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Abstract

Given i.i.d. observations of a random vector X € R”, we study the problem of estimating both its covariance
matrix £, and its inverse covariance or concentration matrix ©* = (3*)~'. We estimate ©* by minimizing an
£1-penalized log-determinant Bregman divergence; in the multivariate Gaussian case, this approach corresponds to
£1-penalized maximum likelihood, and the structure of ©* is specified by the graph of an associated Gaussian Markov
random field. We analyze the performance of this estimator under high-dimensional scaling, in which the number of
nodes in the graph p, the number of edges s and the maximum node degree d, are allowed to grow as a function of the
sample size n. In addition to the parameters (p, s, d), our analysis identifies other key quantities that control rates:
(a) the £os-operator norm of the true covariance matrix X*; and (b) the £, operator norm of the sub-matrix I'sg,
where S indexes the graph edges, and T* = (") ! ® (©*)'; and (c) a mutual incoherence or irrepresentability
measure on the matrix I'* and (d) the rate of decay 1/f(n, d) on the probabilities {@Z — X} > &}, where s
is the sample covariance based on n samples. Our first result establishes consistency of our estimate O in the ele-
mentwise maximum-norm. This in turn allows us to derive convergence rates in Frobenius and spectral norms, with
improvements upon existing results for graphs with maximum node degrees d = o(+/s). In our second result, we
show that with probability converging to one, the estimate 8) correctly specifies the zero pattern of the concentration
matrix ©*. We illustrate our theoretical results via simulations for various graphs and problem parameters, showing
good correspondences between the theoretical predictions and behavior in simulations.

1 Introduction

The area of high-dimensional statistics deals with estimation in the “large p, small n” setting, where p and n corre-
spond, respectively, to the dimensionality of the data and the sample size. Such high-dimensional problems arise in a
variety of applications, among them remote sensing, computational biology and natural language processing, where
the model dimension may be comparable or substantially larger than the sample size. It is well-known that such high-
dimensional scaling can lead to dramatic breakdowns in many classical procedures. In the absence of additional model
assumptions, it is frequently impossible to obtain consistent procedures when p > n. Accordingly, an active line of
statistical research is based on imposing various restrictions on the model —-for instance, sparsity, manifold structure,
or graphical model structure —-and then studying the scaling behavior of different estimators as a function of sample
size n, ambient dimension p and additional parameters related to these structural assumptions.

In this paper, we study the following problem: given n i.i.d. observations { X (%) }_, of a zero mean random vector
X € RRP, estimate both its covariance matrix X*, and its inverse covariance or concentration matrix * := (Z*) 71.
Perhaps the most natural candidate for estimating >* is the empirical sample covariance matrix, but this is known to
behave poorly in high-dimensional settings. For instance, when p/n — ¢ > 0, and the samples are drawn i.i.d. from
a multivariate Gaussian distribution, neither the eigenvalues nor the eigenvectors of the sample covariance matrix
are consistent estimators of the population versions [14, 15]. Accordingly, many regularized estimators have been



proposed to estimate the covariance or concentration matrix under various model assumptions. One natural model
assumption is that reflected in shrinkage estimators, such as in the work of Ledoit and Wolf [16], who proposed
to shrink the sample covariance to the identity matrix. An alternative model assumption, relevant in particular for
time series data, is that the covariance or concentration matrix is banded, meaning that the entries decay based on
their distance from the diagonal. Furrer and Bengtsson [ 1] proposed to shrink the covariance entries based on this
distance from the diagonal. Wu and Pourahmadi [24] and Huang et al. [13] estimate these banded concentration
matrices by using thresholding and ¢; -penalties respectively, as applied to a Cholesky factor of the inverse covariance
matrix. Bickel and Levina [2] prove the consistency of these banded estimators so long as @ — 0 and the model
covariance matrix is banded as well, but as they note, these estimators depend on the presented order of the variables.

A related class of models are based on positing some kind of sparsity, either in the covariance matrix, or in the
inverse covariance. Bickel and Levina [] study thresholding estimators of covariance matrices, assuming that each
row satisfies an £ -ball sparsity assumption. In independent work, El Karoui [9] also studied thresholding estimators
of the covariance, but based on an alternative notion of sparsity, one which captures the number of closed paths of any
length in the associated graph. Other work has studied models in which the inverse covariance or concentration matrix
has a sparse structure. As will be clarified in the next section, when the random vector is multivariate Gaussian, the
set of non-zero entries in the concentration matrix correspond to the set of edges in an associated Gaussian Markov
random field (GMRF). In this setting, imposing sparsity on the concentration matrix can be interpreted as requiring
that the graph underlying the GMRF have relatively few edges. A line of recent papers [8, 10, 25] have proposed an
estimator that minimizes the Gaussian negative log-likelihood regularized by the ¢1 norm of the entries (or the off-
diagonal entries) of the concentration matrix. The resulting optimization problem is a log-determinant program, which
can be solved in polynomial time with interior point methods [3], or by faster co-ordinate descent algorithms [8, 10]. In
recent work, Rothman et al. [21] have analyzed some aspects of high-dimensional behavior of this estimator; assuming
that the minimum and maximum eigenvalues of ¥* are bounded, they show that consistent estimates can be achieved

in Frobenius and operator norm, in particular at the rate O(4/ %).

The focus of this paper is the problem of estimating the concentration matrix ©* under sparsity conditions. We
do not impose specific distributional assumptions on X itself, but rather analyze the estimator in terms of the tail
behavior of the maximum deviation max; ; X}, — %] of the sample and population covariance matrices. To estimate
©*, we consider minimization of an ¢;-penalized log-determinant Bregman divergence, which is equivalent to the
usual /;-penalized maximum likelihood when X is multivariate Gaussian. We analyze the behavior of this estimator
under high-dimensional scaling, in which the number of nodes p in the graph, and the maximum node degree d are all
allowed to grow as a function of the sample size n.

In addition to the triple (n,p, d), we also explicitly keep track of certain other measures of model complexity,
that could potentially scale as well. The first of these measures is the {,,-operator norm of the covariance matrix >*,
which we denote by K+ := ||2*||oo . The next quantity involves the Hessian of the log-determinant objective function,
' := (0*)~! ® (0*)~!. When the distribution of X is multivariate Gaussian, this Hessian has the more explicit
representation I‘( K).(bm) = = cov{X; X}, X¢X,,},showing that it measures the covariances of the random variables
associated with each edge of the graph. For this reason, the matrix I'* can be viewed as an edge-based counterpart to
the usual node-based covariance matrix ¥*. Using S to index the variable pairs (i, j) associated with non-zero entries
in the inverse covariance. our analysis involves the quantity Kp« = [|(I'4g) ! |lcc. Finally, we also impose a mutual
incoherence or irrepresentability condition on the Hessian I'*; this condition is similar to assumptions imposed on ¥*
in previous work [22,26, 19, 23] on the Lasso. We provide some examples where the Lasso irrepresentability condition
holds, but our corresponding condition on I'* fails; however, we do not know currently whether one condition strictly
dominates the other.

Our first result establishes consistency of our estimator O in the elementwise maximum-norm, providing a rate
that depends on the tail behavior of the entries in the random matrix $n — *. For the special case of sub-Gaussian
random vectors with concentration matrices having at most d non-zeros per row, a corollary of our analysis is consis-
tency in spectral norm at rate [|© — ©*[|, = O(+/(d2 log p)/n), with high probability, thereby strengthening previous
results [21]. Under the milder restriction of each element of X having bounded 4m-th moment, the rate in spectral
norm is substantially slower—namely, |© — ©*[|s = O(d p'/?™ /\/n)—highlighting that the familiar logarithmic de-
pendence on the model size p is linked to particular tail behavior of the distribution of X . Finally, we show that under
the same scalings as above, with probability converging to one, the estimate © correctly specifies the zero pattern of



the concentration matrix ©*.

The remainder of this paper is organized as follows. In Section 2, we set up the problem and give some background.
Section 3 is devoted to statements of our main results, as well as discussion of their consequences. Section 4 provides
an outline of the proofs, with the more technical details deferred to appendices. In Section 5, we report the results of
some simulation studies that illustrate our theoretical predictions.

Notation For the convenience of the reader, we summarize here notation to be used throughout the paper. Given a
vector u € R and parameter a € [1, 00|, we use ||u||, to denote the usual £, norm. Given a matrix U € RP*? and
parameters a,b € [1,00], we use [|U]lq,» to denote the induced matrix-operator norm max|, =1 [|[Uy||»: see Horn
and Johnson [12] for background. Three cases of particular importance in this paper are the spectral norm ||U |2,
corresponding to the maximal singular value of U; the £, /{~-0perator norm, given by

p
[Ulee == max > |Ugl, (1)
I=bep i

ERRER)

and the ¢, /{1-operator norm, given by ||U||; = ||U7 ||« . Finally, we use ||U |« to denote the element-wise maximum
max; j |Uij|; note that this is not a matrix norm, but rather a norm on the vectorized form of the matrix. For any
matrix U € RP*P_ we use vec(U) or equivalently U € RP” to denote its vectorized form, obtained by stacking
up the rows of U. We use (U, V) := >, U;;V;; to denote the trace inner product on the space of symmetric

matrices. Note that this inner product induces the Frobenius norm [|U||r := />, ; U Finally, for asymptotics,

we use the following standard notation: we write f(n) = O(g(n)) if f(n) < cg(n) for some constant ¢ < oo, and
f(n) = Q(g(n)) if f(n) > ’g(n) for some constant ¢’ > 0. The notation f(n) =< g(n) means that f(n) = O(g(n))
and £(n) = 2(g(n)).

2 Background and problem set-up

Let X = (X1,...,X,) be a zero mean p-dimensional random vector. The focus of this paper is the problem of
estimating the covariance matrix ¥* := E[X X”] and concentration matrix ©* := X* ! of the random vector X
given n i.i.d. observations {X <’f>};;:1. In this section, we provide background, and set up this problem more pre-
cisely. We begin with background on Gaussian graphical models, which provide one motivation for the estimation of
concentration matrices. We then describe an estimator based based on minimizing an ¢; regularized log-determinant
divergence; when the data are drawn from a Gaussian graphical model, this estimator corresponds to ¢;-regularized
maximum likelihood. We then discuss the distributional assumptions that we make in this paper.

2.1 Gaussian graphical models

One motivation for this paper is the problem of Gaussian graphical model selection. A graphical model or a Markov
random field is a family of probability distributions for which the conditional independence and factorization properties
are captured by a graph. Let X = (X3, X5, ..., X,,) denote a zero-mean Gaussian random vector; its density can be
parameterized by the inverse covariance or concentration matrix ©* = (X*)~! € S?  and can be written as

:0%) = ! >e —le *x
[z, ., 2p,0%) = \/(27T)Pdet((@*)—1)ep{ 5 © } (2)

We can relate this Gaussian distribution of the random vector X to a graphical model as follows. Suppose we are
given an undirected graph G = (V, E) with vertex set V = {1,2,...,p} and edge' set E, so that each variable X is
associated with a corresponding vertex 7 € V. The Gaussian Markov random field (GMRF) associated with the graph

I As a remark on notation, we would like to contrast the notation for the edge-set E from the notation for an expectation of a random variable,



Zero pattern of inverse covariance

() (b)

Figure 1. (a) Simple undirected graph. A Gauss Markov random field has a Gaussian variable X; associated with each
vertex ¢ € V. This graph has p = 5 vertices, maximum degree d = 3 and s = 6 edges. (b) Zero pattern of the inverse
covariance ©* associated with the GMREF in (a). The set E(©*) corresponds to the off-diagonal non-zeros (white blocks);
the diagonal is also non-zero (grey squares), but these entries do not correspond to edges. The black squares correspond to
non-edges, or zeros in ©™.

