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Consistent Independent Component
Analysis and Prewhitening

Aiyou Chen and Peter J. Bickel

Abstract—We study the statistical merits of two techniques
used in the literature of independent component analysis (ICA).
First, we analyze the characteristic-function based ICA method
(CHFICA) and study its statistical properties such as consis-
tency, -consistency, and robustness against small additive
noise. Second, we study the validity of prewhitening: a prepro-
cessing technique used by many ICA algorithms, as applied to
the CHFICA method. In particular, we establish the surprising
effectiveness of this technique even when some components have
heavy tails and others do not. A fast new algorithm implementing
the prewhitened CHFICA method is also provided.

Index Terms—Asymptotic normality, characteristic function,
consistency, incomplete Cholesky decomposition, independent
component analysis, prewhitening.

I. INTRODUCTION

OVER the past decade, independent component analysis
(ICA) has received much attention in many different

fields, such as signal processing and machine learning [17],
[21], [29], [3]. It has been used as a standard statistical tool for
blind source separation, e.g., in brain imaging analysis [27].
Formally, the classical ICA model is of the form

(1)

where is a random vector of observa-
tions, is a random vector of hidden sources
with mutually independent components, and is a nonsingular
mixing matrix. Define , which is usually called the
unmixing matrix. It is well known that (thus ) is identifiable
up to ambiguity of order and scaling if and only if at most one
of ’s components is Gaussian [13], [16], [23]. We call these
assumptions identifiability conditions. To specify uniquely,
we need to put some scale and permutation constraints either on

or on . Having independently and identically distributed
(i.i.d.) samples of , say , ICA aims
to estimate the unmixing matrix and thus to recover each
hidden source using , where is the th row of

. This type of problem is also called blind source separation
(BSS) in the engineering literature. Many statistical approaches
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have been proposed for such BSS. Some are based on contrast
functions or estimating equations derived from maximal likeli-
hood (ML), mutual information, as well as other criteria under
specific parametric models for the sources. These methods use
features that do not determine the distribution uniquely, and
they are therefore not consistent without further assumptions.
An example is the Joint Approximate Diagonalization of Eigen-
matrices (JADE) method, which relies on the source distribu-
tion’s fourth multilinear cumulant not vanishing [10]. Such in-
consistency can be readily explained by marginal mismatch of
the hidden sources’ distributions [9]. Other methods (e.g., [3],
[7], [11], and [19]) are based on nonparametric approximation
of some feature functions of hidden sources, such as probability
density function or density score, which do determine the dis-
tribution. Theoretical analysis of these methods is not available
(but see Chen and Bickel [11]). See [21] and references therein
for an extensive review of ICA methodologies and algorithms.

The characteristic-function based ICA method (CHFICA)
[15] has the virture of not requiring an estimation of delicate
parameters such as densities and, yet, should be consistent
under general conditions. Eriksson and Koivunen [15] showed
that the CHFICA method performed very well under simula-
tions and gave a formal argument for consistency.

Prewhitening is a popularly used preprocessing technique in
the ICA literature, which speeds algorithms up substantially. Its
validity is expected when all hidden sources have finite second
moments, and, under second moment constraints, Cardoso [8]
obtained a lower bound on estimation errors of the prewhitened
ICA algorithms. We found in simulations that even with heavy-
tailed data on some sources, prewhitened CHFICA still works
well.

In this paper, we address both the question of -consistency
and asymptotic normality for CHFICA and its surprisingly good
performance after prewhitening. The paper is organized as fol-
lows. In Section II, after reviewing CHFICA, we study its
consistency, -consistency, and asymptotic normality, as
defined in Theorem 1, and robustness properties. In Section III,
after reviewing prewhitening as a preprocessing technique for
ICA, we propose a new algorithm to implement prewhitened
CHFICA by using incomplete Cholesky decomposition. In
Section IV, we study the consistency of prewhitening in terms
of the acting parameter space of the matrix and show that
the prewhitened CHFICA method can be consistent, even when
some of the hidden sources do not have finite second moments.
In our conclusion in Section V, we review the performances of
the procedures we have considered both from the theoretical
and numerical point of view, which, as we have noted, are in
agreement. Some technical details are given in the Appendix,
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whereas others are in the technical report [12] available on the
WEB (http://www.stat.berkeley.edu/tech-reports/index.html).

