult because the probabilities defined in (10)
are hard to obtain. Instead of computing these probability
explicitly, the maxen scheme can be implemented if we
can generate multivariate normal random numbers with the
covariance matrix specified in (9). Letµ = X̂(t−1), and

X(t) ∼ N(µ, η(t)diag(µ)),

then
X(t) − ΣA′(AΣA′)−1(AX(t) −Aµ)− µ (11)

is a mean zero multivariate normal random variable with
covariance matrixΛ(t). But (11) requires the inversion of the
matrix AΣ(t)A′, which is expensive computationally. Again,
the result from Theorem 1 shows that the IPF algorithm can
be used to approximate

X(t) − ΣA′(AΣA′)−1(AX(t) −Aµ).

It can be solved approximately by applying IPF algorithm to
starting fromX(t) to fit the link constraintY = Aµ. Thus a
maxen randomization algorithm can be devised as follows:

Algorithm 3 Maxen Randomization Algorithm

Let µ = X̂(t) andy = Aµ;
1. GenerateX̃ ∼ N(µ, η(t)diag(µ));
2. ProjectX̃ onto {X|y = AX} to get X̆ using IPF;
3. Pick thejth OD flow if j = arg maxi |X̆i − µi|.

Note that the parameterη(t) is actually irrelevant in the above
formulation because it only serves as a scaler.

In summary, the total computational cost of PamTram is at
most two IPF algorithm costs. The IPF computation is light
and scalable to larger networks. Furthermore, there are other
benefits of the proposed wMaxen selection rule. First, since
it is a random scheme, wMaxen is not very sensitive to the
estimation of the probabilities in Maxen and still works well
even if our model estimation is a bit off. Second, the dynamics
of the network traffic may exhibit many dramatic changes
occasionally, as shown in Fig 2(b). Our dynamic model is not
trying to predict sudden traffic changes, but rather to adapt
to them as quickly as possible in conjunction with a small
number of partial measurements. Since the wMaxen scheme
is based on our model estimation, it inherents this adaptivity.
Moreover, because the wMaxen rule keeps a balance between
measuring of large and small traffic flows, it works effectively
against sudden large traffic pattern changes.

Fig. 1. The Sprint European PoP network topology.

IV. EXPERIMENTS

A. The Data

In this section, our proposed PamTram approach is validated
using data from a real operational IP backbone. The data
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Fig. 3. Exploratory data analysis. (a) and (b): Q-Q plots ofUt,i within two chosen 5-point time windows: the first one is based on the time window 1-5
and the second time window 1601-1605; (c) Estimatedη(t) over time.
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Fig. 2. Two sample PoP level OD traffic flows.

comes from Sprint’s European backbone that constitutes 13
Points of Presence (PoPs) and 18 inter-PoP links. Fig. 1 shows
the topology of the Sprint network at the PoP level. The
network OD traffic information was collected by turning on
Netflow (version 8) on all the Cisco routers. This version of
Netflow uses a sampling scheme of monitoring 1 out of every
250 packets. The data was aggregated into PoP level flows at
a time granularity of 10 minutes (i.e., average number of bytes
sent between PoP pairs during each 10 minute window). The
data collection interval of 10 minutes was chosen to mitigate
possible measurement errors. To avoid inconsistencies between
the link traffic and OD traffic, the link measurement data are
derived from the flow level measurementsX; this guarantees
that the traffic matrixX, the routing matrixA and the link
traffic countsY are all in agreement with each other. This
approach is well justified in [10].

We now show some behaviors of this OD traffic data that,
although they have been pointed out before, are included here
for completeness. Fig. 2 (a) and (b) show two time series
plots of selected OD traffic flows. These two OD pairs are
chosen because they represent common behaviors. The first
one shows strong periodicity (very common among all OD
pairs [15]). The strong periodicity of OD traffic also induces
strong periodicity in almost all observed link traffic. The
period of the traffic is exactly one day, while weekly period
can also be seen over a longer time frame. The second one
illustrates that sharp changes (day 11), different from the
diurnal cycles and from the local noise, can occur. These can
occur for reasons such as router failures, the addition of new

customers, or the removal of previous customers.
The conditional linear mean-variance relationship is an

important assumption in the dynamic network traffic model.
Under the assumption, we have

Ut,i =
(
X

(t)
i −X

(t−1)
i

)/√
X

(t−1)
i ∼ N(0, η(t)).