G over the random vector X is then the family of Gaussian distributions with concentration matrices ©* that respect
*

the edge structure of the graph, in the sense that ©7; = 0 if (i,7) ¢ E. Figure 1 illustrates this correspondence between
the graph structure (panel (a)), and the sparsity pattern of the concentration matrix ©* (panel (b)). The problem of
estimating the entries of the concentration matrix ©* corresponds to estimating the Gaussian graphical model instance,

while the problem of estimating the off-diagonal zero-pattern of the concentration matrix —-that is, the set
E©%) = {i,jeV]i#j 6 #0} ©)

corresponds to the problem of Gaussian graphical model selection.

With a slight abuse of notation, we define the sparsity index s := |E(©*)] as the total number of non-zero elements
in off-diagonal positions of ©*; equivalently, this corresponds to twice the number of edges in the case of a Gaussian
graphical model. We also define the maximum degree or row cardinality

d = ifff}?ip{jev|@fj7é0}v 4)

corresponding to the maximum number of non-zeros in any row of ©*; this corresponds to the maximum degree in the
graph of the underlying Gaussian graphical model. Note that we have included the diagonal entry ©; in the degree
count, corresponding to a self-loop at each vertex.

It is convenient throughout the paper to use graphical terminology, such as degrees and edges, even though the
distributional assumptions that we impose, as described in Section 2.3, are milder and hence apply even to distributions
that are not Gaussian MRFs.

2.2 /i-penalized log-determinant divergence
An important set in this paper is the cone
St o= {AeRP?P|A=A"T A=0}, 3)

formed by all symmetric positive semi-definite matrices in p dimensions. We assume that the covariance matrix X*
and concentration matrix ©* of the random vector X are strictly positive definite, and so lie in the interior of this cone
St

The focus of this paper is a particular type of M -estimator for the concentration matrix ©*, based on minimizing
a Bregman divergence between symmetric matrices. A function is of Bregman type if it is strictly convex, continu-
ously differentiable and has bounded level sets [4, 7]. Any such function induces a Bregman divergence of the form



Dy(A||B) = g(A) — g(B) — (Vg(B), A — B). From the strict convexity of g, it follows that D,(A||B) > 0 for all A
and B, with equality if and only if A = B.

As a candidate Bregman function, consider the log-determinant barrier function, defined for any matrix A € Sf_
by

(6)

—logdet(A) ifA>=0
9(4) = { ) .
+00 otherwise.

As is standard in convex analysis, we view this function as taking values in the extended reals R, = R U {+o0}.
With this definition, the function g is strictly convex, and its domain is the set of strictly positive definite matrices.
Moreover, it is continuously differentiable over its domain, with Vg(A) = —A~!; see Boyd and Vandenberghe [3] for
further discussion. The Bregman divergence corresponding to this log-determinant Bregman function g is given by

Dy(A|B) := —logdetA+logdet B+ (B~', A— B)), (7

valid for any A, B € S that are strictly positive definite. This divergence suggests a natural way to estimate concen-
tration matrices—namely, by minimizing the divergence D,(0*||©)—or equivalently, by minimizing the function

min {((©, %) —logdet O}, ®)

where we have discarded terms independent of O, and used the fact that the inverse of the concentration matrix is
the covariance matrix (i.e., (0*)~! = X* = E[X X T]). Of course, the convex program (8) cannot be solved without
knowledge of the true covariance matrix ¥*, but one can take the standard approach of replacing >* with an empirical
version, with the possible addition of a regularization term.

In this paper, we analyze a particular instantiation of this strategy. Given n samples, we define the sample covari-
ance matrix

I 12 X®) (x®NT, )
n
k=1

n

To lighten notation, we occasionally drop the superscript n, and simply write S for the sample covariance. We also
define the off-diagonal {1 regularizer

1Ol1or = Y101, (10)
i#]
where the sum ranges over all 4,7 = 1,...,p with ¢ # j. Given some regularization constant )\,, > 0, we consider
estimating ©* by solving the following ¢1-regularized log-determinant program:
0 = in { (0, =) — log det(0) + A\, [|O]|1,0%}- 1
argmin { (©, X)) —logdet(©) + An[|O] 1,01t} (1n

As shown in Appendix A, for any \,, > 0 and sample covariance matrix S" with strictly positive diagonal, this convex
optimization problem has a unique optimum, so there is no ambiguity in equation (11). When the data is actually drawn
from a multivariate Gaussian distribution, then the problem (11) is simply ¢;-regularized maximum likelihood.

2.3 Tail conditions

In this section, we describe the tail conditions that underlie our analysis. Since the estimator (11) is based on using
the sample covariance X" as a surrogate for the (unknown) covariance ¥, any type of consistency requires bounds on
the difference X" — ¥*. In particular, we define the following tail condition:

Definition 1 (Tail conditions). The random vector X satisfies tail condition 7 (f, v ) if there exists a constant v, €
(0, 0] and a function f : N x (0, 00) — (0, 00) such that for any (i,7) € V x V:

P(SE — %5 >0 < 1/f(n,d)  foralld € (0,1/v.]. (12)

We adopt the convention 1/0 := 400, so that the value v, = 0 indicates the inequality holds for any ¢ € (0, c0).



Two important examples of the tail function f are the following:

(a) an exponential-type tail function, meaning that f(n,d) = exp(cnd*), for some scalar ¢ > 0, and exponent
a > 0; and

(b) a polynomial-type tail function, meaning that f(n,§) = cn™ §%™, for some positive integer m € N and scalar
c>0.

As might be expected, if X is multivariate Gaussian, then the deviations of sample covariance matrix have an
exponential-type tail function with a = 2. A bit more generally, in the following subsections, we provide broader
classes of distributions whose sample covariance entries satisfy exponential and a polynomial tail bounds (see Lem-
mata | and 2 respectively).

Given a larger number of samples n, we expect the tail probability bound 1/ f(n, d) to be smaller, or equivalently,
for the tail function f(n, §) to larger. Accordingly, we require that f is monotonically increasing in n, so that for each
fixed § > 0, we can define the inverse function

ap(r;d) = argmax{n | f(n,&)gr}. (13)

Similarly, we expect that f is monotonically increasing in 4, so that for each fixed n, we can define the inverse in the
second argument

S¢(ryn) = argmax{d | f(n,0) <r}. (14)
For future reference, we note a simple consequence of the monotonicity of the tail function f —namely
n>ns(6,r) forsomed >0 == §s(n,r) <34 (15)

The inverse functions 77y and ) ¢ play an important role in describing the behavior of our estimator. We provide
concrete examples in the following two subsections.

2.3.1 Sub-Gaussian distributions

In this subsection, we study the case of i.i.d. observations of sub-Gaussian random variables.

Definition 2. A zero-mean random variable Z is sub-Gaussian if there exists a constant o € (0, co) such that
Elexp(tZ)] < exp(c?t?/2)  forallt € R. (16)

By the Chernoff bound, this upper bound (16) on the moment-generating function implies a two-sided tail bound
of the form

2
P[Z] >z < 2exp(—2%). (17)

Naturally, any zero-mean Gaussian variable with variance o2 satisfies the bounds (16) and (17). In addition to the
Gaussian case, the class of sub-Gaussian variates includes any bounded random variable (e.g., Bernoulli, multino-
mial, uniform), any random variable with strictly log-concave density [6, 1 7], and any finite mixture of sub-Gaussian
variables.

The following lemma, proved in Appendix D, shows that the entries of the sample covariance based on i.i.d.
samples of sub-Gaussian random vector satisfy an exponential-type tail bound with exponent @ = 2. The argument
is along the lines of a result due to Bickel and Levina [1], but with more explicit control of the constants in the error
exponent:

Lemma 1. Consider a zero-mean random vector (X1, . .., X,) with covariance ¥* such that each X;/+/%3; is sub-
Gaussian with parameter o. Given n i.i.d. samples, the associated sample covariance X" satisfies the tail bound

né? }
128(1 + 402)? max;(¥5,)% 7’

P[IS - S5 > 6] < dexp{-—

for all § € (0, max;(X3;) 8(1 + 40?)).



Thus, the sample covariance entries the tail condition 7'(f,v,) with v, = [max;(3};)8(1 + 40?)] ~' and an
exponential-type tail function with a = 2—namely

f(n,d) = %exp(c*ms?), with ¢, = [128(1 + 40*)* max(Z} )2}’1 (18)

ii
A little calculation shows that the associated inverse functions take the form

- log(4r _ log(4r
df(mn) = f(n)’ and 7gp(r;d) = cg((S?)'

19)

2.3.2 Tail bounds with moment bounds

In the following lemma, proved in Appendix E, we show that given i.i.d. observations from random variables with
bounded moments, the sample covariance entries satisfy a polynomial-type tail bound. See the papers [26, 9] for
related results on tail bounds for variables with bounded moments.

Lemma 2. Suppose there exists a positive integer m and scalar K,, € R such that fori =1,...,p,
Xi

]E{(\/E_;

Fori.id. samples {X i(k)}};:l, the sample covariance matrix sn satisfies the bound

)4’”} < K. (20)

{m?mF122m (max; 33, (Km + 1) }
nm §2m :

PS5 —xy)| > 0] < 1)
Thus, in this case, the sample covariance satisfies the tail condition 7 (f, v.) with v, = 0, so that the bound holds
for all § € (0, 00), and with the polynomial-type tail function

f(n,8) = c,n™s*™  where ¢, = 1/{m*" 122 (max; ¥3,)*™ (K., + 1)}. (22)
Finally, a little calculation shows that in this case, the inverse tail functions take the form

_ 1/2m 1/m
5p(n,r) = % and 71,(0,r) = %. (23)

3 Main results and some consequences

In this section, we state our main results, and discuss some of their consequences. We begin in Section 3.1 by
stating some conditions on the true concentration matrix ©* required in our analysis, including a particular type of
incoherence or irrepresentability condition. In Section 3.2, we state our first main result—namely, Theorem 1 on
consistency of the estimator ©, and the rate of decay of its error in elementwise ¢, norm. Section 3.3 is devoted
to Theorem 2 on the model selection consistency of the estimator. Section 3.4 is devoted the relation between the
log-determinant estimator and the ordinary Lasso (neighborhood-based approach) as methods for graphical model
selection; in addition, we illustrate our irrepresentability assumption for some simple graphs. Finally, in Section 3.5,
we state and prove some corollaries of Theorem 1, regarding rates in Frobenius and operator norms.