In this paper, for any matrix, say , and denote its th
row and th column separately. denotes the Euclidean norm
for a vector and denotes the Frobenius norm for a matrix. We
use boldface uppercase to denote random vectors and random
matrices.

II. STATISTICAL PROPERTIES OF CHFICA

A. Review of the Characteristic-Function Based ICA Method

For a random vector , its characteristic function (cf.) is de-
fined by and its empirical characteristic
function (e.cf.), given i.i.d. observations , is defined
by , where . It is
well known that can be factorized into the product of its
marginal characteristic function if and only if has mutually
independent components. For , then the difference be-
tween and the product of its marginal cf., for example

(2)

for an -dim probability density function , can be consid-
ered to be a measurement of the dependence level among ’s
components. To make sure that if and only if ’s
components are mutually independent, it is sufficient to choose

such that it is continuous and for .
We use , where is a one-dimensional
(1-D) positive density function.

To avoid unidentifiability, we consider a true matrix
whose rows are scaled and permuted such that I) each of its
rows has norm 1; II) the element with maximal modulus in each
row is positive; III) the rows are ordered by (for ,

iff there exists such that and
for ). We denote the set of matrices

that satisfy conditions I-III by , i.e.,

matrix

for

It is obvious that if is an nonsingular matrix, then by
rescaling and permuting its rows appropriately the transformed
matrix will belong to . We denote such a row-rescaling-per-
muting transformation as , i.e, . Note that the ma-
trix .

CHFICA makes use of this criterion given by (2) as follows.
Using the observations of , the CHFICA estimator of the ma-
trix is defined by

(3)

where

(4)

B. Convergence Rates and Some Simulations

Since is a function of , can be obtained by
directly solving the above optimization problem. Like many
other ICA methods, we approximate a feature function of hidden
sources: the characteristic function. The advantage here is that
the characteristic function can be estimated easily and consis-
tently by the corresponding e.cf. Eriksson and Koivunen [15]
argued for the consistency of this estimator using extensive sim-
ulations and some heuristics. Here, we give a rigorous proof of
this claim and also study the -consistency and asymptotic
normality of the CHFICA estimator.

Let for , and define
for . Obviously, is

a cf. corresponding to the density function for .
We will often omit the subscripts of , , , and when
the dimension is obvious from their arguments.

For a sequence of random vectors with finite dimension
, iff as for
, and iff as
. For two 1-D random sequences, iff

.
Theorem 1: Suppose that is a symmetric density function

with for . Let be the true underlying
unmixing matrix. Then

i) Under the identifiability conditions, the estimator of
defined by (3) is consistent, that is,

(5)

ii) If the first and second derivative functions of , which
are denoted by and separately, are both bounded,
and , then is a -consistent estimate of

, that is,

(6)

iii) Under the same conditions as for ii), is asymptotically
normal, i.e.,

where cov . Here, is an matrix of
random variables, and its elements are decided by the
following equations: For

and

where is the th entry of . The ex-
plicit formulae for , , and are given in the
supplement [12].

Note that can be consistently estimated by estimating ,
, and for and the variance-covariance

matrix of . Having done this, one
can put confidence bands on . Alternatively, the normality
result shows that one can use the nonparametric bootstrap dis-
tribution of for this purpose.
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Theorem 1 is a special case of Theorem 2 below in the case of
no additive noise. The complete proof of Theorem 1 is in [12].
Here is the outline of our proof.

Outline of the Proof of i): The main idea is that the con-
trast function can be expressed as a -process1 indexed
by . Then, we can apply the Uniform Law of Large
Numbers (ULLN) for this -process [2] such that

(7)

Then, since can be identified uniquely in by , the con-
sistency of follows from the same arguments of compact-
ness and continuity as for classical likelihood inference.

Outline of the Proof of ii) and iii): The key is to parame-
trize the 1-D curves from to indexed by corresponding
tangent vectors (a compact set) using the manifold structure of

(each row is on a -D unit ball). Then, by making use of a
second-order Taylor expansion, can be expressed as
a ratio of two terms indexed by -processes separately. Then,
the convergence rate can be obtained by applying ULLN and
the central limit theorem for the -processes in the denominator
and numerator. Asymptotic normality follows similarly by the
delta method. Note that is not an M estimate so that the anal-
ysis using the U processes is needed.