Even thoughη(t) varies over time, it is reasonable to assume
that it is continuous, then we can estimate its value within
each small moving window. Fig. 3 shows two QQ-plots at two
different time points, and a time plot of theη(t) estimation.
Because usually small OD traffic elements do not conform to
the mean-variance relationship well, only the upper90% of the
traffic load are used to generate all three figures. On the other
hand, the small traffic flows are less important. The Q-Q plots
are produced based on allUt,i within a 50-minute window,
i.e., 5 intervals. These two Q-Q plots are chosen because of
their representativity; data in other time windows show similar
features. Fig. 3(a) is drawn based on data points in the time
window 1-5, and (b) within the time window 1601-1605. From
both plots, we can see that theUt,i is very close to a normal
distribution but with a longer tail. Fig. 3 shows the estimated
η(t) over time. BecauseUt,i’s have a longer tail than normal,
a robust estimate ofη(t) based on absolute moment is used:

η̂(t) =
( ∑

i |Ut,i|
0.799× I

)2

,

where E(|V |) = 0.799 for V ∼ N(0, 1). From the plot,
we can see that the values ofη(t)’s mostly oscillates around
1, which is very small given that a medium network traffic
may take a value of several hundreds or thousands. There
are occasional spikes in the figure – the most obvious one
corresponds to the sudden traffic changes occurring around
day 11. Other than this single point, theη(t) is well bounded.
Overall, we have shown that the conditional linear mean-
variance relationship is a good approximation to the raw data.

B. Partial Measurement Schemes

We tested PamTram using various partial measurement
schemes to the Sprint PoP network data. The first three
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Fig. 4. Two selected time plots for estimated results of all PamTram schemes: (a) The inital portion; (b) The portion with the sudden traffic changes. In all
panels, the solid line represents the true OD traffic.

are uniform, maxen, wMaxen. For the wMaxen, the weight
parameterα is set as0.2: we chose to make this number small
to favor the maxen randomization scheme. Our experiments
show that the scheme is not very sensitive to the choice of
α. Furthermore, in order to better evaluate the performance of
these randomization schemes, we also implemented anoracle
scheme. In this scheme, the oracle has full knowledge of the
true OD traffic and thus the largest residual can be precisely
selected. In other words, we select the flow that results in the
smallest scaled MSE error in the next parameter estimate. We
can do this since we have the measured traffic matrix at our
disposal. Although this cannot be done in practice, it provides
us a means of assessing how far our schemes are from a sort
of optimal (full knowledge) behavior. It is comforting that our
schemes perform close to the oracle one.

In a real IP network, there is a practical problem with our
scheme. The centralized node collecting the measurements and
computing the estimates, needs to inform individual routers
as to when to turn on a flow monitor to collect the chosen
OD flow measurement. Such a command needs to be shipped
across the network and the schedule loaded into the port of
the relevant flow monitor. We assume that it would not be
practical to do this every 10 minutes, however it is clear that
selecting the measurement schedule a few hours in advance
would provide the network ample time to disseminate and
schedule the monitoring activities. We thus consider another
version of our randomization scheme is which the OD flows
to measure are selected 24 hours in advance. The idea is that
a flow selected for measurement at 2:10pm on one day, is
actually measured at 2:10pm the next day. The rational for
such an approach comes from both the observation of strong
daily periodicity (as in Fig. 2) which shows that traffic is
generally similar from one day to the next at a particular time
of the day, and from [2] in which the authors illustrate this
notion more precisely using fanouts. In our implementation,
the first day is special such that the OD chosen by the previous
data point is used.