3.1 Conditions on covariance and Hessian

Our results involve some quantities involving the Hessian of the log-determinant barrier (6), evaluated at the true
concentration matrix ©*. Using standard results on matrix derivatives [3], it can be shown that this Hessian takes the
form

I := Vg(© = 0 lgoet 24
@g( )(_):@* & 9 ( )



where ® denotes the Kronecker matrix product. By definition, I'* is a p? x p? matrix indexed by vertex pairs, so

k0O pm
multivariate Gaussian distribution, then I'* is the Fisher information of the model, and by standard results on cumulant

functions in exponential families [5], we have the more specific expression 1"2‘].7 k), (6m) = cov{X; Xy, X¢X,,}. For
this reason, I'* can be viewed as an edge-based counterpart to the usual covariance matrix >*.

2
that entry Fz‘j k), (&;m) corresponds to the second partial derivative #, evaluated at © =0 *. When X has
) I\ J

We define the set of non-zero off-diagonal entries in the model concentration matrix ©*:
E©7) = {(,j) eV xV | i#],05#0}, (25)

and let S(©*) = {E(©*) U {(1,1),...,(p,p)} be the augmented set including the diagonal. We let S°(O*) denote
the complement of S(©*) in the set {1,...,p} x {1,...,p}, corresponding to all pairs (¢, m) for which © = 0.
When it is clear from context, we shorten our notation for these sets to S and S, respectively. Finally, for any two
subsets 7" and T” of V' x V', we use I, to denote the |T'| x |T”| matrix with rows and columns of I'* indexed by T'
and T respectively.

Our main results involve the £, /¢~ norm applied to the covariance matrix ¥*, and to the inverse of a sub-block
of the Hessian I'*. In particular, we define

p
Ky = e = (i_ﬁllf}fpzlmzﬂ)a 26)
J=

corresponding to the /..-operator norm of the true covariance matrix >*, and
* — x—1 x—1 —
Er = [[(T55) e = 1[0 ® 0" s55) ' loo- @7

Our analysis keeps explicit track of these quantities, so that they can scale in a non-trivial manner with the problem
dimension p.
We assume the Hessian satisfies the following type of mutual incoherence or irrepresentable condition:

Assumption 1. There exists some « € (0, 1] such that
IT5e5(T5s) Moo < (1—0). (28)

The underlying intuition is that this assumption imposes control on the influence that the non-edge terms, indexed
by 5S¢, can have on the edge-based terms, indexed by S. It is worth noting that a similar condition for the Lasso, with
the covariance matrix >* taking the place of the matrix I'* above, is necessary and sufficient for support recovery using
the ordinary Lasso [19, 22, 23, 26]. See Section 3.4 for illustration of the form taken by Assumption 1 for specific
graphical models.

A remark on notation: although our analysis allows the quantities K-, K« as well as the model size p and
maximum node-degree d to grow with the sample size n, we suppress this dependence on 7 in their notation.

3.2 Rates in elementwise /,.-norm

We begin with a result that provides sufficient conditions on the sample size n for bounds in the elementwise /.-
norm. This result is stated in terms of the tail function f, and its inverses 7y and 5 + (equations (13) and (14)), and so
covers a general range of possible tail behaviors. So as to make it more concrete, we follow the general statement with
corollaries for the special cases of exponential-type and polynomial-type tail functions, corresponding to sub-Gaussian
and moment-bounded variables respectively.

In the theorem statement, the choice of regularization constant \,, is specified in terms of a user-defined parameter
T > 2. Larger choices of 7 yield faster rates of convergence in the probability with which the claims hold, but also
lead to more stringent requirements on the sample size.



Theorem 1. Consider a distribution satisfying the incoherence assumption (28) with parameter o € (0, 1], and the
tail condition (12) with parameters T (f,v.). Let © be the unique optimum of the log-determinant program (11) with
regularization parameter A, = (8/c) 07(n, p) for some T > 2. Then, if the sample size is lower bounded as

n > fy <1/max {v*, 6(1 +8a_1) d max{KZ*KF*,Kg*K%*}}, pT>, (29)

T—2

then with probability greater than 1 — 1/p — 1, we have:

(a) The estimate 8 satisfies the elementwise {.-bound.:
10 -0l < {2(1+8a Y )Kp-} §s(n,p7). (30)

~

(b) It specifies an edge set F(O) that is a subset of the true edge set E(©*), and includes all edges (i, j) with
1071 > {2(1 +8a!) K- } 05 (n, p7).

If we assume that the various quantities Kp-, Kx+, @ remain constant as a function of (n,p, d), we have the
elementwise £+, bound [|© — ©%||o = O(d4(n,p7)), so that the inverse tail function §;(n, p™) (see equation (14))
specifies rate of convergence in the element-wise {,-norm. In the following section, we derive the consequences of
this £~.-bound for two specific tail functions, namely those of exponential-type with ¢ = 2, and polynomial-type tails
(see Section 2.3). Turning to the other factors involved in the theorem statement, the quantities Ky+ and K- measure
the sizes of the entries in the covariance matrix ©* and inverse Hessian (I'*) ~! respectively. Finally, the factor (1+ %)
depends on the irrepresentability assumption 1, growing in particular as the incoherence parameter o approaches 0.

3.2.1 Exponential-type tails

We now discuss the consequences of Theorem 1 for distributions in which the sample covariance satisfies an exponential-
type tail bound with exponent a = 2. In particular, recall from Lemma [ that such a tail bound holds when the variables
are sub-Gaussian.

Corollary 1. Under the same conditions as Theorem 1, suppose moreover that the variables X;/\/¥ %, are sub-
Gaussian with parameter o, and the samples are drawn independently. Then if the sample size n satisfies the bound

n > 01d2(1+2)2 (Tlogp + log4) (31)

where Cy = {48\/5(1 + 40?) max;(3};) max{ Ky Kp«, K3. K%*}}Q, then with probability greater than 1 —
1/ pT 72, the estimate &) satisfies the bound,

Tlogp +log4

[0 -0 < {16V2(1+40?) max(E}) (1 +8a™ ) K- } -

Proof. From Lemma 1, when the rescaled variables X/ /33 are sub-Gaussian with parameter o, the sample covari-
ance entries satisfies a tail bound 7 ( f, v,) with with v, = [ max;(3};) 8(1+40?)] "and f(n,8) = (1/4) exp(c.nd?),

where ¢, = [128(1 + 40?)? max; (3};)?] ~!. As aconsequence, for this particular model, the inverse functions &+ (n, p”)
and 7 (0, p™) take the form

] log(4 p™ 1 log 4
Sp(n,p™) = % - \/128(1—#402)2111?)((2;)2\/w, (32a)

(it 12 (Tlogp+log4
I ]

(32b)

Substituting these forms into the claim of Theorem | and doing some simple algebra yields the stated corollary. [



When Krp«, Ks«,« remain constant as a function of (n,p,d), the corollary can be summarized succinctly as

a sample size of n = (d? log p) samples ensures that an elementwise /., bound H@ — %o = O(4/ 10%) holds
with high probability. In practice, one frequently considers graphs with maximum node degrees d that either remain

bounded, or that grow sub-linearly with the graph size (i.e., d = o(p)). In such cases, the sample size allowed by the
corollary can be substantially smaller than the graph size, so that for sub-Gaussian random variables, the method can
succeed in the p > n regime.

3.2.2 Polynomial-type tails

We now state a corollary for the case of a polynomial-type tail function, such as those ensured by the case of random
variables with appropriately bounded moments.

Corollary 2. Under the assumptions of Theorem 1, suppose the rescaled variables X;/\/¥}; have 4mt" moments
upper bounded by K,,, and the sampling is i.i.d. Then if the sample size n satisfies the bound

no> G (14 5) (33)

where Cy = {12m [m(K,, + 1))z max;(3%) max{Kz*Kp*,Ké*K%*}}Q, then with probability greater than
1 — 1/p™ 2, the estimate 5) satisfies the bound,

pT/m

. 8
16 =0l < {4m[m(Kp + 127 (14 —) K-}/ —
Proof. Recall from Lemma 2 that when the rescaled variables X;/,/37 have bounded 4m'" moments, then the
sample covariance 3 satisfies the tail condition 7 (f,vs) with v, = 0, and with f(n,d) = c,n™§*™ with ¢, defined
as ¢, = 1/{m?" 122" (max; £3,)*" (K,, + 1)}. As a consequence, for this particular model, the inverse functions
take the form

_ T 1/2m T/m
of(n,p") = % = {2m[m (K +1)]77 max 5} /5 —, (34a)
n 7 n
T 1/m T/m
Ao = LI o, + 1) maxsi)? (). (40
The claim then follows by substituting these expressions into Theorem | and performing some algebra. O

When the quantities (K-, Kx«, ) remain constant as a function of (n,p,d), Corollary 2 can be summarized
succinctly as n = Q(d? p™/™) samples are sufficient to achieve a convergence rate in elementwise £o,-norm of the

order ||(:) — 0" = (’)(\/ P ) , with high probability. Consequently, both the required sample size and the rate of

n
convergence of the estimator are polynomial in the number of variables p. It is worth contrasting these rates with the

case of sub-Gaussian random variables, where the rates have only logarithmic dependence on the problem size p.

3.3 Model selection consistency

~

Part (b) of Theorem 1 asserts that the edge set F(©) returned by the estimator is contained within the true edge set
E(©*)—meaning that it correctly excludes all non-edges—and that it includes all edges that are “large”, relative to
the Sf (n,p7) decay of the error. The following result, essentially a minor refinement of Theorem 1, provides sufficient
conditions linking the sample size n and the minimum value

Omin = min o 35
(z‘J)eE(@*)' i )

for model selection consistency. More precisely, define the event

M(0;0%) = {sign(@ij) =sign(©};) V(i,j) € E(©")} (36)
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that the estimator © has the same edge set as ©*, and moreover recovers the correct signs on these edges. With this
notation, we have:

Theorem 2. Under the same conditions as Theorem 1, suppose that the sample size satisfies the lower bound

min’

n > ﬁf<1/max{2Kp*(1+8a_l)91 Vs, 6(1+8a‘1)dmax{KE*Kp*,Kg*K%*}}, pT>. (37)

Then the estimator is model selection consistent with high probability as p — oo,
P[M(6;0%)] > 1-1/p72 — 1. (38)
In comparison to Theorem 1, the sample size requirement (37) differs only in the additional term %}:2)

involving the minimum value. This term can be viewed as constraining how quickly the minimum can decay as a
function of (n, p), as we illustrate with some concrete tail functions.

3.3.1 Exponential-type tails

Recall the setting of Section 2.3.1, where the random variables {X fk) /\/25;} are sub-Gaussian with parameter o.
Let us suppose that the parameters (K-, Kx-, ) are viewed as constants (not scaling with (p, d). Then, using the
expression (32) for the inverse function 72y in this setting, a corollary of Theorem 2 is that a sample size

n = Q((d*+6,5)7logp) (39)

min
is sufficient for model selection consistency with probability greater than 1 — 1/p™ ~2. Alternatively, we can state that

n = Q(rd? log p) samples are sufficient, as along as the minimum value scales as fyin = Q( 1"%).