Although different choices of can lead to different
performance, taking Gaussian or Laplace seems to be a
good choice. Fig. 1 shows some further simulation results
by using MATLAB, where the above characteristic func-
tion-based ICA method was implemented by an algorithm,
called PCFICA, described in Section III-B. Its performance is
compared with that of several other ICA algorithms such as
FastICA [22], JADE [10], KGV [3], and EFFICA [11], where
EFFICA has been proven to be asymptotically efficient under
moderate conditions. Eight hidden sources were used, which
were generated from , exponential (1), t-distribution
(3), lognormal (0,1), , logistic (0,1), Weibull (1,1), and
exponential , independently. An 8 8 mixing
matrix was generated randomly, the sample size used was 1000,
and the experiment was replicated 100 times with the same
mixing matrix to obtain the boxplots, where the estimation
errors were measured by the so-called “Amari
error” [3], i.e., for two matrices ,

where (it is necessary to normalize each row of
and ). The simulation also suggests that the CHFICA estimator
may not be efficient.

Note that the computational complexity for calculating
directly from (4) is at least [15]. For PCFICA,

1The U-process based on P and indexed by F is

U (f; P):=U (f):=
(n�m)!

n!
f(X(j ); . . . ; X(j )

f 2 F , where I = f(j ; . . . ; j ) : j 2 f1; . . . ; ng and j 6= j ; for k 6=
lg.

Fig. 1. Performances of different ICA algorithms: m = 8 hidden sources
and n = 1000 sample size were used, and the experiment was replicated 100
times; the boxplots of Amari errors were based on quartiles and the numbers
above the boxplots were the average running time (seconds per experiment) of
the corresponding algorithms.

we used prewhitening as a preprocessing tool and the incom-
plete Cholesky decomposition to speed up the computation (see
Section III-B).

C. Robustness Against Small Additive Noise

In practice, the model (1) rarely holds exactly. A more real-
istic situation allows some additive noise. That is, the observa-
tion can be modeled as

(8)

where and are the same as in the previous sections, is an
1 random vector, independent of , standing for an additive

noise vector (for example, sensor noise), and is the magnitude
of additive noise. This is usually called the noisy ICA model. In
[21], there is a good review of studies of thess types of models.
Our objective here is to study how the cf.-based ICA method be-
haves in the presence of noise. We borrow Bickel and Doksum
[4]’s approach in their study of the robustness of Box–Cox trans-
formations. To be more precise, we assume a large sample size

, and further, as . We study how the es-
timation error behaves in relation to its natural scale and

.
Theorem 2: Suppose that satisfies the conditions of

Theorem 1. Then, as , we have the following.

i) .
ii) If further and , then

(9)

The idea of our proof is similar to that outlined for Theorem 1
in Section II-B. We refer to [12] for the complete proof.

Part i) of Theorem 2 is trivial. Part ii) says that as long as
is of smaller order than , the effect of the noise on is
minimal. Put another way, if the ratio of noise scale to the esti-
mation error is small, the ratio of Bias Var for estimation of

is also small. Fig. 2 shows a simulation study to illustrate



3628 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 10, OCTOBER 2005

Fig. 2. Performance of PCFICA w.r.t. different noise scales, where i.i.d.
N(0; 1) additive noise and the previous m = 8 hidden sources were used to
generate noisy mixtures by (8); n = 1000, and each experiment is replicated
100 times to obtain the boxplots; the first boxplot corresponds to no noise, i.e.,
r(n) = 0, the second boxplot r(n) = 0:1, and so on.

Theorem 2(ii), where the eight hidden sources above were used
with , and without loss of generality, the identity ma-
trix was used for the mixing matrix. Each boxplot, which was
obtained by 100 replications, corresponds to a different noise
scale . By comparing the medians, the slope before on
the right-hand side of (9) is about 0.4. The variance term (about
0.5 by the first boxplot, which corresponds to ), can
be roughtly interpreted as the signal standard deviation (about

) times . In this example, the error due to additive
noise will dominate the estimation error only if ,
i.e., .

Both the simulation and the theorem say that CHFICA can
provide fairly good estimates of , even in the presence of
small additive noise in model (1). It turns out that the bias term
due to additive noise is not sensitive to the sample size nor to
the exact distribution of the additive noise for small , but we
leave out further simulations due to space limitations. Because
of its global consistency and robustness properties, CHFICA
can serve as a good starting point for the more efficient tech-
niques of Chen and Bickel [11].