The latent scheme is a scheduling approach that needs to be
combined with a randomized selection rule. In our experiment,
two latent schemes are implemented:Latent(maxen) and La-
tent(wMaxen). In total, six randomization rules are applied
to this dataset: uniform, maxen, wMaxen, Latent(maxen),

Latent(wMaxen), and oracle. In each case, we measure only
one OD flow in each 10 minute measurement interval.

C. Experiment Results

Several performance measures are used to assess and com-
pare all partial measurement methods. We look at both tem-
poral errors (using the scaled MSE and relative error metric)
and spatial errors. We will see how our error evolves over time
and illustrate how these schemes adapt to unexpected traffic
changes. We compare our results to some previous results. We
discuss the tradeoff our method implies: the performance gain
comes due to additional measurement overhead. We will show
that the overhead incurred by PamTram is more lightweight
than previously proposed partial measurement schemes.

Time plots. We start assessing the performance of PamTram
estimators by viewing some raw time plots of OD flow
estimates as shown in Fig. 4. Both figures are blown up in
order to show more details. Because the network traffic is very
volatile and hard to visulize, the smoothing spline method is
used to remove unnecessary spikes of the true traffic while
keeping the trend faithful. The same method is applied to
estimated OD flows as well. Fig. 4(a) shows the initial trace
of an OD flow (after smoothing) along with their estimates,
and (b) shows a smoothed trace where a sudden change
occurs. With only one additional measurement, all PamTram
approaches adapt to the true OD traffic quickly. Below we will
compare these schemes in various perspectives.

Scaled MSE errors. First we consider temporal errors.
By temporal errors we mean that at each moment in time,
we compute our error metric over all the flows giving a
representative error for that timepoint. The ensemble of all
such time points yields the temporal errors. Fig. 5(a) shows
the scaled MSE plot along time for all six randomization
methods. Overall, all partial measurement approaches drive
the estimation error very low, even with only one OD flow is
measured each time interval. We see that the majority of the
errors are below 5%. This breaks new ground in terms of low
error rates.

Evolution of Errors. In Fig. 5(b) we have blown up the
initial portion of Fig. 5(a) by including only the first 150
estimation intervals. Overall, the scaled MSE decreases over
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Fig. 5. The scaled MSE time plots: (a) the full scaled MSE plot; (b) the starting region; (c) the region with a large sudden traffic change.

time starting from the maximum entropy estimate forX(0)

for all methods. As expected, theuniform performs worst and
the oracle performs best. These plots illustrate that within
1 or 2 hours, we our errors drop below the 10%, and that
within 3 or 4 hours, then can drop to below 5% (frequently).
Although it takes a few hours to bring the errors down, this is
not a lot considering that most operators will rarely start this
procedure over from scratch; instead they will always have
an old traffic matrix at their disposal that can be used as a
starting point. This illustrates much less of a dependence upon
the starting point than previous approaches [16]. For this first
day themaxen, wMaxen, Latent(maxen) andLatext(wMaxen)
all produce fairly similar behavior due to our implementation
(of how we handle the latent schemes on the first day).

Adaptability. Recall that in Fig.2(b) we observed a sharp
change on day eleven. We now examine how each of our
methods adapted to this change (Fig. 5(c)). The fact that the
oracle method essentially recovers immediately implies that
our approach of selecting the OD flow to minimize errors
is sound. Theuniform scheme is strongly affected by this
traffic change as the errors grow to around 40% and it takes
many hours to return to lower error rates. The performance of
maxen andwMaxen is comparable and good (the errors right
to no more than 10-15% and recovery is quick). Interpreting
the performance ofLatent(wMaxen) andLatent(maxen) sheds
some light as to the advantage and disadvantage of some of
these schemes. TheLatent(maxen) performs poorly because it
is dependent upon yesterday’s choices of which OD flows to
measure. Since there has been a big change, these choices are
not out of date and thus less relevant. In this case, adding in the
uniform randomization selection permits PamTram to be less
dependent upon out of date choices thus yielding lower errors.
This validates the weighted randomization schemewMaxen
because it allows for practical issues to be met (requiring the
use of aLatent approach) while simultaneously meeting the
needs of a traffic matrix estimation technique to be able to
adapt to major traffic changes.