3.3.2 Polynomial-type tails

Recall the setting of Section 2.3.2, where the rescaled random variables X;/ /3.7, have bounded 4m'" moments.
Using the expression (34) for the inverse function 72 in this setting, a corollary of Theorem 2 is that a sample size

n o= Q(d+6,2)p7'™) (40)
is sufficient for model selection consistency with probability greater than 1 — 1/p” ~2. Alternatively, we can state than
n = Q(d*p™/™) samples are sufficient, as long as the minimum value scales as O3, = Q(p™/ ™) /\/n).

3.4 Comparison to neighbor-based graphical model selection

Suppose that X follows a multivariate Gaussian distribution, so that the structure of the concentration matrix ©* spec-
ifies the structure of a Gaussian graphical model. In this case, it is interesting to compare our sufficient conditions for
graphical model consistency of the log-determinant approach, as specified in Theorem 2, to those of the neighborhood-
based method, first proposed by Meinshausen and Bithlmann [19]. The latter method estimates the full graph structure
by performing an ¢;-regularized linear regression (Lasso)—of the form X; = Zj £i 0;;X; + W — of each node on
its neighbors and using the support of the estimated regression vector 6 to predict the neighborhood set. These neigh-
borhoods are then combined, by either an OR rule or an AND rule, to estimate the full graph. Various aspects of the
high-dimensional model selection consistency of the Lasso are now understood [19, 23, 26]; for instance, it is known
that mutual incoherence or irrepresentability conditions are necessary and sufficient for its success [22, 26]. In terms
of scaling, Wainwright [23] shows that the Lasso succeeds with high probability if and only if the sample size scales
as n < ¢({d+ 0,7 }logp), where c is a constant determined by the covariance matrix %*. By a union bound over
the p nodes in the graph, it then follows that the neighbor-based graph selection method in turn succeeds with high
probability if n = Q({d + 6.2 } logp).

min

11



For comparison, consider the application of Theorem 2 to the case where the variables are sub-Gaussian (which
includes the Gaussian case). For this setting, we have seen that the scaling required by Theorem 2 is n = Q({d? +
9;11211} log p), so that the dependence of the log-determinant approach in 6,,;, is identical, but it depends quadratically
on the maximum degree d. We suspect that that the quadratic dependence d? might be an artifact of our analysis, but
have not yet been able to reduce it to d. Otherwise, the primary difference between the two methods is in the nature
of the irrepresentability assumptions that are imposed: our method requires Assumption | on the Hessian I'*, whereas
the neighborhood-based method imposes this same type of condition on a set of p covariance matrices, each of size
(p—1)x (p—1),one for each node of the graph. Below we show two cases where the Lasso irrepresentability condition
holds, while the log-determinant requirement fails. However, in general, we do not know whether the log-determinant
irrepresentability strictly dominates its analog for the Lasso.

3.4.1 [Illustration of irrepresentability: Diamond graph

Consider the following Gaussian graphical model example from Meinshausen [18]. Figure 2(a) shows a diamond-
shaped graph G = (V, E), with vertex set V' = {1,2,3,4} and edge-set as the fully connected graph over V' with
the edge (1,4) removed. The covariance matrix ¥* is parameterized by the correlation parameter p € [0,1/v/2]:

3 4
() (b)

Figure 2: (a) Graph of the example discussed by Meinshausen [18]. (b) A simple 4-node star graph.

the diagonal entries are set to 37 = 1, for all ¢ € V; the entries corresponding to edges are set to X7; = p for
(i,5) € E\{(2,3)},X5; = 0; and finally the entry corresponding to the non-edge is set as ¥, = 2p?. Meinshausen
[ 18] showed that the ¢ -penalized log-determinant estimator O fails to recover the graph structure, for any sample size,
if p > —14(3/2)1/? ~ 0.23. It is instructive to compare this necessary condition to the sufficient condition provided
in our analysis, namely the incoherence Assumption 1 as applied to the Hessian I'*. For this particular example, a
little calculation shows that Assumption 1 is equivalent to the constraint

Apl(lpl +1) < 1,

an inequality which holds for all p € (—0.2017,0.2017). Note that the upper value 0.2017 is just below the necessary
threshold discussed by Meinshausen [18]. On the other hand, the irrepresentability condition for the Lasso requires
only that 2|p| < 1,i.e.,p € (—0.5,0.5). Thus, in the regime |p| € [0.2017,0.5), the Lasso irrepresentability condition
holds while the log-determinant counterpart fails.

3.4.2 [Tllustration of irrepresentability: Star graphs

A second interesting example is the star-shaped graphical model, illustrated in Figure 2(b), which consists of a single
hub node connected to the rest of the spoke nodes. We consider a four node graph, with vertex set V' = {1,2,3, 4}
and edge-set £ = {(1,s) | s € {2,3,4}}. The covariance matrix ¥* is parameterized the correlation parameter
p € [—1,1]: the diagonal entries are set to X7; = 1, for all ¢ € V; the entries corresponding to edges are set to
¥j; = pfor (i,7) € E; while the non-edge entries are set as ¥, = p? for (i, j) ¢ E. Consequently, for this particular

12



example, Assumption 1 reduces to the constraint |p|(|p| + 2) < 1, which holds for all p € (—0.414,0.414). The
irrepresentability condition for the Lasso on the other hand allows the full range p € (—1,1). Thus there is again
a regime, |p| € [0.414, 1), where the Lasso irrepresentability condition holds while the log-determinant counterpart
fails.

3.5 Rates in Frobenius and spectral norm

We now derive some corollaries of Theorem | concerning estimation of ©* in Frobenius norm, as well as the spectral
norm. Recall that s = |E(©*)| denotes the total number of off-diagonal non-zeros in ©*.

Corollary 3. Under the same assumptions as Theorem 1, with probability at least 1 —1/p™ ~2, the estimator &) satisfies

~ 8 _

1©—-0r < {2Kr-(1+ 5)} Vstpdpn,pT),  and (41a)
~ 8 ) - -

o -0 . < {2Kp-(1+ 5)} min{\/s + p, d} d;(n,p"). (41b)

Proof. With the shorthand notation v := 2K7(1 + 8/a) §¢(n, p™), Theorem | guarantees that, with probability at

~

least 1 — 1/p7 2, |© — ©%||os < v. Since the edge set of O is a subset of that of ©*, and ©* has at most p + s
non-zeros (including the diagonal), we conclude that

p
. . N . ~ . \211/2
18-0lr = [Y@u-0u7+ Y (6y-0y7]"
i=1 (i,5)€E
< vVs+p,

from which the bound (41a) follows. On the other hand, for a symmetric matrix, we have
[©—-0": < [©-6"e < dv, (42)

using the definition of the v,-operator norm, and the fact that © and ©* have at most d non-zeros per row. Since the
Frobenius norm upper bounds the spectral norm, the bound (4 1b) follows.
O

3.5.1 Exponential-type tails

For the exponential tail function case where the rescaled random variables X; / \/E_:‘Z are sub-Gaussian with parameter
o, we can use the expression (32) for the inverse function § t to derive rates in Frobenius and spectral norms. When the
quantities K+, K+, & remain constant, these bounds can be summarized succinctly as a sample size n = Q(d? log p)
is sufficient to guarantee the bounds

~ 1
I6-elr = 0( w) and (43a)
n
~ 3 2

with probability at least 1 — 1/p7 2.

3.5.2 Polynomial-type tails

Similarly, let us again consider the polynomial tail case, in which the rescaled variates X;/,/>7; have bounded 4m®"
moments and the samples are drawn i.i.d. Using the expression (34) for the inverse function we can derive rates in
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the Frobenius and spectral norms. When the quantities K+, Kx+, o are viewed as constant, we are guaranteed that a
sample size n = Q(d? p™/™) is sufficient to guarantee the bounds

(9< (s+p)p7/m > and (44a)

n

16 — e*||r

(44b)

min{s + p, d?} p7/™ >
n )

6-el: = of
with probability at least 1 — 1/p™ 2.

3.6 Rates for the covariance matrix estimate

Finally, we describe some bounds on the estimation of the covariance matrix ¥*. By Lemma 3, the estimated concen-
tration matrix © is positive definite, and hence can be inverted to obtain an estimate of the covariance matrix, which

we denote as & := (©) L.

Corollary 4. Under the same assumptions as Theorem I, with probability at least 1 — 1/p™ 2, the following bounds
hold.

~

(a) The element-wise £, norm of the deviation (i — X¥) satisfies the bound
I =%lloc < Cs,[d7(n,p7)] + Cad (55 (n, p"))” (45)
2
where C3 = 2K%. Kp~ (1 + %) and Cy = 6K3. K2. (1 + %) .
(b) The {5 operator-norm of the deviation (i — %) satisfies the bound
I % < Cyd[ds(n,p7)] + Cad® [55(n, p"))*. (46)

The proof involves certain lemmata and derivations that are parts of the proofs of Theorems 1 and 2, so that we
defer it to Section 4.5.

4 Proofs of main result

In this section, we work through the proofs of Theorems 1 and 2. We break down the proofs into a sequence of lemmas,
with some of the more technical aspects deferred to appendices.

Our proofs are based on a technique that we call a primal-dual witness method, used previously in analysis of the
Lasso [23]. It involves following a specific sequence of steps to construct a pair (@ Z ) of symmetric matrices that
together satisfy the optimality conditions associated with the convex program (11) with high probability. Thus, when
the constructive procedure succeeds, O is equal to the unique solution O of the convex program (11), and Z is an
optimal solution to its dual. In this way, the estimator O inherits from © various optimality properties in terms of its
distance to the truth ©*, and its recovery of the signed sparsity pattern. To be clear, our procedure for constructing ©
is not a practical algorithm for solving the log-determinant problem (11), but rather is used as a proof technique for
certifying the behavior of the M -estimator (11).

4.1 Primal-dual witness approach

As outlined above, at the core of the primal-dual witness method are the standard convex optimality conditions that
characterize the optimum © of the convex program (11). For future reference, we note that the sub-differential of the
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norm || - ||1 o evaluated at some © consists the set of all symmetric matrices Z € RP*? such that
0 ifi=j
Zij = sign(©;;) ifi#jand©;; #0 (47)
The following result is proved in Appendix A:

Lemma 3. For any A, > 0 and sample covariance S with strictly positive diagonal, the {1-regularized log-determinant
problem (11) has a unique solution © > 0 characterized by

S-0'4NZ = 0, (48)
where Z is an element of the subdifferential 9||© || 1,0ff -
Based on this lemma, we construct the primal-dual witness solution ((:j, Z ) as follows:

(a) We determine the matrix 5) by solving the restricted log-determinant problem

O = arg onmin {{(©, ) —logdet(©) + Ay |[O]|1,0 }- (49)

Note that by construction, we have 0= 0, and moreover o ge = 0.

(b) We choose Zg as a member of the sub-differential of the regularizer || - |1 o, evaluated at ©.

(c) We set ZSC as
~ 1 ~ ~
Zge = A—{ — Zge + [0 ]se (50)

which ensures that constructed matrices (é, Z ) satisfy the optimality condition (48).
(d) We verity the strict dual feasibility condition
|Zi;| < 1 forall (4,5) € S°.