III. NEW PREWHITENED ICA ALGORITHM

Prewhitening is a popularly used preprocessing technique in
the ICA literature. For example, many famous ICA algorithms
such as FastICA [22], JADE [10], KCCA, KGV [3] have
used this preprocessing technique. In general, prewhitening
is expected to be valid when all hidden sources have finite
second moments. In this section, we first briefly review this
concept and then provide a new algorithm for implementing
the characteristic function-based ICA method. Delicate studies
of prewhitening and prewhitened CHFICA (PCFICA) are left
to Section IV.

A. Introduction to Prewhitening

Since the matrix for model (1) can be arbitrary, naively,
we have to optimize some constrast function, for example,
(4), over all nonsingular matrices to obtain an es-
timate. However, prewhitening can project the optimization
onto the Stiefel manifold of orthogonal matrices [21]. Op-
timization on a Stiefel manifold can be solved efficiently
[14]. Let cov , and let be the square root
matrix of obtained by Singular Value Decomposition
(SVD), i.e., let be the SVD decomposition
such that , which is an identity matrix, and

is a diagonal matrix comprised of ’s eigenvalues;
then, . Let . Then,
cov , and (1) is equivalent to .
Without loss of generality, we may assume that each hidden
source in has unitary variance (we assume currently
a finite variance for each source and lose this assump-
tion later). By considering the covariance matrix, we have

, and thus

(10)

must be an orthogonal matrix. Notice that

is still an ICA model, but restricting to orthogonal matrices is
computationally very advantageous. Since can be estimated
directly by the sample covariance matrix of

where , a prewhitened ICA algorithm
first estimates an orthogonal unmixing matrix (say )
by fitting the ICA model with input
in some way and then estimates the unmixing matrix by

because of (10). This is the so-called
prewhitening (or whitening) technique. Note that is the
efficient estimate of the variance-covariance matrix of if
and only if the distribution of (thus ) is Gaussian so that
the resulting estimate is not efficient. However,if both and

are estimated -consistently, this procedure will lead to
a -consistent estimate of .

B. New Algorithm for CHFICA Using Prewhitening

Here is our prewhitened CHFICA estimator (PCFICA): First,
estimate defined by (10) using

(11)

where is the same as defined in (3), except that
is now replaced by , and is the set of
orthogonal matrices; second, let

(12)
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and obtain an estimate of by . The key problem is the
optimization of (11). Algebraic expansion leads to

(13)

This formula was used by Kankainen [24] in the context of
testing total independence. Evaluation of this contrast func-
tion requires operations, which is computationally
impractical with large sample sizes. We provide an algorithm
to approximate this function by using the Gaussian kernel
and incomplete Cholesky decomposition, which makes the
computation feasible for reasonable sizes of .

Let . Then,
, for . Notice that

so that the first term on the
right-hand side of (13) does not depend on . We only need to
consider the second term and last term.

Define (for ) to be an matrix such that
its th entry .
This is a Gram matrix generated by a 1-D Gaussian kernel,
which is known to be non-negative definite. Let be the
sum of the th column of and (sum
of all entries of ). Then, the contrast function consisting of
the second term and the third term on the right-hand side of (13)
becomes

To reduce computational complexity, we propose to approx-
imate by using incomplete Cholesky (IC) de-
composition [18], where is a lower triangular ma-
trix. Let be the threshold value that controls the summation
of the remaining diagonals by IC. Permutation is necessary to
make optimal such that tr , for some
permutation matrix , which is chosen automatically by the IC
algorithm. We used the IC algorithm described in [3] and set

for simulations. Now, the complexity of evaluting the
approximate is only , where

. The partial derivative can also be approx-
imated in operations by using the approximate Gram
matrices.