Spatial Errors. The spatial errors give a different view
of the errors in OD flow estimation. By spatial errors we
mean that one error is computed per flow since the summing
operation is done over time. This gives a summary error per

flow over its lifetime. The ensemble of these errors illustrates
the different errors experiences by different flows. In order
to have a comparison with several other methods, we use the
weighted L2 norm proposed in [8] to measure the spatial error:

dspatial(i) =

√√√√ T∑
t=1

(
X̂

(t)
i −X

(t)
i

)2

/
∑

t

(X(t)
i )2.

Fig. 6 shows the ensemble of spatial errors across large OD
flows. The OD flows in the plot are sorted in decreasing order
according to their total traffic volume. The OD flows included
in the plot constitute99% of the total load. The two verticle
bars represent the90% and 95% cut-off points respectively
(i.e., all the flows to the left of the bar constitute 90% or
95% of the load). We see in this plot that OD flow with
smaller average size tend to have larger errors. This is a well
known phenomenon and is consistent with results in almost
all previous traffic matrix estimation papers. More importantly,
we observe very small spatial errors for the majority of the
traffic. All of these partial measurement schemes perform
reasonably closely to the oracle one. For all schemes, except
theLatent(maxen) andLatent(uniform), the weighted L2 norm
spatial errors are mostly below40%. For comparison, we
compute the average spatial errors for95% of the total load.
Latent(maxen) has the worst average spatial error:18.4%,
uniform 16.8%, Latent(wMaxen)14%, and both maxen and
wMaxen around13%. For the same dataset, the methods in [8]
have average spatial error ranging from17%−45% depending
on the scheme. Specifically, the tomogravity method [1] has a
average spatial error of47%. For other methods, the PamTram
approaches also generates better results with less measurement
overhead, which we will also discuss later. Since we include
99% of the traffic in the plot, there are numerous small flows
still included in the set of flows presented here. These are
often disregarded in traffic matrix estimation because they are
less important and hard to estimate. This thus shows that our
methods can handle some of the small flows as well.

Relative Errors We now look at the instantaneous relative
errors, summing neither over time nor over space, but instead
just assembling the errors achieved at each interval for each
flow. Fig. 7 shows the cumulative distribution function (CDF)
of the absolute values of relative errors. With such an error
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metric, the very small traffic matrix elements can generate
extremely large relative errors. To discount the effect of such
small traffic matrix elements from misrepresenting overall
performance, each relative error is assigned a weight propor-
tional to the true OD traffic count. This weights the errors
by their relative importance. Large flows are considered more
important as they are the ones that count for capacity planning
and link weight selection algorithms. Thus our resulting CDF
plot focuses on the larger OD traffic pairs. Again, we see that
our Maxen, wMaxen andLatent(wMaxen schemes all perform
well and aren not far off from theoracle. Note that the y-axis
on these plots begins at 70%. With these methods, more than
80% of OD flows experience an error less than 10%.

Summary. Table I reports the average relative errors, and
average scaled MSE for all partial approaches. We only report

TABLE I

AVERAGE RELATIVE ERROR, SCALED MSE AND RUNNING TIME OF

DIFFERENT MEASUREMENT SCHEMES.

Avg(relError) Avg(sMSE) Time (sec)
Oracle 4.4% 0.42 N/A
Maxen 7.5% 1.57 0.31
wMaxen 7.5% 1.45 0.28
Latent(maxen) 9.2% 3.35 0.27
Latent(wMaxen) 7.9% 1.79 0.245
Uniform 9.4% 3.50 0.145

the average relative errors for large OD traffic flows. The
percentage of total traffic we choose is 90%, i.e., the reported
average relative errors are based on OD traffic flows which
constitute the top90% of the total traffic load. The average
scaled MSE is the simple average of all the scaled MSEs
at each time interval. These results show that in general
all the PamTram approaches perform well in estimating the
true network OD traffic. The performance ofmaxen and
wMaxen are comparable, while thewMaxen is more robust.
The Latent(wMaxen) method retains similar performance and
thus yields a practical way of implementing PamTram.