To clarify the nature of the construction, steps (a) through (c) suffice to obtain a palr (6 Z ) that satisfy the optimality
conditions (48), but do not guarantee that Z is an element of sub-differential 8||G)H 1,0ff - By construction, specifically
step (b) of the construction ensures that the entries ZinS satisfy the sub-differential conditions, since Z 5 is a member
of the sub-differential of 8||® sll1,0m. The purpose of step (d), then, is to verify that the remaining elements of Z
satisfy the necessary conditions to belong to the sub-differential.

If the primal-dual witness construction succeeds, then it acts as a wifness to the fact that the solution O to the
restricted problem (49) is equivalent to the solution O to the original (unrestricted) problem (11). We exploit this fact
in our proofs of Theorems 1 and 2 that build on this: we first show that the primal-dual witness technique succeeds with
high-probability, from which we can conclude that the support of the optimal solution © is contained within the support
of the true ©*. In addition, we exploit the characterization of © provided by the primal-dual witness construction to
establish the elementwise /., bounds claimed in Theorem 1. Theorem 2 requires checking, in addition, that certain
sign consistency conditions hold, for which we require lower bounds on the value of the minimum value 6.y,

In the analysis to follow, some additional notation is useful. We let W denote the “effective noise™ in the sample
covariance matrix X, namely

W o= S - (0L (51)
Second, we use A = ©—0O* to measure the discrepancy between the primal witness matrix O and the truth ©*. Finally,
recall the log-determinant barrier g from equation (6). We let R(A) denote the difference of the gradient Vg(0) =

©~! from its first-order Taylor expansion around ©*. Using known results on the first and second derivatives of the
log-determinant function (see p. 641 in Boyd and Vandenberghe [3]), this remainder takes the form

R(A) = 6 '—o 1o A (52)
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4.2 Auxiliary results

We begin with some auxiliary lemmata, required in the proofs of our main theorems. In Section 4.2.1, we provide
sufficient conditions on the quantities W and R for the strict dual feasibility condition to hold. In Section 4.2.2, we
control the remainder term R(A) in terms of A, while in Section 4.2.3, we control A itself, providing elementwise
£+ bounds on A. In Section 4.2 .4, we show that under appropriate conditions on the minimum value 6,,;,, the bounds
in the earlier lemmas guarantee that the sign consistency condition holds. All of the analysis in these sections is
deterministic in nature. In Section 4.2.5, we turn to the probabilistic component of the analysis, providing control
of the noise W in the sample covariance matrix. Finally, the proofs of Theorems 1 and 2 follows by using this
probabilistic control of W and the stated conditions on the sample size to show that the deterministic conditions hold
with high probability.

4.2.1 Sufficient conditions for strict dual feasibility

We begin by stating and proving a lemma that provides sufficient (deterministic) conditions for strict dual feasibility
to hold, so that || Zge||oo < 1.

Lemma 4 (Strict dual feasibility). Suppose that

An
max {|[W]w, |R(A)} < = (53)

- 8
Then the matrix Zse constructed in step (c) satisfies HZSC lloo < 1, and therefore 0 =0.

Proof. Using the definitions (51) and (52), we can re-write the stationary condition (48) in an alternative but equivalent
form

O* 'AO* T+ W — R(A) + A\ Z =0. (54)

This is a linear-matrix equality, which can be re-written as an ordinary linear equation by “vectorizing” the matrices.
We use the notation vec(A), or equivalently A for the p2-vector version of the matrix A € RP*?, obtained by stacking
up the rows into a single column vector. In vectorized form, we have

vee (07120 ) = (@ @0 A = I"A.

In terms of the disjoint decomposition S and 5S¢, equation (54) can be re-written as two blocks of linear equations as
follows:

IeAs+ Ws — Rs +AZs = 0 (552)
I5egAg + Wse — Rge + AnZge = 0. (55b)

Here we have used the fact that Age = 0 by construction.
Since I'g is invertible, we can solve for Ag from equation (55a) as follows:

Rs = (Tss) '[~ W+ Rs = uZs).

Substituting this expression into equation (55b), we can solve for Zge as follows:

= 1, = 1 = 1 —
Zge = _)\_FSCSAS + /\—RSC — )\—Wsc
1 * * =1, = ) * * -1 1 1/ D
= -5 5es(Dss) (Ws — Rs) +Taeg (Thg) ZS—A—(WSC—RSC). (56)
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Taking the /., norm of both sides yields
- Lo « L = =
1Zselloo < 5= IT5e5 (Tss)  loo (IWsloo + [ Rslloc)
* * -1 = 1 17 D
+ 055 (T5s)  looll Zslloo + 3= (W loo + || Rsloo)-

Recalling Assumption | —namely, that [T, ¢ (I S)_1 lloo < (1 — a)—we have

= 2 -« __ —
1Zseloe < S (sl + IRs ) + (1 = ),
where we have used the fact that HESHOO < 1, since Z belongs to the sub-differential of the norm | - ||1.os by
construction. Finally, applying assumption (53) from the lemma statement, we have
= (2—a) a\,
Zgelloo < — 1-—
Zsellee < S (M 1-0)
< % t(1l-a) < 1,
as claimed.
O
4.2.2 Control of remainder term
Our next step is to relate the behavior of the remainder term (52) to the deviation A = O — O,
Lemma 5 (Control of remainder). Suppose that the elementwise £, bound || Ao < 3K—12*d holds. Then:
R(A) = o 'Ae*'Aje T, (57)

where J 1= Z;‘;O(—l)k(G**lA)k has norm ||J || < 3/2. Moreover, in terms of the elementwise {-norm, we
have

3
IR(A) oo < SdIAN% K. (58)
We provide the proof of this lemma in Appendix B. It is straightforward, based on standard matrix expansion
techniques.
4.2.3 Sufficient conditions for /., bounds

Our next lemma provides control on the deviation A = © — ©*, measured in elementwise £, norm.

Lemma 6 (Control of A). Suppose that

1 1
= 2K (|[W]|eo + Ay) < mi ; : 59
r - ([[Wllso + An) mln{?)KZ*d 3K3. Kr*d} (59
Then we have the elementwise ¥, bound
1Alloe = 6 = ©7[loc < 7. (60)

We prove the lemma in Appendix C; at a high level, the main steps involved are the following. We begin by noting
that Ogc = ©%. = 0, so that [|Al|oc = ||As|loc. Next, we characterize ©g in terms of the zero-gradient condition
associated with the restricted problem (49). We then define a continuous map F' : Ag +— F(Ag) such that its fixed
points are equivalent to zeros of this gradient expression in terms of Ag = O — ©%. We then show that the function
F maps the ¢,-ball

B(r) = {Ogs]|||Os|le <1}y with 7 := 2K« (||VV||OO + )\n), 61)

onto itself. Finally, with these results in place, we can apply Brouwer’s fixed point theorem (e.g., p. 161; Ortega and
Rheinboldt [20]) to conclude that F' does indeed have a fixed point inside B(r).
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4.24 Sufficient conditions for sign consistency

We now show how a lower bound on the minimum value Omin, When combined with Lemma 6, allows us to guarantee
sign consistency of the primal witness matrix O g.

Lemma 7 (Sign Consistency). Suppose the minimum absolute value 0., of non-zero entries in the true concentration
matrix ©* is lower bounded as

emin Z 4KP*(||W||OO +)\n)u (62)
then sign(©g) = sign(©%) holds.
This claim follows from the bound (62) combined with the bound (60) ,which together imply that for all (i, j) € S,

the estimate éij cannot differ enough from ©7; to change sign.

4.2.5 Control of noise term

The final ingredient required for the proofs of Theorems 1 and 2 is control on the sampling noise W = $ — $*. This
control is specified in terms of the decay function f from equation (12).

Lemma 8 (Control of Sampling Noise). For any T > 2 and sample size n such that 5;(n,p™) < 1/v.., we have

P[Wlo = bf(n,p7)| < — 0. (63)

Proof. Using the definition (12) of the decay function f, and applying the union bound over all p? entries of the noise
matrix, we obtain that for all 6 < 1/v,,

P[max |W;;| >8] < p*/f(n,d).
0]

Setting § = 04 (n,p”) yields that

P[H;gXIWijIZ@(n,pT)} < P/[f(n,dp(n,p))] = 1/p7 2,

as claimed. Here the last equality follows since f(n,d(n,p™)) = p”, using the definition (14) of the inverse function
O O

4.3 Proof of Theorem 1

We now have the necessary ingredients to prove Theorem 1. We first show that with high probability the witness
matrix © is equal to the solution © to the original log-determinant problem (11), in particular by showing that the
primal-dual witness construction (described in in Section 4.1) succeeds with high probability. Let A denote the event
that [|W||oo < d4(n,p™). Using the monotonicity of the inverse tail function (15), the lower lower bound (29) on the
sample size n implies that §;(n, p”) < 1/v.. Consequently, Lemma 8 implies that P(A) > 1 — p,%. Accordingly,
we condition on the event A in the analysis to follow.

We proceed by verifying that assumption (53) of Lemma 4 holds. Recalling the choice of regularization penalty
A = (8/a)ds(n,p™), we have |[IW |0 < (a/8)\,. In order to establish condition (53) it remains to establish the
bound [|R(A)|lec < O‘T/\". We do so in two steps, by using Lemmas 6 and 5 consecutively. First, we show that the
precondition (59) required for Lemma 6 to hold is satisfied under the specified conditions on n and A,,. From Lemma 8
and our choice of regularization constant \,, = (8/a) d;(n,p"),

8 _
2K ([Wloo + An) < 2KF*(1+E)6f(n,pT),
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provided Sf(n, p”) < 1/v,.. From the lower bound (29) and the monotonicity (15) of the tail inverse functions, we
have

1 1

8\ -
2K*(1 —)5 p7) < mi , , 64
v (L ) ds(npT) < min {pe 33, "rd) (64)
showing that the assumptions of Lemma 6 are satisfied. Applying this lemma, we conclude that
8\ -
1Al < 2Kr (W oo +An) < 2Kr- (14 ~) 55(n, 7). (65)

Turning next to Lemma 5, we see that its assumption ||A[| oo < le*d holds, by applying equations (64) and (65).
Consequently, we have

3
IR < SR K.

< G6K3.K2 d(1+§)2[5 (n, p™)]?
= s o VAUZ
812 Ao
- {GKg*Kﬁ*d(l—ka) <5f(n,pf)}o‘T
a,
< —7
=78

as required, where the final inequality follows from our condition (29) on the sample size, and the monotonicity
property (15). L

Overall, we have shown that the assumption (53) of Lemma 4 holds, allowing us to conclude that © = ©. The
estimator © then satisfies the /,.-bound (65) of ©, as claimed in Theorem 1(a), and moreover, we have Ogc = Ogec =
0, as claimed in Theorem 1(b). Since the above was conditioned on the event .4, these statements hold with probability
P(A) >1— p%z.