Although is not less than the number of eigenvalues of
such that the remaining eigensum is controlled by , Wright [32]
showed that a non-negative definite matrix can be approximated
well by IC with the same order as that by spectral decomposi-
tion if its eigenvalues decrease quickly enough. See Bach and
Jordan [3] for empirical studies, and, for instance, to Widom
[31] for theoretical results on the rate of decay of the eigen-
values of such Gram matrices. To further understand the magni-
tude of needed by IC to achieve a given error , we generated
1000 random samples from the mixture
Gaussian distribution and obtained

Fig. 3. Report the magnitude of h (x-axis) chosen by incomplete Cholesky
decomposition with given approximation errors � (y-axis), where the Gram
matrix was generated by the 1-D Gaussian kernel and 1000 samples from
0:4N (�1; 1) + 0:6N (1;1).

a 1000 1000 Gram matrix with
, where , and std is the sample standard

deviation of . Fig. 3 visualizes the IC simulation results.
Since applying the permutation matrix is equivalent to per-

muting the order of , which does not
change the value of , for simplicity, we write as

. It is noticeable that is still non-negative definite.
Thus, for and

. Since and ,
the approximation error of by replacing with is
bounded by and, thus, is ignorable with due
to when at most one source has infinite variance.
When all sources have heavy tails, we suggest by
considering the convergence rate of the contrast function (13)
(see [12] for such convergence rates).

Once we can evaluate the contrast function and its par-
tial derivative , the minimization of in the domain
of orthogonal matrices can be done efficiently by using the gra-
dient algorithm described in [14]. Here, the gradient of is
defined by

and the geodesic starting from in the gradient is deter-
mined as

where the matrix exponential can be calculated efficiently by
diagonalization. It is noticeable that the contrast function is not
convex, mainly due to the identifiability ambiguity. Restarting
initial points is necessary to obtain the global minimizer of

, which is closest to the truth.

IV. STATISTICAL PROPERTIES OF PREWHITENED CHFICA

Since we are, in this paper, interested in , we need
to estimate by , where is an estimator obtained by
any prewhitened ICA algorithm described in Section III-A. It is
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clear that is the set of all
possible values of . We call the acting parameter space
for the estimation of using prewhitening.

When , by classical theories, almost
surely. Then, we can approximate in . It can be shown
that for the prewhitened CHFICA algorithm, if all sources have
finite second moments, the properties claimed in Theorem 1
continue to hold. However, when , i.e., some
sources have heavy tails, diverges, and how is approx-
imated in is unclear. One would think that if one or more
sources do not have finite second moments, then prewhitening
would cause a breakdown of these prewhitened ICA algo-
rithms. To our surprise, simulations of Kernel ICA (KGV) [3]
and prewhitened CHFICA gave excellent results, even when
there exist heavy-tailed sources (for example, one is uniformly
distributed on [0,1], and the other is Cauchy distributed). This
is different from the super-efficiency phenomena for i.i.d.
heavy-tailed sources studied in [30]. The following subsections
develop some statistical theory for this phenomenon.

A. Consistent Acting Space

In this section, we prove that with prewhitening, the acting
parameter space is consistent in the sense of Theorem 3, regard-
less of whether all hidden sources have finite second moments
or not.

Theorem 3: Under the identifiability conditions

where .
Proof: Suppose that has sample covariance matrix .

Then, since . Thus,
is orthogonal, and .

Hence, it is enough to prove that

This is completed by Theorem 5, which we have developed and
proven in the Appendix.

This theorem says that for all kinds of hidden sources, there
exists at least a sequence of points in the acting parameter space
with prewhitening, which converges to in probability. This
result is independent of the particular ICA algorithm.

B. Consistent Prewhitened CHFICA

The previous subsection provides the possibility that some
prewhitened ICA algorithm may be able to obtain consistent
estimates of the unmixing matrix, even with the existence of
heavy-tailed sources. This begs the question of whether an im-
plemented algorithm is consistent. Our goal in this subsection is
to study the prewhitened CHFICA method. Fig. 4 shows some
simulation results in the case of two sources: One has a uni-
form distribution on [0,1], and the other is Cauchy distributed.
To detect whether ICA algorithms can obtain consistent esti-
mates in such a situation, the sample size was increased from I
( ) to II ( ). We compare PCFICA with three
other ICA algorithms: FastICA, JADE, and KGV. From Fig. 4,
we can see that as the sample size increases, the estimation error
measured by the Amari error for PCFICA and KGV decreases
toward zero more significantly than that for FastICA and JADE.
However, the simulation also suggests that the convergence rate
of the PCFICA estimator is slower than .

Fig. 4. Consistency of different ICA algorithms with prewhitening whenm =

2: One is uniform on [0, 1], and the other is Cauchy: One hundred replications
were used to obtain the boxplots based on quartiles, where the sample sizes were
1000 for case I and 8000 for case II.