Overheads.Table I also reports the run-time or computation
time for our proposed randomization methods. The compu-
tation of the PamTram is very light; it is a very appealing
property of the proposed approach, especially important for the
implementation of such online algorithms. The Sprint dataset
is processed on a 3.2GHZ computer using the R package [20].
It takes maxen approximately0.31 seconds to generate one
traffic matrix estimate per 10 minute window. This includes
two iterations of the IPF algorithm (one for selecting which
flow to measure and one to approximate the minimal MSE
estimate). In total,maxen takes572.58 seconds to process the
total 1842 time intervals (more than 12 days worth of data)
in the Sprint PoP dataset. Theuniform scheme approximately
further cuts the running time by half because only one round
of the IPF procedure is needed in each time interval because
the flow selection is simple for the uniform scheme. This is
fast because the complexity of an IPF algorithm isO(IJ).
It avoids matrix inversion as is needed by many maximum
likelihood estimation or regularization approaches.

The PamTram is lightweight not only computation-wise,
but also in terms of measurement overhead. The strong
performance of PamTram’s partial measurement approach
does not come for free; we are using flow monitors to
achieve such performance levels. Thus we should assess the
measurement overhead in order to understand the tradeoff
between performance and measurement. In [8] the authors
introduced a measurement overhead metric. Their metric was
defined as

∑I
i=1 D(i)/(NumDays∗ NumLinks), whereD(i)

was the number of days that linki was turned on for flow
measurement. This metric, with units oflink-days, made sense
in their context because each time a flow monitor is turned
on it remains on for 24 hours. The idea was to count the
amount of time a flow monitor is on over many links and days,
and to create a ratio so as to compare it to the case of full
measurement when all flow monitors are on all the time. The
measurement overheads in [8] ranged from 5-30% depending
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upon the scheme. Our scheme is equivalent to the case when
one flow monitor is on all the time because at any moment we
have one flow being monitored. Hence in terms of this metric,
the overhead of PamTram is1/I or roughly 5% since we have
a network withI = 18 links. This is the overhead when a flow
monitor is turned on and collects everything on the link to
which it is attached. If the flow monitor could be configured to
monitor only a single OD flow, then the measurement overhead
would drop to1/169 (one over the number of OD pairs) which
is less than 1% measurement overhead. This is so lightweight
that the tradeoff of measurement versus performance gain is
immaterial.

V. D ISCUSSIONS ANDFUTURE WORK

In this paper, we propose a partial measurement approach
for OD traffic matrix estimation. There are two key ideas in
this approach. The first is to use partial flow measurement in a
lightweight fashion by only measuring one flow per estimation
time interval. We couple this with a dynamic traffic model
that allows us to incorporate past information into the current
estimate. Such an approach is successful in achieving excellent
performance with minimal measurement cost. There is no
magic in this approach. One OD flow at one time is only a
little extra information, but all the measurements accumulate
over time via the dynamic network model. Our second key
contribution is the illustration that an IPF algorithm can be
used both for approximating an MSE error and for selecting
which OD flow to measure. Because the IPF algorithm is fast
and we only measure one OD flow per time interval, PamTram
is lightweight both in computation time and in measurement
overhead. We thus believe that PamTram has potential to be
considered for deployment in operational networks.

Our intent was to use the dynamic network model (5a)
to capture short-term network dynamics. The model itself is
flexible and can be easily extended to accommodate additional
information. For instance, a natural extension of the model is
to install an auto-regressive term for each OD

X
(t+1)
i = BiX

(t)
i +

√
BiX(t)ε(t), (12a)

whereBi is a polynomial function of the backward operator.
The periodicity and more fine structure of the network traffic
can be incorporated through the autoregression formula, result-
ing better OD traffic estimates. Such an extension does bring
in an additional layer of complexity. The major challenge is
how to determine the order the autoregression terms and how
to update them in a dynamic way. We defer all these questions
as future research.