4.4 Proof of Theorem 2

We now turn to the proof of Theorem 2. A little calculation shows that the assumed lower bound (37) on the sample
size n and the monotonicity property (15) together guarantee that

e > 4K (14 ) 5y(n,97)

Proceeding as in the proof of Theorem 1, with probability at least 1 — 1/p” 2, we have the equality 0= @, and
also that ||© — ©%[|oc < Omin/2. Consequently, Lemma 7 can be applied, guaranteeing that sign(©;;) = sign(©;;)

for all (i,5) € E. Overall, we conclude that with probability at least 1 — 1/p” 2, the sign consistency condition

~

sign(©7;) = sign(O;;) holds for all (i, j) € F, as claimed.

4.5 Proof of Corollary 4
With the shorthand A = © — ©* , we have

S = (0 +A) - (697"
From the definition (52) of the residual R(-), this difference can be written as

Syt = —o*'Ae* 4 R(A). (66)
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Proceeding as in the proof of Theorem 1 we condition on the event A = {||W| s < &¢(n,p7)}, and which
holds with probability P(A) > 1 — p},z . As in the proof of that theorem, we are guaranteed that the assumptions of
Lemma 5 are satisfied, allowing us to conclude

R(A) =o0*'Ae*'AJo (67)

where J := Y72 (~1)*(©* ' A)" has norm /7| < 3/2.

We begin by proving the bound (45). From equation (66), we have HZ 5l oo < IL(A)] oo + [|R(A)]| oo . From
Lemma 5, we have the elementwise /..-norm bound

~ 3
IRA) | < SdlAJZ K.

The quantity L(ﬁ) in turn can be bounded as follows,

N x—1 8 ~Ax—1
L@ = max|To ' Ro e

IN

max |70y max [A0" e, |

< max O u) A oc | max [©° e 1

where we used the inequality that || Au|ee < ||Al|so|u||1. Simplifying further, we obtain

N x—1 N x—1
LA < 107 lcllAllc O 1
x«—1 N
N [Cha (VAN
< K2 Ao

where we have used the fact that [|©* ~!||; = [[[©0* ']" loo = [|©* " ||, which follows from the symmetry of ©* .
Combining the pieces, we obtain

I -2 < LA >||oo+||R< o (68)

< K3 Al + idKz*HAnio-

The claim then follows from the elementwise /..-norm bound (30) from Theorem 1.
Next, we establish the bound (46) in spectral norm. Taking the ¢, operator norm of both sides of equation (66)

yields the inequality |||E S loe < IL(A)[ls 4 | R(A)]|se. Using the expansion (67), and the sub-multiplicativity
of the ¢, operator norm, we obtain

IRl < 10" ool Allooll®™ oo A oo 7 oo 107 ™ 1o
< o IS Il I A
3 ~

where the last inequality uses the bound ||J]| < 3/2. (Proceeding as in the proof of Lemma 5, this bound holds
conditioned on A, and for the sample size specified in the theorem statement.) In turn, the term L(A) can be bounded
as

IL(A) e < 077 A" lu
SO S VY
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Figure 3. Illustrations of different graph classes used in simulations. (a) Chain (d = 2). (b) Four-nearest neighbor grid
(d = 4) and (c) Star-shaped graph (d € {1,...,p— 1}).

where the second inequality uses the sub-multiplicativity of the ¢, -operator norm. Combining the pieces yields

I£ -2l < ILA)w + 1R < K3 A% (69)

~ 3
Rl + K3

Conditioned on the event A, we have the bound (42) on the ¢.-operator norm
—~ 8 _
130 < 2Kp- (14 =) ddf(n,p).

Substituting this bound, as well as the elementwise £,-norm bound (30) from Theorem 1, into the bound (69) yields
the stated claim.

S Experiments

In this section, we illustrate our results with various experimental simulations, reporting results in terms of the proba-
bility of correct model selection (Theorem 2) or the ¢ -error (Theorem 1). For these illustrations, we study the case
of Gaussian graphical models, and results for three different classes of graphs, namely chains, grids, and star-shaped
graphs. We also consider various scalings of the quantities which affect the performance of the estimator: in addition
the triple (n, p, d), we also report some results concerning the role of the parameters Ks«, K1+ and 6y, that we have
identified in the main theorems. For all results reported here, we solved the resulting ¢;-penalized log-determinant
program (11) using the glasso program of Friedman et al. [10], which builds on the block co-ordinate descent
algorithm of d’Asprémont et al. [8].

Figure 3 illustrates the three types of graphs used in our simulations: chain graphs (panel (a)), four-nearest neighbor
lattices or grids (panel (b)), and star-shaped graphs (panel (c)). For the chain and grid graphs, the maximal node degree
d is fixed by definition, to d = 2 for chains, and d = 4 for the grids. Consequently, these graphs can capture the
dependence of the required sample size n only as a function of the graph size p, and the parameters (Ks+ , K1+, Omin)-
The star graph allows us to vary both d and p, since the degree of the central hub can be varied between 1 and p — 1.
For each graph type, we varied the size of the graph p in different ranges, from p = 64 upwards to p = 375.

For the chain and star graphs, we define a covariance matrix ¥* with entries X7, = 1 forall¢ = 1,...,p, and
X} = pforall (i,7) € E for specific values of p specified below. Note that these covariance matrices are sufficient to
specify the full model. For the four-nearest neighbor grid graph, we set the entries of the concentration matrix ©7; = w
for (i,7) € F, with the value w specified below. In all cases, we set the regularization parameter \,, proportional to

log(p)/n, as suggested by Theorems | and 2, which is reasonable since the main purpose of these simulations
is to illustrate our theoretical results. However, for general data sets, the relevant theoretical parameters cannot be
computed (since the true model is unknown), so that a data-driven approach such as cross-validation might be required
for selecting the regularization parameter \,, .
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Given a Gaussian graphical model instance, and the number of samples n, we drew N = 100 batches of n
independent samples from the associated multivariate Gaussian distribution. We estimated the probability of correct
model selection as the fraction of the N = 100 trials in which the estimator recovers the signed-edge set exactly.

Note that any multivariate Gaussian random vector is sub-Gaussian; in particular, the rescaled variates X; / \/E_;
are sub-Gaussian with parameter 0 = 1, so that the elementwise /,-bound from Corollary 1 applies. Suppose we
collect relevant parameters such as 6,,,;;, and the covariance and Hessian-related terms K-, Kp+ and « into a single
“model-complexity” term K defined as

K-
K = |(1+8a ") (maxX}) max{Ky-Kr-, K& K2, d%} . (70)
Then, as a corollary of Theorem 2, a sample size of order
n = Q(K2 dQTIng), (71)

is sufficient for model selection consistency with probability greater than 1 — 1/p”™ 2. In the subsections to follow, we
investigate how the empirical sample size n required for model selection consistency scales in terms of graph size p,
maximum degree d, as well as the “model-complexity” term K defined above.

Chain graph Chain graph
1 1r
0.8 0.8
7 @
[0] [0
30.6 3 0.67
> >
%] (2]
S ©
g 0.4 g 0.4r
<] [
o o ——p=64
0.2 0.2r ——p=100
—e—p=225
0 —=—p=375
? 00 200 300 400 500 600 700 0 50 100 150 200
n n/log p
(a) (b)

Figure 4. Simulations for chain graphs with varying number of nodes p, edge covariances X7; = 0.10. Plots of probability
of correct signed edge-set recovery plotted versus the ordinary sample size n in panel (a), and versus the rescaled sample
size n/ log p in panel (b). Each point corresponds to the average over 100 trials.

5.1 Dependence on graph size

Panel (a) of Figure 4 plots the probability of correct signed edge-set recovery against the sample size n for a chain-
structured graph of three different sizes. For these chain graphs, regardless of the number of nodes p, the maximum
node degree is constant d = 2, while the edge covariances are set as X;; = 0.2 for all (¢, j) € E, so that the quantities
(K, Kp+, o) remain constant. Each of the curve in panel (a) corresponds to a different graph size p. For each curve,
the probability of success starts at zero (for small sample sizes n), but then transitions to one as the sample size is
increased. As would be expected, it is more difficult to perform model selection for larger graph sizes, so that (for
instance) the curve for p = 375 is shifted to the right relative to the curve for p = 64. Panel (b) of Figure 4 replots
the same data, with the horizontal axis rescaled by (1/log p). This scaling was chosen because for sub-Gaussian tails,
our theory predicts that the sample size should scale logarithmically with p (see equation (71)). Consistent with this
prediction, when plotted against the rescaled sample size 1/ log p, the curves in panel (b) all stack up. Consequently,
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Star graph Star graph
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Figure 5. Simulations for a star graph with varying number of nodes p, fixed maximal degree d = 40, and edge covariances
¥}, = 1/16 for all edges. Plots of probability of correct signed edge-set recovery versus the sample size n in panel (a),
and versus the rescaled sample size n/ log p in panel (b). Each point corresponds to the average over N = 100 trials.

the ratio (n/logp) acts as an effective sample size in controlling the success of model selection, consistent with the
predictions of Theorem 2 for sub-Gaussian variables.

Figure 5 shows the same types of plots for a star-shaped graph with fixed maximum node degree d = 40, and
Figure 6 shows the analogous plots for a grid graph with fixed degree d = 4. As in the chain case, these plots show
the same type of stacking effect in terms of the scaled sample size n/logp, when the degree d and other parameters
((ov, Kp«, Kx+)) are held fixed.

5.2 Dependence on the maximum node degree

Panel (a) of Figure 7 plots the probability of correct signed edge-set recovery against the sample size n for star-
shaped graphs; each curve corresponds to a different choice of maximum node degree d, allowing us to investigate the
dependence of the sample size on this parameter. So as to control these comparisons, the models are chosen such that
quantities other than the maximum node-degree d are fixed: in particular, we fix the number of nodes p = 200, and the
edge covariance entries are set as ¥7; = 2.5/d for (i,j) € E so that the quantities (Kx-, Kr+, «) remain constant.
The minimum value 6,,,;,, in turn scales as 1/d. Observe how the plots in panel (a) shift to the right as the maximum
node degree d is increased, showing that star-shaped graphs with higher degrees are more difficult. In panel (b) of
Figure 7, we plot the same data versus the rescaled sample size n/d. Recall that if all the curves were to stack up
under this rescaling, then it means the required sample size n scales linearly with d. These plots are closer to aligning
than the unrescaled plots, but the agreement is not perfect. In particular, observe that the curve d (right-most in panel
(a)) remains a bit to the right in panel (b), which suggests that a somewhat more aggressive rescaling—perhaps n/d”
for some v € (1,2)—is appropriate.

Note that for 0,,;, scaling as 1/d, the sufficient condition from Theorem 2, as summarized in equation (71), is
n = Q(d?logp), which appears to be overly conservative based on these data. Thus, it might be possible to tighten
our theory under certain regimes.