The main result of this study is given in the following
Theorem.

Theorem 4: Suppose that the identifiability conditions
hold in model (1). Let be as usual. The estimator
of defined by [(11) and (12)] is consistent, i.e.,

, in either of the three cases.
i) All components of have finite variances.
ii) All but one component of have finite variances.
iii) , and both components of have heavy tails and

stable distributions.
We provide some heuristics for the above results. The cru-

cial step of a prewhitened ICA algorithm is to separate, by The-
orem 3, the whitened mixture , where
is a data-dependent orthogonal matrix defined in the previous
subsection and, thus, is equivalent to separating
for which the identity matrix is a true unmixing matrix. By
Theorem 5 below, is almost diagonal, and thus, by
prewhitening, we essentially separate mixtures of individually
rescaled hidden sources, which are still mutually independent,
despite their weak time dependence. The result for Case i) be-
comes obvious. In Case ii), the heavy-tailed rescaled source is
asymptotically zero; fortunately, the orthogonal unmixing struc-
ture makes sure that the one (almost zero) can be separated
well if the other sources can be separated consistently.
Thus, in Cases i) and ii), the consistency results can also apply
to other prewhitened ICA algorithms, which can estimate
consistently without using prewhitening. The simulation shown
in Fig. 4 is for Case ii). Zibulevsky and Pearlmutter [33] had
some different heuristics for Case ii) by considering the sparse-
ness property of heavy-tailed hidden sources. Case iii) is more
sophisticated. See [12] for the complete proof. As a special case
of iii), when both components have the same symmetric and
stable distribution, Shereshevski et al. [30] showed that without
prewhitening, the unmixing matrix can be estimated super effi-
ciently, for example, by a quasi maximum likelihood estimation
(MLE). Under such a situation, we conjecture that the corre-
sponding estimates using prewhitening would also be super-ef-
ficient, but we leave this for further analysis.
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V. CONCLUSION

In this paper, we have analyzed the CHFICA method both
theoretically and numerically under the setup of classical ICA
models. First, the CHFICA estimate is consistent under minimal
identifiability conditions, whereas many well-known ICA algo-
rithms such as FastICA and JADE, which are based on para-
metric methods and thus can be unified under the framework
of quasi MLE or equivalently by parametrizing hidden sources
with particular density families (see Lee et al. [25]), are shown
by Cardoso [9] to be inconsistent when the hidden sources do
not belong to such families. Second, CHFICA is -consistent,
asymptotically normal, and robust against small additive noise
under mild conditions. Third, the acting parameter space for
prewhitened ICA algorithms is shown to always be able to cap-
ture the true value of the unmixing matrix asymptotically, and in
particular, prewhitened CHFICA is consistent even in the pres-
ence of heavy-tailed sources. Numerically, although the compu-
tational complexity of CHFICA is , we have proposed a
fast algorithm (PCFICA) to implement it by using prewhitening
and incomplete Cholesky decomposition. Simulation results of
PCFICA are in agreement with the above theoretical analysis.

APPENDIX

Let be the sample covariance matrix of an -D random
vector , which has mutually independent components. Denote
its diagonal elements by with , and define

.
Theorem 5: If none of ’s component is degenerate, then

Proof: Suppose the sample correlation matrix of is
. Then, . Let be the matrix

such that for and for
. Then, , where

and . It is clear that .
From the following Proposition, we have ,
and thus, . By Mathias’s theorem [25], we have

.
Let be independent. are i.i.d. copies of

them. Define the sample correlation coefficient

When and , it is well known that
.
Proposition: Let be independent. Suppose that

are i.i.d. realizations of them. Then, .
Proof: When both and are finite second moment,

the result is well-known (see, for example, Bickel and Doksum
[5]). If either is infinite, the result follows from the following
Lemmas 1.

Lemma 1 (Klass): If , then

Thus, by monotone
transformation.

Proof: It is enough to consider the case .
Notice that a.s.; then, there exists
s.t. a.s. By truncation

Lemma 2: If and are independent, and ,
then

This, together with Lemma 1, implies that if further is not
degenerated, then

Proof: It is enough to prove the result for non-negative
and . As in the proof of Lemma 1, we have and

a.s.
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where the second in the last inequality is due to
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