Other interesting directions for future research include using
more advance traffic monitoring and estimation capabilities to
develop dynamic traffic profiles. This can be useful for security
applications and to provide enhanced performance for subsets
of the total traffic belonging to specific applications (such
as VoIP) that may have its own performance and robustness
requirements.
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VI. A PPENDIX

A. Proof ofTheorem 1

It is easy to show that the conditional expectation

E(X|Y ) = µ− ΣA′(AΣA′)−1(Aµ− Y ).

BecauseΣ is a diagonal matrix proportional toη, the co-
efficient η cancels out and does not appear in the above
equation. This conditional expectation is also the solution to
the weighted least-square estimate with square root weights in
Zhang et al. [1]

min
∑

i
(Xi − µi)2/µi subject toAX = Y.

Then similarly, we may borrow the argument pointed out by
Zhang et. al.[1] that

D(X/N ||µ/N) ≈
∑

i
Xi/N (1−Xi/µi)

≈ 1/N
∑

i
(Xi − µi)2/µi,

whereN is the total traffic. The first approximation is a linear
expansion of logarithm function, and the second approxima-
tion due to our assumption that

∑
i µi ≈ N .

B. Proof of Theorem 2

Let K denote the index of the OD pair to be measured;
hence, we haveP (K = k) = 1/I. Under the assumption that
no any link measurement is obtained, we have

X̂
(t)
k =

{
X

(t)
k if K = k

X̂
(t−1)
k otherwise.

Similarly, we defineX̃(t+1) as

X̃
(t)
k =

{
X

(t)
k if K = k

X
(t−1)
k otherwise,

which is the parameter estimate if we start from the true value.
Fix X(t−1) and X̂(t−1) at first, then the expected value of

the scaled MSE is

E

(
||X̂(t) − X̃(t)||2∑

i X̃
(t)
i

)
≈ E||X̂(t) −X(t)||2∑

i X
(t−1)
i

=
E||X̂(t) − X̃(t)||2 + E||X̃(t) −X(t)||2∑

i X
(t−1)
i

(13)

The first approximation is obtained by the delta method, and
the second equality holds because

E
(
||(X̂(t) − X̃(t)) + (X̃(t) −X(t))||2

)
= E

(
E

(
||(X̂(t) − X̃(t)) + (X̃(t) −X(t))||2

∣∣∣∣K =k,X
(t)
k

))
.
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Note givenK =k andX
(t)
k , X̂(t) − X̃(t) are determined, and

X̃(t)−X(t) is a mean 0 multivariate normal random variable.
The cross terms disappear after expanding the square term.

For each term in (13), we have

E||X̂(t) − X̃(t)||2∑
i X

(t−1)
i

=
||X̂(t) − X̃(t)||2 −

∑
k P (k)(X̂(t−1)

k −X
(t−1)
k )2∑

i X
(t−1)
i

≤ I − 1
I

ω(t−1),

and
E||X̃(t) −X(t)||2∑

i X
(t−1)
i

≤ η.

Further, note that the above bound actually does not depend
on the value ofX(t), implying it holds generally.

Taking an expectation over both side of the inequality, we
have

E
(
ω(t)

)
≤ I − 1

I
E
(
ω(t−1)

)
+ η. (14)

If E(ω(t−1)) > Iη, then the expected error metric will
decrease after one step, i.e.,

E
(
ω(t)

)
< E

(
ω(t−1)

)
.

Easy to show that any value larger thanIη will not be the
stabilization point of equation (14). It implies thatIη will be
the upper bound of the expected value of the error metric in
the long run.

C. Proof of Theorem 3

If only we can show that the uniform selection ruleP (i) =
1/I is an equalizer decision rule. First note that

EP

(
L(R(t), i)

)
= 1/I,

independent of the distribution ofR(t) as long as thei is
chosen independent ofR(t). It implies that the such a decision
rule is actually an equalizer for the game:

Ep

(
max

X(t−1)
L(R(t), i)

)
= 1/I.

So the uniform rule is minimax.
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