5.3 Dependence on covariance and Hessian terms

Next, we study the dependence of the sample size required for model selection consistency on the model complexity
term K defined in (70), which is a collection of the quantities Ky, K1+ and « defined by the covariance matrix and
Hessian, as well as the minimum value 6.,;,,. Figure 8 plots the probability of correct signed edge-set recovery versus
the sample size n for chain graphs. Here each curve corresponds to a different setting of the model complexity factor
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4-nearest neighbor grid 4-nearest neighbor grid
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Figure 6. Simulations for 2-dimensional lattice with 4-nearest-neighbor interaction, edge strength interactions ©7; = 0.1,
and a varying number of nodes p. Plots of probability of correct signed edge-set recovery versus the sample size n in panel
(a), and versus the rescaled sample size n/ log p in panel (b). Each point corresponds to the average over N = 100 trials.
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Figure 7. Simulations for star graphs with fixed number of nodes p = 200, varying maximal (hub) degree d, edge
covariances ¥7; = 2.5/d. Plots of probability of correct signed edge-set recovery versus the sample size n in panel (a),
and versus the rescaled sample size n/d in panel (b).
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Chain graph with varying K
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Figure 8. Simulations for chain graph with fixed number of nodes p = 120, and varying model complexity K. Plot of
probability of correct signed edge-set recovery versus the sample size n.

K, but with a fixed number of nodes p = 120, and maximum node-degree d = 2. We varied the actor K by varying
the value p of the edge covariances ¥;; = p, (¢,7) € E. Notice how the curves, each of which corresponds to a
different model complexity factor, shift rightwards as K is increased so that models with larger values of K require
greater number of samples n to achieve the same probability of correct model selection. These rightward-shifts are in
qualitative agreement with the prediction of Theorem 1, but we suspect that our analysis is not sharp enough to make
accurate quantitative predictions regarding this scaling.

5.4 Convergence rates in elementwise /,.-norm
Finally, we report some simulation results on the convergence rate in elementwise £,-norm. According to Corollary 1,

in the case of sub-Gaussian tails, if the elementwise ¢.,-norm should decay at rate O(y/ l(’%), once the sample size

n is sufficiently large. Figure 9 shows the behavior of the elementwise /.-norm for star-shaped graphs of varying
sizes p. The results reported here correspond to the maximum degree d = [0.1p]; we also performed analogous
experiments for d = O(logp) and d = O(1), and observed qualitatively similar behavior. The edge correlations
were set as 37; = 2.5/d for all (7, j) € E so that the quantities (K's, K+, @) remain constant. With these settings,
each curve in Figure 9 corresponds to a different problem size, and plots the elementwise /. -error versus the rescaled
sample size 1/ log p, so that we expect to see curves of the form f(t) = 1/+/t. The curves show that when the rescaled
sample size (n/ logp) is larger than some threshold (roughly 40 in the plots shown), the elementwise /., norm decays

at the rate 4/ k’%, which is consistent with Corollary 1.

6 Discussion

The focus of this paper is the analysis of the high-dimensional scaling of the ¢;-regularized log determinant prob-
lem (11) as an estimator of the concentration matrix of a random vector. Our main contributions were to derive
sufficient conditions for its model selection consistency as well as convergence rates in both elementwise /,-norm, as
well as Frobenius and spectral norms. Our results allow for a range of tail behavior, ranging from the exponential-type
decay provided by Gaussian random vectors (and sub-Gaussian more generally), to polynomial-type decay guaranteed
by moment conditions. In the Gaussian case, our results have natural interpretations in terms of Gaussian Markov
random fields.

Our main results relate the i.i.d. sample size n to various parameters of the problem required to achieve consistency.
In addition to the dependence on matrix size p, number of edges s and graph degree d, our analysis also illustrates the
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Figure 9. Simulations for a star graph with varying number of nodes p, maximum node degree d = [0.1p], edge covari-

ances Xj; = 2.5/d. Plot of the element-wise £~ norm of the concentration matrix estimate error H(:) — O%||oo versus the
rescaled sample size n/ log(p).

role of other quantities, related to the structure of the covariance matrix ¥* and the Hessian of the objective function,
that have an influence on consistency rates. Our main assumption is an irrepresentability or mutual incoherence
condition, similar to that required for model selection consistency of the Lasso, but involving the Hessian of the log-
determinant objective function (11), evaluated at the true model. When the distribution of X is multivariate Gaussian,
this Hessian is the Fisher information matrix of the model, and thus can be viewed as an edge-based counterpart to
the usual node-based covariance matrix We report some examples where irrepresentability condition for the Lasso
hold and the log-determinant condition fails, but we do not know in general if one requirement dominates the other. In
addition to these theoretical results, we provided a number of simulation studies showing how the sample size required
for consistency scales with problem size, node degrees, and the other complexity parameters identified in our analysis.

There are various interesting questions and possible extensions to this paper. First, in the current paper, we have
only derived sufficient conditions for model selection consistency. As in past work on the Lasso [23], it would also
be interesting to derive a converse result—namely, to prove that if the sample size n is smaller than some function of
(p, d, s) and other complexity parameters, then regardless of the choice of regularization constant, the log-determinant
method fails to recover the correct graph structure. Second, while this paper studies the problem of estimating a fixed
graph or concentration matrix, a natural extension would allow the graph to vary over time, a problem setting which
includes the case where the observations are dependent. For instance, Zhou et al. [27] study the estimation of the
covariance matrix of a Gaussian distribution in a time-varying setting, and it would be interesting to extend results of
this paper to this more general setting.
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A Proof of Lemma 3

In this appendix, we show that the regularized log-determinant program (11) has a unique solution whenever \,, > 0,
and the diagonal of the sample covariance > is strictly positive. By the strict convexity of the log-determinant
barrier [3], if the minimum is attained, then it is unique, so that it remains to show that the minimum is achieved. If
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An > 0, then by Lagrangian duality, the problem can be written in an equivalent constrained form:

i 0, ™) — log det(© .
9>07H6|]|(?,1£§C(An){<< ) —logdet(O)} (72)

for some C'()\,,) < 400. Since the off-diagonal elements remain bounded within the ¢;-ball, the only possible issue
is the behavior of the objective function for sequences with possibly unbounded diagonal entries. Since any © in
the constraint set is positive-definite, its diagonal entries are positive, and hence bounded below by zero. Further, by
Hadamard’s inequality for positive definite matrices [12], we have logdet © < Y% log ©;;, so that

Z@MZM logdet® > Z{@“E” log ©;; ).

=1

Aslong as E" > O foreach? = 1,..., p,this function is coercive, meaning that it diverges to infinity for any sequence
l(©et,.. pp)H — 400. Consequently, the minimum is attained.

Returning to the penalized form (11), by standard optimality conditions for convex programs, a matrix S - 0is
optimal if and only 0 belongs to the sub-differential of the objective, or equivalently if and only if there exists a matrix
Z in the sub-differential of the off-diagonal norm || - ||1 o such that

S0 '+ AZ =0,

as claimed.

B Proof of Lemma 5

We write the remainder in the form
R(A) _ (@* + A)_l _ @*—1 + 6*_1A@*_1.

By sub-multiplicativity of the || - | .o matrix norm, for any two p x p matrices A, B, we have ||A Bllco < [|Afloo | Bl
so that

0" Al [Cha N

<

< Ky d||Alle < 1/3, (73)
where we have used the definition of K+, the fact that A has at most d non-zeros per row/column, and our assumption
[Allsc < 1/(3Ks~). Consequently, we have the convergent matrix expansion

1

(0" +A) = (6 (I+0'A))
— (I+0°'a) (e

—1

oo

= S (¥ ta)(en)!
k=0
- o 9*19*1+Z 9*1)(@)_1

= ol tae! @* thetage

where J = Y727 (—1)* (@*_1A)k.
We now prove the bound (58) on the remainder as follows. Let e; denote the unit vector with 1 in position ¢ and
zeroes elsewhere. From equation (57), we have

IR = max|eTo A0 ATO |
]

< max He?@*flAHOo max H@*flAJ@**leth
7 J
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which follows from the fact that for any vectors a,b € R”, |a”b| < ||a||o|[b|1. This in turn can be simplified as,

IR(A)]lw < max|lef € 1 Al mjaXH@*_lﬁJ@*_lejHl

since for any vector u € R?, [[u” Al < ||u/|1]]A[| s> Where || A« is the elementwise /o.-norm. Continuing on, we
have

IRA)lee < 10 Moo Ao l0F T ATO* 1,

where || A1 := maxq,, =1 | Az||1 is the ¢1-operator norm. Since [|Al; = A" [|o. We have

1Al Hloo 1€ T A Moo (74)
x—1
1Aoo K10 I3l o I ATl

[R(A)]lee <
<

Recall that J = Y 7o ((—1)F (@*_IA)k. By sub-multiplicativity of || - ||oc matrix norm, we have

3

0o 1
Tl < SO IAO T, < :
170 < 2 140" < ey Ay S

N W

since [[©* oo | Alloe < 1/3 from equation (73). Substituting this in (74), we obtain

Ch Y TN

3
IR < 51AIe Ks-
3
< SdlAJE K

where the final line follows since ||Afls < d||A[|oo,and since A has at most d non-zeroes per row/column.

C Proof of Lemma 6

By following the same argument as in Appendix A, we conclude that the restricted problem (49) has a unique optimum
©. Let Z be any member of the sub-differential of || - ||1 o, evaluated at o. By Lagrangian theory, the witness © must
be an optimum of the associated Lagrangian problem

o uin _ {((©, B) —logdet(€) + An((®©, Z)}.

In fact, since this Lagrangian is strictly convex, O is the only optimum of this problem. Since the log-determinant
barrier diverges as © approaches the boundary of the positive semi-definite cone, we must have © = 0. If we take
partial derivatives of the Lagrangian with respect to the unconstrained elements O g, these partial derivatives must
vanish at the optimum, meaning that we have the zero-gradient condition

G(Os) = —-O5'+Zs+M\Zs = 0. (75)

To be clear, O is the p X p matrix with entries in S equal to © 5 and entries in S¢ equal to zero. Since this zero-gradient
condition is necessary and sufficient for an optimum of the Lagrangian problem, it has a unique solution (namely, ©5).

Our goal is to bound the deviation of this solution from %, or equivalently to bound the deviation A = © — ©*.
Our strategy is to show the existence of a solution A to the zero-gradient condition (75) that is contained inside the
ball B(r) defined in equation (61). By uniqueness of the optimal solution, we can thus conclude that 0 -6 belongs
this ball. In terms of the vector Ag = Og — ©* g, let us define a map F': RISl — RIS via

F(Rs) = —(Ts)  (G(OF+As)) +As, (76)
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where G denotes the vectorized form of G. Note that by construction, F(Ag) = Ag holds if and only if G(©% +
Ag) =G(Og) =0.

We now claim that F'(B(r)) C B(r). Since F is continuous and B(r) is convex and compact, this inclusion
implies, by Brouwer’s fixed point theorem [20], that there exists some fixed point Ag € B(r). By uniqueness of the
zero gradient condition (and hence fixed points of F'), we can thereby conclude that [|[© g — 0%l < 1.

Let A € RP*P denote the zero-padded matrix, equal to Ag on S and zero on S¢. By definition, we have

GO5+As) = —(O0"+A)3 ' +%s+ M\ Zs
= [-(© +A)F ' +0%] + [Es - (©)5'] + \Zs
= [ (0" +A)5"' +0%] + Ws + A\ Zs, (77)

where we have used the definition W = S,
For any Ag € B(r), we have

o Al 19" M loc I Al

K- df|Alloo, (78)

IA A

where ||Al|s denotes the elementwise {.-norm (as opposed to the ¢ -operator norm ||All ), and the inequality
follows since A has at most d non-zero entries per row/column,

By the definition (61) of the radius r, and the assumed upper bound (59), we have ||Alloc < 7 < ﬁ’ )
that the results of Lemma 5 apply. By using the definition (52) of the remainder, taking the vectorized form of the
expansion (57), and restricting to entries in S, we obtain the expansion

1

vee (O +A) 7 =0 +TisAs = vec((©'A)2J0" ). (79)

Using this expansion (79) combined with the expression (77) for GG, we have

F(Bs) = —(Tss) G(O%+As)+As
(ng)il vec { [(6* + A)71 - 6*71}5 - WS - AnZJS} + ES
(D5s) " vee [(O°7'A)2JO ] — (ss) ™ (Ws + AnZs) .

T1 T2

The second term is easy to deal with: using the definition Kp- = [|(T'5g) ™! [loo, We have || T2 |loc < K- (||[W||oc +
An) = r/2. It now remains to show that || T} || < /2. We have

Krp- || vec [(6*_1A)2J@*_1]
Kr-[|R(A) oo,

IT1]oo

= SHOO
<

where we used the expanded form (57) of the remainder, Applying the bound (58) from Lemma 5, we obtain

3

3
IT1]ee < §dK§*KF*

A% < §dK§*KF* 2.

Since r < 5 by assumption (59), we conclude that

1
3K3. K+
1

[ — 2
sk id P

3
1T < §dK%*KF*
thereby establishing the claim.
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D Proof of Lemma 1

For each pair (4, j) and v > 0, define the event
LS 08y
{|EZXZ. X -5y > v}
k=1

As the sub-Gaussian assumption is imposed on the variables { X Z(k)} directly, as in Lemma A.3 of Bickel and Levina
[2], our proof proceeds by first decoupling the products X (k)X (*) For each pair (4, j), we define p; G =X / 25T

and the rescaled random variables X X" k)/ /27 Noting that the strict positive definiteness of ¥* implies that
lpi;| < 1, we can also define the aux111ary random variables

vl =X+ X and VI =xM - X" (80)

ij
With this notation, we then claim:

Lemma 9. Suppose that each )_(i(k) is sub-Gaussian with parameter o. Then for each node pair (i, j), the following
properties hold:

(a) Forallk =1,...,n, the random variables Ui(f) and Vig-k) are sub-Gaussian with parameters 20 .

(b) Forall v > 0, the probability P[A;; (V)] is upper bounded by

. 2nv " N 2nv
P[> (W2 201 - pi)| > Nowon ]+ P[> (V2 =201 - )] >
k=1

= V25T NN
Proof. (a) For any r € R, we have
1/2

E[exp(rUi(f))] = E[exp (T)_(i(k)) exp (TX(]C))} < E{exp (27’)_(i(k))}1/2 {exp (ZTX(]C))} ,

where we have used the Cauchy-Schwarz inequality. Since the variables X Z-(k) and X J(k) are sub-Gaussian with param-
eter o, we have
] 1/2 ,,,2 ,,,2

< exp(o?) exp(o? ),

E{exp (27’)_(i(k))}1/2 E[exp (2TX(k)) 5 5

so that Ui(f) is sub-Gaussian with parameter 20 as claimed.
(b) By straightforward algebra, we have the decomposition

SUEROXE ) = i TR a1+ ) {2 Z{X* _XI9Y2 a1 - ).

k=1

NH

By union bound, we obtain that P[A;; (/)] is upper bounded by
P07 ~20 4 )| 2 g | +B[| W —20 00| 2 5| @D
P i 2 E”E” = J 2 E”E”

which completes the proof of Lemma 9(b). O

It remains to control the terms >, _, (U; (k)) and Y, (V(k)) We do so by exploiting tail bounds [6] for sub-
exponential random variables. A zero-mean random variable Z is said to be sub-exponential if there exists a constant
v € (0,00) and ¢ € (0, oo such that

Elexp(tZ)] < exp(y*t?/2)  forallt € (—¢, ). (82)
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Note that for ¢ < +o00, this requirement is a weakening of sub-Gaussianity, since the inequality is only required to
hold on the interval (—¢, +¢).

Now consider the variates Zj;; = (Ul-(;c))2 —2(1+ pj;). Note that they are zero-mean; we also claim they are
sub-exponential.

Lemma 10. Forall k € {1,...,n} and node-pairs (i,j) € V x V, the variables
k *
Lij = (Ui( ))2 —2(1+pj;)
are sub-exponential with parameter vy = 16(1 + 402) in the interval (— ¢y, ¢u), with oy = 1/(16(1 + 40?)).

We can exploit this lemma to apply tail bounds for sums of i.i.d. sub-exponential variates (Thm. 5.1, [6]). Doing
so yields that for ¢ < v% ¢y, we have ]P’[| S 1(U(k)) —2(1 + p};)| > nt] < 2exp{ —nt?/(27)}. Setting
t = 2v/ max; X3

2

2nv 2nv?
| U(k) )*=2(1+p5) > ﬁ] < QGXP{—i*}
{ Z J VX max; (X5,)% %

2 TLVQ
P Tax; (55)2 128 (1 + 402)2 |

and noting that (2nv/,/37537,) > (2nr/ max; ¥;), we obtain

IN

for all v < 8(max; ¥3;) (1 + 40?). A similar argument yields the same tail bound for the deviation involving V;gk)

Consequently, using Lemma 9(b), we conclude that

TLV2

max;(X};)2 128 (1 + 402)2 I8

PlA;(v)] < 4exp{—

valid for v < 8(max; %) (1 + 402), as required. It only remains to prove Lemma 10.
Proof of Lemma 10. If we can obtain a bound B > 0 such that

E(| Zyii|™ ™
sup [M} < B

m>2 m! ’

it then follows (Thm. 3.2, [6]) that Z},,; is sub-exponential with parameter 2B in the interval (— 5B B , ﬁ) We obtain
such a bound B as follows. Using the inequality (a 4+ b)™ < 2™(a™ 4+ b™), valid for any real numbers a, b, we have

m m k)2m * m
E(|Ziis™) < 2 (B(US ™) + 201+ i)™ (83)
Recalling that U, Z-(f) is sub-Gaussian with parameter 20, from Lemma 1.4 of Buldygin and Kozachenko [6] regarding
the moments of sub-Gaussian variates, we have ]E[|Ui(f) |?m] < 2(2m/e)™(20)?™. Thus, noting the inequality m! >
(m/e)™, it follows that IE[|UZ-(;€) |2m]/m! < 23m+1g2m It then follows from equation (83) that
my11l/m *
[E(|Zk;ij| )} / ol/m ((24m+102m)1/m I 4(1+ Pij))

m! (m!)L/m

4(1 + pt)
1/m 1/m 2 2
2 (2 160% + )

IN

IN

where we have used the inequality (z + y)/™ < 21/™(x1/™ 4 y1/™) valid for any integer m € N and real numbers
x,y > 0. Since the bound is a decreasing function of m, it follows that

E(| Ziig ™™ ' A1+ p;)
32, < 9 /2 21/2 16 2 3
2 { m! = RN

< 3207 48 = 8(1 + 40?),

where we have used the fact that | p’{j| < 1. The claim of the lemma thus follows. O
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E Proof of Lemma 2

Define the random variables Wi(jk) =X -(k)X (k) _ s

. . | B ;j»and note that they have mean zero. By applying the Chebyshev
inequality, we obtain

’Z ’>7’Ll/ = |ZW(k) > (nv)*"]
Rl

= n2m 2m (84)
Letting A = {(a1,...,a,) | a; €{0,...,2m}, 3| a; = 2m}, by the multinomial theorem, we have
S (R\2me . (¥)ya
s w™ = B[ (, ) T
k=1 acA k=1
— 2m . (k) QA
- z(al,.__,an)nww )
acA k=1

where the final equality uses linearity of expectation, and the independence of the variables {W (k)yn 3

Since the variables Wi(jk) are zero-mean, the product [[;_, E [(Wi(jk) )“k] vanishes for any multi-index a € A such

that a;, = 1 for at least one k. Accordingly, defining the subset

Ay :={(a1,...,a,) | a; € {0,2,...,2m}, Zai =2m},
i=1

we have

s w™) = % () TTE)

k=1 acA_4 1

k=
(Y ( 2m ) max E[(W(k))“k]. (85)
acA_4

IN

acA_ 1

T T

The quantity 7 is equal to the number of ways to put 2m balls in n bins such that if a bin contains a ball, it should
have at least two balls. Note that this implies there can then be at most m bins containing a ball. Consequently, the
term 7 is bounded above by the product of the number of ways in which we can choose m out of n bins, and the
number of ways in which we can put 2m balls into m bins—viz.

n
Tl S ( ) m2m S n™m m2m

m
Turning now to the second term 7%, note the following inequality: for any numbers (v1,...,v,) € Rﬁ and non-
negative integers (a1, .. ., ag), we have
¢ ¢ ‘
va’“ < (( max wvp)" < Zv,‘z*, where ay = Y ay.
Pt k=1,...,6 P =



Using this inequality, for any a € A_1, we have

ﬁ w0y

S H W(k)|ak
k=1 k=1
k)\2m
< E[(W)*"]
{k|ar#0}
< E W(k) 2m
= e UCRA

where the last inequality follows since any multi-index a € A_; has at most m non-zero entries. Thus, we have shown
(k)2
that T2 < mmaXge(1, n}E[(Wm ) m}

Substituting our bounds on 7} and 7% into equation (85), we obtain

.....

‘Z W(k) < nm m2m+l ke?llaxn}E[(Wl(Jk))Qm} (86)
k=1 o

It thus remains to bound the moments of Wi(jk). We have

E[(W7)] < E[xPX -s5)) < 2{E(XPX)T + 25,

]

where we have used the inequality (a + b)*™ < 227 (a?™ + b?™), valid for all real numbers a and b. An application
of the Cauchy-Schwarz inequality yields

22 JE[(X ) E[(x D)) + 2527
2%m (Km (2555 + [EZj]Qm) )

E[(W)?m]

IN

IN

where we have used the assumed moment bound E[(X l(k)/ A /Z;‘i) 4m] < K,,. Equation (86) thus reduces to

k22 jj

| Z W(k) < nm m2m+1 22m (K [E* o ] [EZPm)

Substituting back into equation (84) yields
‘_ ( ( ( ) E* ) } m2m+1nm22m(K [E;E;J]m 4 [E;ﬁj]2m)
- n2m 2m

A

{m2m+122m (K, [E* o ]m 4 [E;‘j]2m)}'

— (23 JJ
nm py2m
Noting that 2.7, 3.7, and 2.7, are all bounded above by max; >7;, we obtain
LS (o) () s {m?m 122 (max; 55,)*™ (K + 1)}
PlIL > (O - x) >0 < o =
k=1

as claimed.
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